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Abstract

Transitions have been studied in physics, mathematical system theory, automata theory,
Petri nets, and many other theories - and they are always introduced with reference to
the states of a given system. But usually the notion of 'state' is defined in an abstract
way which is not related to a general formal notion of 'time' in the actual system
description. That causes many problems in applications.

By contrast, in this paper the author introduces transitions in conceptual time systems
mainly as pairs of time objects. Then transitions between situations, states, time states,
and phases can be induced easily.

That leads to very effective temporal representations of processes, as demonstrated by,
for example, applications in an air-conditioning plant.
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1 Systems and Formal Concepts

Temporal phenomena have been studied extensively in nearly all areas of science,
mainly in physics [2,9,17], mathematical system theory [3,11,12,13,14,17,31,32], Petri
nets [15], automata theory [1,8,10], knowledge representation [18,19], and temporal
logic [4].

To study 'real' systems like machines, animals, or societies it is useful to represent
them formally. These formal representations may be protocols of the observations of a
'real' system or 'laws' abstracted from observations, sometimes mixtures of both. A
simple example of a protocol is a data table which collects for a set of points in time the
data observed at the 'real' system. A typical example of a 'law' description of a system is
Galilei's law of a falling stone described by a fixed parabola, or more generally by a
family of parabolas indexed by some parameters. This family can be described also by a
differential equation which often is also considered as a description of a system.
Clearly, a differential equation (or even a 'system’ of differential equations) should be
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distinguished from its set of solutions and that from a single solution. What is a
'system'? Clearly, we like to use a general notion of 'system' in our scientific meta-
language. Therefore many authors start with an intuitive notion of a system which leads
to several difficulties. For example, if the notion of a system is not clear, then also the
notions of 'states' and 'transitions' are not clear. Another difficulty arises from the fact
that many systems have in some experiential sense 'subsystems', for example 'particles’
or 'parts’; and without a formal definition of a system it is not clear how they are related
to the given system.

Therefore we need clear basic definitions such as the definition of a vector space or
the definition of an automaton. While vector spaces are used in system theory to
describe the set of 'possible’ states of a 'linear' system, the notion of a 'state of a system'
needs some reference to the system description and can not be defined using only the
definition of a vector space. By contrast, the definition of an automaton was introduced
to describe transitions between states of a system. Indeed, the states of an automaton are
introduced as the elements of an axiomatically given set, and transitions are described as
labeled pairs of states, such that each input in a given state yields a uniquely determined
transition into another state and a certain output. For applications in real systems this
definition is not satisfactory since it does not include a formal time description (which
should be related to the notion of 'state' and 'transition’).

Such a general system definition was introduced by the author [25,27,29,30] using
Formal Concept Analysis [6]. Now, before working with precise mathematical
descriptions, we study an example of an air-conditioning plant.

2 Transitions in an Air-Conditioning Plant

In this section we start with some data on temperatures in an air-conditioning plant of
a chemical firm. These data are represented in the form of a typical conceptual time
system. The words 'states’, 'situations’, 'phases’, and 'transitions’ are introduced here at
first intuitively, leading then to the precise definitions of states, situations, phases, and
transitions in conceptual time systems as defined in the next sections.

2.1 Temporal Temperature Data of an Air-Conditioning Plant

The following data represent some temperature measurements taken for an air-
conditioning plant in the chemical industry. For this example we focus on the hot water
temperature, the temperatures in two production rooms, called room2 and room3, and
the outdoor temperature, all of them measured daily each hour; here we study just three
days. Figure 1 demonstrates graphically the temporal development of these four
temperatures (in degree centigrades: °C).
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Figure 1: Temperatures (in°C) during three days (72 hours)

Using Figure 1 we now discuss some important ideas leading to the formal
representation of states in conceptual time systems.

First of all, we write down some statements about the system described by Figure 1
using the words states and situations in the usual intuitive sense of a technical
description:

Statementl: We observe in Figure 1 that the hot water temperature changes within two
states described by the values of about 33 C and 40 <C.

Statement2: Between these two extremal states there are other states, for example the
state where the hot water temperature has the value of about 35 °C.

Statement3: The hot water temperature was in the state of about 35 °C several times, for
example during the evening of the second day and during the morning of the third day.
That describes two different situations of the system.

