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Abstract
This paper deals with the connection between the Kolmogorov-Sinai entropy, and
Lyapunov exponents describing the microscopic dynamics of particle systems, and the
quantities characterizing the macroscopic properties of the systems. The problem of
creation and destruction of information and the connection of these processes with
Kolmogorov-Sinai entropy are analysed. The Lyapunov exponents which are also the
measure of chaotic behaviour are related to the average loss or gain of information.
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I Introduction

Recently, a number of approaches have been developed to connect the microscopic
dynamics of particle systems to the macroscopic properties of systems, in non-
equilibrium stationary states ( Rondoni, 2000; Gilbert, Dorfman 1999 ), based on the
theory of dynamical systems. In this connection the question arises about the relation
between the quantities used in the theory of dynamical systems, such as Kolmogorov-
Sinai entropy ( KSE ), and Lyapunov exponents ( LE ) on the one hand, and the
macroscopic quantities, such as transport coeffrcients or the quantities from the realm of
irreversible thermodyramics, entropy production etc., on the other hand. In this context
the notion of information and the quantity information entropy are commonly used. The
use of the word ,,information" is connected with considerable confusion. Two
apparently contradictory statements can be found in literature about the chaotic systems
behaviour: i) chaotic systems create information, ii) chaotic systems
destroy information
( Hilborn, 2000 ), or i) KSE is a measure of a loss of information ( Schuster, l99g ),
ii) KSE is a measure of information gain ( Dorfman, 1999; Parker, Chua 1987 ). The
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purpose of this paper is: i) to clariff these notions and to explain the relations between
corresponding quantities, ii) to show the connections between LE, KSE and the
physical quantities from the domain of irreversible thermodynamics and statistical
physics.

2 Creation and Destruction of Information

KSE and LEs are the basic theoretical tools used for quantiffing chaotic behaviour.
Before we introduce these quantities we first review the concept of information creation
and destruction for the use in describing the behaviour of dissipative dynamical
systems ( Parker, Chua 1987 ; Shaw 1981; Eckmann, Ruelle 1985).

For simplicity, we consider an autonomous dynamical system with expanding
flow O . We suppose that the state of the system can be measured within a resolution ô.
We assume that there are two observers who measure the state of the system at two
difterent times. Observer I observes the state of the system at time tr to be xr. Observer
2 measures the state at time tz > tr to be xz. Observer I knows that the state at t1 lies
somewhere inside B6(x1) -the ô ball centred at xr and that the state at tz must lie inside
O(8, (x, )) . Observer 2 knows that the state at t2 lies somewhere inside Bo(xz); that is

the later observer knows more about the state of the system because Ba(xz) is contained
in O(Br(x,)), see Fig.l.

O (Br(x,))

Bu{J,r)

Bo(xt

Fig.l: Observer 2 possesses more precise information about the state of the system

Thus an expanding flow is often viewed as creating information. In other words for an
expanding system it is less accurate to use x1 to anticipate the state at the time tz than to
observe the state at tz. The ability to anticipate later states diminishes (due to lack of
precision on initial condition). We note that from this point of view we could also speak
about the loss of information. On the contrary the contracting flow is viewed as
destroying information. Of course, a chaotic ûajectories are bounded, thus a chaotic
system must contract the state volume in some directions and expand in other
directions.

Now we shall try to express these statements in a quantitative way. The amount
of information is quantified by the Shannon entropy. Let us consider a system with
discrete states numbered with i = 1,..s, which are associated with the probabilities pi.
Then the Shannon enfopy is defined as the mean uncertainty per state
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( l )I  = - lp , tnp ,
i=l

with

to, =r. (2)
i= l

The Shannon entropy can be defined also for continuous systems ( Haken, 1988 ). Now
we consider a dynamical system with expanding flow. Observer 2 measures the state of
the system at time tz and anticipates the state of the system at time tr ( i.e. the
retrospective question ). Observer I observes the state of the system at time t1. He
knows that the state of the system lies somewhere at Bô(xr). The information entropy
corresponding to observer I has its maximum, because the probability density is
uniform on Bo(xr). The information entropy corresponding to observer 2 at time tz has
its maximum too but information entropy corresponding to observet 2 at time t1 is
smaller because the probability density is concentrated on a contracted part of Bo(xz).
The fact that the information entropy ( as a measure of the lack of knowledge about the
state of the system in 86) has decreased can be interpreted as a gain of information, or
increase of information.