Secondly, we discuss these statements:

To Statement 1: Is 33°C a state of that system? Or maybe only a state of the subsystem
described by the hot water temperature? Which system do we mean? The 'real' air-
conditioning plant, or its graphic representation in Figure 1 or its representation as a
data table, or what else? And what do we mean by a subsystem?

To Statement 2: In that statement an ordering among the states is used. Is the set of
states of an arbitrary system always ordered in some natural way?

To Statement 3: If the same state 'occurs' several times one should distinguish these
'situations' by the times when they happen. That was done in Mathematical System
Theory [11,14] by defining a 'phase’ as a pair (t,s) of a time t and a state s. Clearly, that
is more general than the often used idea that a phase is associated with an angle (which
is usually defined in the much more special structure of a Euclidean vector space). Since
we are interested in describing very general systems, including not only all the classical
technical systems but also systems in psychology, linguistics, and many other areas we
shall use the above mentioned general definition of a phase. Indeed, though there is no
general definition of states in Mathematical System Theory [11,12,13,14,16], the author
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has generalized the description of a 'phase’ preserving the idea that a 'phase' should have
a 'time part' and an 'event part' where the event part describes the states. But the two
parts should be related to each other. The connection between these two parts are the
'time objects' or 'time granules' introduced by the author in [25,27].

In the example we take as time objects the 72 hours of three days, labeled from '100'
to '323" where the first digit indicates the day (1 — 3) and the two last digits indicate the
hour (00 — 23). The following Table 1 represents only the measurements during the first
day. In this example the names of the time objects reflect the values of the time
variables 'day' and 'hour', which is useful but not necessary.

Table 1: Data table of a conceptual time systém

time object | day | hour | outdoor temp | room2 temp | room3 temp | hot water temp
100 1 0 3,3 19,7 19,6 32,6
101 1 1 3,3 19,7 19,6 32,6
102 1 2 3,3 19,7 19,5 32,6
103] 1 3 33 19,7 19,5 32,6
104 1 4 3,3 19,7 19,56 32,6
105 1 5 3,3 19,6 19,5 32,6
106| 1 6 3.3 19,8 19,5 33,8
107 1 7 3,3 21,1 20,3 39,9
108 1 8 3,3 214 21 40
109 1 9 34 214 21,5 40
110} 1} 10 33 21,5 21,8 40
111 1] 11 3,7 21,6 221 40
112 1] 12 4,1 21,6 22,4 40
113 1] 13 44 21,7 22,6 40
114 1| 14 4.2 21,7 22,8 40
115 1| 15 4,4 21,7 22,9 40
116] 1] 16 4,7 21,7 22,9 40
117 1| 17 49 21,8 23 40
118 1| 18 53 21,8 23 40
119 1| 19 53 21,8 23,1 40
1200 1] 20 54 21,8 23,1 39,2
121 1] 21 5,4 21,6 22,5 36,5
122 1| 22 5,1 21,2 21,9 34,8
123 1| 23 4,7 20,9 21,5 33,5

It is clear that the representation in this table might lead us to use a finer granularity
than Figure 1 — for example to distinguish between 19.6°C and 19.7°C which we would
not do in the graphical representation of Figure 1. The choice of another granularity
clearly leads to other states — in the intuitive sense that the state of 19.6°C is different
from the state of 19.7°C (of the room2 temperature). This argument shows that it is
necessary to introduce a notion of 'granularity' to define the notion of 'state’ of a system.
Now the main idea in the definition of a conceptual time system can be described. As
in Table 1 a conceptual time system is described by a data table where the set of
columns (‘variables', 'fields', 'many-valued attributes') is divided into a 'time part' (in this




example described by 'day' and 'hour') and an 'event part' (in this example described by
the temperature variables). In the formal description these two parts will be defined as
two tables (many-valued contexts) on the same set of time objects.

Now the choice of the granularity is explained using the small subsystem of the time
variable 'hour' and the event variable 'outdoor temperature' over all 72 hours. We
assume that we are interested in the temporal trajectory of the 'outdoor temperature' only
in a coarse granularity for the temperature and for the time.

outdoor temp. 2.2-7.4 hour 0-23

—» first day outdoor temp. <=7.0 hour >=8

,,,,,,, » second day

> third day outdoor temp. <=6.0 hour >=12
outdoor temp. <=5.0 3}‘;
outdoor temp. <=4.0
outdoor temp. <=3.0 / hour >=16
300 \
301 s
24 A hour >=20
303
304 14
305 / 7122

221
222
223

Figure 2: Transitions in a situation space for the outdoor temperature

First of all we discuss the meaning of Figure 2 without mathematical details. The
main structure in Figure 2 is a grid spanned by two chains, one for the 'outdoor
temperature' and one for 'hour'. Both chains result from our choice of a granularity. For
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example the chain for the 'outdoor temperature' is obtained from our choice of the
attributes from "outdoor temp.<=3" to "outdoor temp.<=7" which partition the whole
interval [2.2, 7.4] (indicated by the attribute at the top) into 6 intervals described by the
chosen scale attributes. This partition of the temperature values induces a partition of
the set of time objects. One of its classes described by 'outdoor temperature <=6.0' is
{212, 118, 119, 216, 316, 120,121, 122, 321}.

Analogously the set of time objects is partitioned by our choice of the scale attributes
for the variable ‘hour'. That leads to the direct product of these two partitions which can
be represented in the direct product of the two chains of length 6 and length 5. The
black points in Figure 2 represent the concepts of the underlying concept lattice
embedded in the direct product of the concept lattices of the two chosen scales.

At this point, instead of going into mathematical details we look at some examples.
During the first hour '100' the 'outdoor temperature' has the original value of 3.3°C
which is <=4.0°C, but not <=3.0°C. Since the time object '100' has the value '0' for the
attribute 'hour' we say that the 'system' described by these two variables and the chosen
granularity is in the 'situation' which is represented by the black point labeled '100'. The
system stays in this situation until hour 7 and makes a transition to another situation
labeled '108'. This transition is described by an arrow in Figure 2. Following the arrows
of the first day the system reaches the situation labeled '123' and then the situation 200’
of the midnight hour of the second day which is a little bit warmer than the first
midnight hour. At the second day the outdoor temperature reaches its maximum during
the afternoon, and in the late evening (hour >=20) it is colder than at the two other days
during the same time.

Clearly Figure 2 combines the graphical representation of concept lattices with those
of automata theory. But in contrast to automata theory the transitions are defined with
respect to an explicitly given time description. The arrows in Figure 2 indicate
transitions in the situation space. Factoring out the actual time variables (by omitting its
columns) yields the usual transitions in the state space.

The air-conditioning plant example demonstrates the usefulness of the representation
of time by time objects, time attributes, time values and time scales in conceptual time
systems.

3 Conceptual Time Systems

Based on Formal Concept Analysis [6] the author has introduced conceptual time
systems [25,27] as a system description which allows for defining the notions of 'states’
and 'situations' in the framework of a general time description, in strong contrast to the
introduction of 'states' as, for example, in automata theory.

We assume that the reader is familiar with the basic notions in Formal Concept
Analysis and Conceptual Scaling Theory as described in [6,21,22]. For the other
readers, using the examples, we try to give some short hints to grasp the main ideas.

What we really need here is the notion of a formal context K = (G, M, I) where
IcGxM (describing the relation that 'an object g € G has an attribute m € M), its
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concept lattice B(K), its object concepts y(g) (g€G), the notion of a scaled many-valued
context as a pair ((G,M,W,]), (S, | m € M)) of a many-valued context (G, M, W, I) and
a family of scales Sm := (G, M, Im) which are formal contexts such that the values of
m are contained in Gp. Such a scaled many-valued context represents a data table
together with a suitable hierarchical granularity tool. Each scaled many-valued context
yields a formal context K:= (G, {(m,n)] me M, n € My}, J) where g J (m,n) iff m(g) I,
n, called the derived context of (G M,W,I), (S, | m € M)). The concept lattice of the
derived context represents the knowledge about the given many-valued context in the
hierarchical granularity of the chosen scales.

3.1 Definition of a Conceptual Time System

At first we recall the basic definitions for conceptual time systems and explain them
using the previous example of temperature measurements.