Finally, we note that the loss of information is associated with prognostic question,
the increase of information with retrospective question (for the systems with expanding
flow).

3 The Lyapunov Exponents

LE may be used to obtain the measure of the sensitive dependence upon initial
conditions that is characteristic ofchaotic behaviour. LE are connected with concepts of
predictability, especially with the predictability time.

In this section we give an interpretation to the LE in terms of the information
concept.

Consider a differentiable (almost everyrvhere, except, possibly, for a set of
measure zero) transfonnation F on the interval [ 0,1 ]. Let xe be one initial point and x:
x0 + r nearby initial point. We then apply the iterated map function n times to xs and x.
The LE is given by the following equation ( Schuster, 1984 )

z = rim1i.nlr,1x,;1. (3)
n+@ nu.=a |  " |

Now we shall show that the LE measures the average ,,loss of information" or the ,,gain
of information" about the position of a point in [0,1] after one iteration.

As an illustration we consider linear map, see fig. 2. We separate interval [0,1]
into m equal intervals and assume that a point x0 can occur in each of them with equal
probability p:l/m. The bit number missing an observer to know in which interval xe
occurs is

ô o  = - l n  
I  

= l n m .
m
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lr'1"11'  ' m

l l m

Fig.2: The map F(x) changes the length of an interval

Linear map F(x) changes the length of an interval by a factor a : lf'(*) | . fn"
corresponding decrease of resolution leads to a loss of information after the mapping
which equals the difference of the bit numbers before and after iteration step

L,b =tnm-(-na; = tnlr '(ro)|. (5)
m

Averaging this expression over many iterations leads to the following expression for the
mean loss of the information

I  n - l

aô = l imll tnlr 'r"r,)1.
n + æ  n a  |  " ' l

Using eqs. 3, 6 we obtain the relation between the Lyapunov exponent and the mean
loss of information

À . = L b . (7)
The loss of information conesponds to a prognostic question. With respect to the
retrospective question the right hand side of eq. 7 can be interpreted as a information
gain ( Beck, Schlôgl, 1997) .

4 The Kolmogorov-Sinai Entropy

4.1 Kolmogorov-Sinai Entropy and the Loss of Information

The concept of entropy in a dynamical system was formalized by Kolmogorov.
In the literature on the nonlinear dvnamics altemative definitions of the KSE are used.
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In this section we shall discuss the KSE defined in the following way ( Schuster, 1984;
Grassberger, Procaccia, 1983 ):

Consider a dynamical system wit4 f degrees of freedom. Suppose that the phase
space is partitioned into boxes of size eÎ. Assume that there is an attractor in the phase
space and that the trajectory x(t) = [xl(t), x2(t), . . .x(t)] is in the basin of attraction. The
state of the system is measured at intervals of time t. Let P*, ,, be the joint

probability that x(t = 0) is in box i6, x(t : t) is in box i1,..., and x(t : nt)"is in box in.
The information needed to locate the system on a special trajectory io'...in with
precision e is quantified by the Shannon entropy

K, = -L1"..,, lnPu...,., .
ô.. r,

The differences Kn+r-IÇ can be interpreted as information needed to anticipate in which
cell in*r' the system will be if we know that it was previously in io'...in'. In other words
K*r-Kn measures our loss of information ( or the missing information ) about the
system from time nt to time (n+l)r. Then KSE is introduced as the average rate of
information loss

*frÏrt"*, -Kn) = -limfgm#àP,, ,.lnPu ,. (e)

For maps ( transformations ) with discrete time steps r = l, the limit r -+ 0 is omitted.

4.2 Kolmogorov-Sinai Entropy and the Gain of Information

To illustrate the mechanism of information increasing in discrete-time dynamical
systems, consider the so called Arnold cat transformation:

(modl) (10)

( l  l )

where a,b,c,d are all
Dorfman ( Dorfman
with

integers, detT: 1.
1995 ) assumed the initial configuration A for the Arnold cat map

(r2)

(8)

with

[ ' ' ) = / ' )
\v',/ [v/

fa bf
T= l  l .

lc d)

lz rl
T= l  I

L l  l l
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in the form of a small square in the lower left-hand corner, see Fig.3. He had stated that
the original set after n iterations got stretched along the unstable manifold and
compressed in the stable direction. The evolution of the initial configuration after
three iterations is shown in Fig 4.. Suppose that the characteristic dimension of the
initial set A is of the order of resolution parametet ô. As a consequence, observer I who

Fig3: The initial set A for the Arnold cat map Fig.4: The initial set A after
three iterations

measures the state of the system, cannot resolve two points in A. As time passes the
initial set will be shetched along the unstable direction and observer 2 who measures
the state of the system can easily resolve the images of points of the initial set.