Definition: 'conceptual time system'

Let G be an arbitrary set; the elements g € G are called time objects or time
granules. Let T :==((G,M, W, I1), (Sp |m € M)) and C :=((G, E, V,I), (Sc | e € E))
be scaled many-valued contexts (on the same object set G). Then the pair (T, C) is
called a conceptual time system on G. T is called the time part and C the event part of
T, O.

In the previous example with the variables 'hour' and 'outdoor temperature' the set G
of time objects consists of the 72 hours labeled from '100' to '323'. We refer to the
extension of Table 1 which contains all these 72 time objects as 'Table lext'. The time
part T is described by the first and the third column of Table lext, the event part C by
the first and the fourth column. The set M of 'many-valued attributes' (or often called
'variables') is the set {hour}, the set W is the set {0,1,...,23}, and Iy is the ternary
relation {(g.mw) € GxMxW |w is the m-value of g} representing the 'time
measurements', for example '12' is the hour-value of '112".

3.2 The Derived Context of a Conceptual Time System

For a given conceptual time system (T, C) the derived context K¢ represents the
conceptual knowledge relating the time objects with the events while Kt describes the
time objects using the chosen granularity of the scales for the time attributes. If we wish
to represent that conceptual knowledge about the time part and the event part in a
common formal context then the most simple construction is the apposition of K and
K¢ which can be described (in a tabular language) by affixing the columns of a table of
Kc (say from the right) to the columns of a table of Kry, which is always possible since
both contexts have the same set G of objects. We denote this apposition by K := K|Kc,
for a precise definition the reader is referred to [6], p.40. The scales of the time and the
event part generate a very useful granularity on the time objects since any two time
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objects g,h have the same object concept in K if and only if their values m(g) and m(h)
have the same scale attributes in S, (for each time or event attribute m). The choice of
the scales depends heavily on the intended granularity and conceptual structure which
seems to be appropriate for the purpose of the representation.

For example, the scale S, for the attribute m := 'hour' is a formal context (Gm, Mm,
Im) where Gy, is the set {0,1,2, ...,23} of the values of m, the set M,, is the set {0-23,
>=8, >=12, >=16, >=20}, and I, € Gm x My, is the relation that an element of G,, is in
the interval described by an attribute of M, ; for example each element of G,, has the
attribute '0-23' since each element lies in the interval [0,23], and the element '10' has
also the attribute ">=8' since 10>=8. The concept lattice of this scale (Gm, M, Inn) is a
chain of five concepts. Similarly the concept lattice of the scale for 'outdoor
temperature' is a chain of 6 elements.

The direct product of these two lattices is a grid of 5x6 = 30 points. Not all of these
30 points are drawn as black points in Figure 2. Indeed, the black points represent the
formal concepts of the derived context K = K1|Kc. In general the concept lattice of the
derived context can be embedded (supremum preserving) in the direct product of the
concept lattices of Ky and K¢ ([6], p.77) Therefore it is necessary to distinguish
between the lattices B(Kr), B(Kc¢), B(K1|K¢) and B(Kt) x B(K().

These lattices can be visualized easily in the example in Figure 2. The line diagram
in Figure 2 represents the concept lattice B(Kt|/Kc). The concept lattice B(Ky) is a
chain of 5 elements which can be visualized by 'projecting' the line diagram in Figure 2
'to the upper right'. Similarly B(Kc) is a chain of 6 elements obtained by projecting
Figure 2 'to the upper left'. Therefore the direct product B(Kt) x B(K¢) is represented
by a grid of 5x6 = 30 points. Clearly in these lattices the object concepts (labeled in the
line diagram by at least one time object) play a prominent role. They will be studied in
the next section.

3.3 Situations of a Conceptual Time System

As in colloquial speech we would like to say, for example, 'This morning I was in the
same situation as yesterday: at 11 o'clock I saw an accident at our crossing.' The
description of a situation usually contains a time and an event description. For example,
in Figure 2 we would like to say 'The most frequent situation is the concept whose point
is labeled by 'outdoor temp. <=4.0". This situation actually happens 13 times, the first
time at time object 100 and the last time at time object 307.' In the following definition
we introduce the notion of a situation of a conceptual time system as an object concept
of the concept lattice B(K1/Kc).

Definition: 'situations of a conceptual time system’

Let (T, C) be a conceptual time system on G. For g € G the object concept y(g) in
the derived context K:= K1|Kc is called a situation of the conceptual time system (T, C)
and we say that the system (T, C) is at time object g in the situation s iff s =y(g). The set
of all situations of (T, C) is denoted by S(T, C), called the situation space.
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3.4 States and Time States

In a conceptual time system (T, C) we would like to say 'The system is at time object
g in state s(g)'. That is introduced in the following definition where the object concepts
of the derived context K¢ are defined as the states. As to the time part we call the object
concepts of the derived context K the time states.

Definition: 'states and time states of a conceptual time system'

Let (T, C) be a conceptual time system and Kt and K¢ the derived contexts of T and
C. For each time object g we define the state s(g) of (T, C) at time object g by s(g) :=
vc(g) = the object concept of g in K¢ and the time state t(g) of (T, C) at time object g
by t(g) := yr(g) := the object concept of g in K. The set S(C):={s(g) | g € G } is
called the state space of (T, C). The set S(T):= {t(g) | g € G } is called the time state
space of (T, C). We say that the system (T, C) is at time object g in the state s € S(C) iff
s = s(g). We say that the system (T, C) is at time object g in the time state t € S(T) iff ¢
)

This definition yields the 'partition meaning' of (time) states, namely, that the set G
of time objects is partitioned by the extents of the (time) states, or, equivalently, that a
system is at each time object in exactly one (time) state. Clearly, for any two time
objects g and h, s(g) = s(h) iff for each event e the values e(g) and e(h) have the same
scale attributes and therefore the same object concept in the scale S.. Analogously for
the time states and the situations.

The state space of the previous example can be seen in Figure 2 by 'projecting along
the time axis' onto the chain for 'outdoor temperature’. In this example S(C) is exactly
the set of all formal concepts of Kc. Clearly, in general the state space is only a subset
of the set of all formal concepts of K¢. Analoguosly for the time states and the
situations.

3.5 Phases of a Conceptual Time System

As in Mathematical System Theory [11,14] where the phases are defined as pairs
(t,s) of a time point t and a state s we introduce phases of a conceptual time system as
pairs (t(g), s(g)) of time states and states at the same time object.

Definition: 'phases of a conceptual time system'

Let (T, C) be a conceptual time system on G and Kt and K¢ the derived contexts of
T and C. For g € G the pair (t(g), s(g)) is called the phase of g in (T, C). The set
P(T, C) = {(t(g), s(g)) | g € G} of all phases is called the phase space of (T, C). The
lattice B(K1) x B(K¢) is called the phase lattice of (T, C).

Clearly P(T, C) < S(T) x S(C) < B(K1) x B(K¢).
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3.6 Mappings between Situations, States, Time States, and Phases

The following Figure 3 demonstrates basic mappings between the lattices in which
situations, states, time states and phases occur.

B(Kr|K¢)
@

. Pc

VX Ve
Yt ‘ Ve

B(Ky)x B(KC)

® o
B(K7) B(K¢)

Figure 3: Basic mappings between situations, states, time states, and phases

Definition: 'basic mappings'

Let Kt := (G, My, It) and K¢ := (G, M, I¢) be formal contexts on the same set G of
objects and K:= K1|K¢ = (G, M, I) the apposition of them. Then the mapping
yr : B(K1Kc) > B(Ky) is defined by yr((AB)) = ((Br\MT)ﬂ , BnMy)
(for (A,B)e B(K1|K¢)) where (BmMT)iT = {geG| g It m for all m € BNMy } is the
extent of BAMr in K.

Analogously the mapping yc¢ : B(K1|K¢) & B(K() is defined. The mapping
v : B(K1Kc) - B(Ky) x B(K() is defined by y := w1 x yc , hence
V((A,B)) = (y1((A,B)), yc((A,B))).

The projections from B(Ky) x B(K() onto its first and second component are denoted
by nt and nc. Hence ny((Ar ,Br), (Ac ,Bc)) := (Ar ,Br) and nc((Ar ,B1), (Ac .Bc)) =
(Ac ,Bo).