The notion of creation ( expanding flow ) or destruction ( contracting flow ) of
information can be quantified. The exponential rate at which information is obtained is
determined by the KSE. The definition of KSE can be understood by first defining the
partition W of the space X, and then defining the entropy of the partition W.

Now we look more carefully at the KSE definition. Let W: (W1,W2,... Wo) be
a finite partition of space X. For every piece Wi *e write B-k\ for the set of points
mapped byBk to V4. We then denote by B-k W the partition ( Ii-nw,,... g-kw" j. nre
partition B-* W is deduced from W by time evolution. Finally, !/") is defined as

Yt@) -W v BaW v. . .v  B-n*tW' . (13 )

The partition w(n) is the partition generated by w in a time interval of length n.
Kolmogorov and Sinai defined the entropy of a partition in terms of a normalized
invariant measure p on the phase space, by the relation

with

a

H(W) = -la(W,)tn p(w,)

t  p@,)=t.
H(W) is the information entropy of ttre partition W. In other words H(rW)
of our.uncertainty as to where the point xe X is relative to the partition
H(UI") expresses the information entropy over an interval of time of
express how much information is obtained per step, we defïne the quantity

(14)

(15)

is a measure
W. The term
length n. To
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(16)

We note that a lot of work goes into showing that this limit exists ( Gutzwiller, l99l ).
The quantity h still depends on the choice of the partition. The KSE is clefined as the
supremum of the expression 16 over all possible finite partitions of the space at t = 0,

ft*, =sup&.
,ft

We remind that h can be interpreted as a rate of information ueation with respect to the
partition W. Then KSE is its limit for finer and finer partition.

As an example we consider a partition of the unit square. Let W = ( W0 ,Wl ) b
a partition of the unit square into its left half and its right half. The inverse baker
transformation maps these two sets to B''(tù/,), i = 0,1, see Fig.5. The intersections of
tffi with B-'(Wj) leads to a new partition of the unit square into four sets Wifl B''(Wj),
see Fig.6. The entropies of thrpartitions Éue

n = nmfz (wt^'|) ) - H 1w a\f= 
\ig) n fw'' r.

B'(ll/o)
Fig.5: The construction of partitions of the unii sqirare

for the baker's transformation

wt^B- t (wo)

Wo^84(W)  Wtr \84(W)

Fig.6: The partition of the unit square into sets

(17)

wo wl

Wo^81(wa)

wo^B-t (w)
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H (W<'*rl 1 = ln2'*t, n = 0,1,... ( l  8)

(le)
The KSE is then

hxs = ln2 '

5 Kolmogorov-sinai Entropy and Lyapunov Exponents Related to
Transport Coefficients

A new line of research in transport theory has been developed over the past few
years, relating macroscopic properties of large systems to the properties of the
underlying microscopic dynamics. There are two main approaches to transport theory
which are based on the notions of chaos theory:
i) the escape rate or chaotic scattering theory formalism for computing transport
coefficients,
ii) the Gaussian thermostat method for computing transport coeffrcients.
These methods allow to relate macroscopic transport quantities, such as transport
coeffrcients, to microscopic dynamical quantities, like Lyapunov-exponents and
Kolmogorov-Sinai entropy.

5.1The Escape Rate Formalism

First we shall describe the escape-rate formalism ( Dorfman, 1999; Gaspard, 1995;
Cohen, 1995 ). The system under consideration is an open system with absorbing
boundaries. Once a point passes a boundary, it can never return to the bounded system-.
As illustration we may imagine a Brownian particle diffusing in a fluid inside a
container with absorbing boundaries. A standard, mesoscopic description of the system
consists in the solution of the diffusion equation for the probability density of the
Brownian particle inside the container. From the microscopiô point ofview thà motion
of the particle is described by some transformation in the phase space of the entire
system. The escape-rate method relates the decay rate ( the probability of finding the
particle inside the container is an exponentially decreasing function of time with decay
coefÏïcient ) to dynamical properties of the deterministic microscopic dynamics of thê
system.

This statement can be demonstrated with the following example. v/e take the
discrete map:

lx ,
l -

x , r r=1- !o  ,
l " - t * l
l P r

fo, O. r, .)

! .  *^ .1  ,
(20)
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where ps,Pt<Yr, 0< xn< 1.
After first step of the mapping, points between pe and l-p1 leave the unit interval.
Let the Sn be the number of survivors after n steps, i.e. the number of trajectories
staying in the phase space. For large n one obsenres an exponential decay ofSn:

(2r)

where y6 is dynamical escape rate.

In our case it can be proved

(22)

The set of points that remain forever in the unit interval under the mapping 20, a
repeller Fp, is a set of zero Lebesgue measure with an uncountable infinify of points
( Cantor set ). In ( Gaspard, 1995 ) it is shown, that for Anosov systems the relation
holds

!=exp(-yon1,

ro= lnL
P o + P r

rd =ZAIFR\-ho(F*\,
À,ro

where the sum is over all positive Lyapunov exponents on the repeller Fp,
hrc is the Kolmogorov-Sinai entropy on the repeller Fx.
rile note that Pesin's theorem does not apply to the open systems.

Now we consider a system consisting of a particle of mass m and energy
E, moving among a fixed set of scatterers which are in a region R of infinite extent
in all directions except one, the x-direction. The scatterers are confined to the
interval 0 < x < L. Absorbing walls are placed at the planes at x:0 and x = L. The set
of the trajectories of the moving particle inside the region R which have started with all
possible initial positions and velocities forms the repeller Fn. For the dynamical escape
ratey6, eq.23 holds.

On the other hand, the system under consideration may be described by the
diffusion equàtion

(23)

(24)Yy= Dv2p(î,t).

For large L and for large times after some initial time the probability for the distribution
ofparticles in the x-direction has the form

P(x, t) = 
âo;' î 

*o[ -(ï)' r), (2s)

where D is the diffrrsion coefficient.
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The slowest decaying mode n: 1 decays ̂" 
"*n(-t!'|. 

*u. the escape rate ( for- \ .  
L" )

large systems ) is defined as
r 'Dv=7'

By identi$ing the escape rate T given by eq. 26 with the dynamical
y6 given by eq.23 we receive the relation for the diffrrsion coefficient D

, = r,x#(l t,1r ; - rt",,*,

a(p)=r?

i = p

i t=qE -n?o .

(26)

escape rate

(27)

The eq. 27 has been applied to Lorentz gases where the scatterers are disks or spheres
placed at random in the plane or in the space.

5.2 The Gaussian Thermostat Method

In attempting to simulate transport processes in fluids on a computer ( Gilbert,
Dorfman, 1999; Cohen, 1995 ) it was noticed that external fields imposed to a system
led to changes in the energy of a system. To deal with this problem it was used so called
,,internal thermostaf'- a fictitious frictional force, in fact, which maintained the energy
at some constânt value. The theoretical analyses has led to the connections between
transport theory ( fransport coeflicients such as coefficient ofshear viscosity, coefficient
of diffrrsion etc.), and chaotic dynamics ( KSE and LEs ) and the irreversible
thermodynamics ( entropy production, entropy ).

As a simple illustration we consider a system of N identical charged particles.
An external electric field E is applied to this system. The particles will begin to drift
and accelerate. To keep the kinetic energy ofthe particle constant we can add a friction
term o ( cl > 0 ) to the momentum equation

i=qE -a(p)p, (28)

where o( p ) is fixed by the condition that the kinetic energy stays constant. As a
consequence

(2e)

The equations of motion are

(30)

Because of a friction term the phase-space volumes are not preserved in time. The
modified Liouville equation can be written in the following form
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dp
i=o o '  (31)

Here p is a distribution function in f space.
The rate of change of a phase-space volume v can be obtained by using the modified
Liouville equation. The result is

dult) =-or. (32)
dt

The volume in phase-space will decrease ( a > 0 ). This change is associated with the
sum of the LEs

(33)

The connection between transport coefïicients and the sum of all the LEs of the systern
is established by incorporating the ineversible thermodynamics into the framework of
dynamical systems theory. In this context two expressions for the irreversible entropy
production are used. The first one is the usual relation between the irreversible entropy
production P and the thermodynamic fluxes Ji and forces Xi

p =lJ,x, .

From now on we suppose unit volume of physical system.
The other of these expressions for the entropy production is based on the Gibbs ( fine
grained ) entropy 56, given by

S o = - 
[ar p1r,r)[n p(r, r) - 1], (3s)

where I is a point in the phase-space of the system, p( f,t ) is the phase-space density
of the system.
Because of the modified Liouville equation, it holds

+ = -k lar pa= -r(o), (36)

with Boltzmann's constant k.

From the eq. 36 it follows that the I tr negative. This fact makes it difficult
dt

to equate the positive macroscopic, i.e. irreversible thermodynamic entropy production
to the negative change of the Gibbs entropy. This situation is usually resolved ( Gilbert,
Dorfman, 1999 ) by considering that the negative entropy production inside the system
is compensated by a positive entropy production in the thermostat itself, so that the total
entropy production is positive, or zero. In nonequilibrium steady state the total entropy
production is zero

u(')=u(o)e4;t]

(34)
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Then the positive entropy
entropy production

ds. ds,-._ _ u  
r _ J _ ! S ! _ = !

dt dt
production in the thermostat is equated

^ d5,"" J .E E2
r  : -  - u - -

d t  T  T '

(37)

to the macroscopic

(38)

where J is the average electric current, o is the electrical conductivity, T is temperature.
The connection to chaotic dynamics is established by considering the change of phase-
space. As a result we obtain

(3e)+=rI,0,)dt

From eqs. 37,38,39 it follows for ergodic systems

'=-#4^'' (40)

This procedure is not quite satisfactory ( Rondoni, Cohen, 2000; Gilbert, Dorfrnan,
1999 ). In the steady state the phase-space density p on the attractor is not a smooth
function with smooth derivatives. However, it can be shown by a more careful analyses
using the Sinai-Ruelle-Bower measure which is smooth in the unstable directions and
fractal along the stable directions, that the eq. 40 holds.

Another problem concerns the interpretation of the term c( p ).p as representing
a real physical thermostat, which absorbs the dissipative energy created in the system.

This interpretation is crucial for the identification of the term 
'{o 

*nn irreversible
dt

thermodynamics entropy production. The term a( p ).p has nothing to do with a real
thermostat ( Rondoni, 2000 ).' 

Finally we note that it is not surprising that the rate of Gibbs entropy production
is negative: The time evolution of the dissipative system equation of motion yields the
phase-space contraction. As time elapses the phase space point gets closer and closer to
the attractor. Thus the observer who anticipates the state of the system learns more and
more about the location of the phase space point as time increases and this gain of
information is reflected in a negative change of Gibbs entropy.

The final goal of the attempt to incorporate irreversible thermodynamics into the
framework of dynamical system theory is to build a complete description of all
quantities occurring in the irreversible thermodynamics in purely dynamical terms. The
main quantity in the irreversible thermodynamics is the physical entropy. The fact that
the phase-space probability distribution is rearranged by the time evolution, that sets of
zero volume take a probability of I in the stationary state, makes the Gibbs entropy to
diverge to -oo. Thus the Gibbs entropy cannot be identified with the physical entropy. To
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overcome this difliculty the various kinds of coarse-grained informational entropies and
entropy production were introduced ( Gilbert, Dorfman 1999; Kantz, Olbrich 2000;
Gaspard, 1998 ). In the limit of fine graining they become the Gibbs entropy. In the case
of thermostatted systems, Gilbert and Dorfrnan using coarse-grained method had also
obtained the eq. 40.

6 Conclusion

LE and KSE were introduced for quantifying chaotic behaviour. The
interpretation of these quantities in the framework of the information theory and their
relations to the physical notions such as transport coefficients, entropy, entropy
production could serve to the better understanding of LE and KSE. The problem of
creation and destruction of information was analysed and it was shown how connect the
gain of information with KSE, which may be used to characterize the chaotic behaviour
of systems. The notion of creation of information associated with prognostic question
( by expanding flow ) and destruction of information associated with retrospective
question is clarified. The LE which is also the measure of chaotic behaviour can be
related to the average loss or gain of information. The connection between the
dynamical properties of open systems characterized by KSE and LEs, and transport
properties ofsuch systems characterized by transport coefficients is illustrated by using
i) the escape rate formalism, ii) the Gaussian thermostat method.
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