The mapping ¢t : B(Kt) > B(K1|K¢) is defined by ¢r((Ar ,B1)) := (Ar, ATT)
where ATT ={meM |glImforallg € Ar } is the intent of At in K1|Kc.
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The mapping y is a supremum-preserving order embedding ([6], p.77). Clearly yt =
nry and yc = mcy. The mappings @r and ¢@c are infimum-preserving order
embeddings, called the part embeddings. Clearly @yt is a projection from B&KTIKC)
into itself which maps any concept (A,B) to the concept with the extent (BNMr)™r.

The situations play a prominent role since y maps the situations from B(Ky|Kc) onto
the phases in B(K1) x B(Kc), and ¢ maps the phases onto the states in B(K¢), and ny
maps the phases onto the time states in B(Krt). Therefore at first we study transitions
between situations. Then transitions between states, between time states, and between
phases can be defined using these mappings.

4 Transitions

In the following we introduce the notion of 'transitions' in conceptual time systems.
Usually a transition is understood as a directed connection from one stafe to another,
graphically represented by an arrow. In Figure 2 the arrows lead from one situation to
another, for example from the situation y(100) to the situation y(108). Indeed there are
three arrows from y(100) to the situation y(108). Are there three transitions or only one?
What is a transition?

Clearly, if we wish to define a transition between two situations as a pair, say (y(g),
v(h)) then we have to explain why that transition starts in y(g) and ends in y(h) and not
vice versa. In the example of Figure 2 we would like to say that 'the system was in the
beginning in situation y(100) until time object 107; when it changed to the time object
108 then a transition into the situation y(108) happened'. That explanation uses the usual
ordering on the set of time objects where 107 is before 108.

But until now we have not introduced an ordering on the set G of time objects of an
arbitrary conceptual time system. That also allowed for representing very simple time
descriptions, for example just a nominal distinction that the time object 'day’ is different
from the time object ‘night'. In the following section we shall introduce a linear ordering
<¢ on the set G of time objects yielding the notion of a life track (or life line). A linear
ordering < on the set G of time objects is a nice and very often used structure which
corresponds to the observation that our memory seems to arrange all sensual
impressions in a sequence.

But sometimes we do not know or do not remember which one of two moments
(time objects) was the first. Therefore, generalizing the linear ordering on the set G of
time objects, we introduce an arbitrary binary time relation R on G. There are also
many other reasons for the introduction of such a time relation; for example that the
time object 'today' is contained in the time object 'this week'. Clearly, we also wish to
avoid the assumption that there is a uniquely determined linear time in the world which
we all observe. Instead we want to construct a general mathematical framework which
allows for investigating the formal conditions under which certain temporal notions can
be introduced. In the following we introduce tramsitions which are induced by a time
relation R on G.
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4.1 Time Relations on the Set of Time Objects

At first we extend the notion of a conceptual time system by introducing a relation on
the set of time objects.

Definition: 'conceptual time systems with a time relation'
Let (T, C) be a conceptual time system on G and R < G x G. Then the triple
(T, C, R) is called a conceptual time system (on G) with a time relation.
If the relational structure (G, R) is a chain (a linear ordered set) then (T, C, R) is called
a chained conceptual time system.

Clearly, in the example of Figure 2 the usual order relation <¢ on the set G of the 72
time objects yields a chained conceptual time system. In a chained conceptual time
system the concept lattice of Kt need not be a chain, it can be arbitrarily complicated.

4.2 Transitions

The main idea in the following definition is that a transition starts in a time object
and ends in a time object. What happens at these time objects in the system is described
by the object concepts of these time objects in the actually interesting context, for
example by the situations in the context K1/Kc.

Definition: 'transitions in conceptual time systems with a time relation'

Let (T, C, R) be a conceptual time system on G with a time relation. Then any pair
(g,h) € R is called an R-transition on G, g is called the start and h the end of (g,h). The
(GxG)-transitions are called transitions on G. Let X be a set and f: G — X, then the set
f={ (g, f(g)) | g € G } is called the f-life space and f induces the mapping
fr : R > f[R] ={ (f(g), f(h)) | (g,h) € R } where fr((g,h)) := (f(g), f{(h)), hence
fr ={( (g,h), (f(g).f(h)) ) | (g,h) € R }. The element ( (g,h), (f(g),f(h)) ) € fr is called the
Jf-induced R-transition on X leading from the start point (g, f(g)) to the endpoint (h, f(h))
(either in the f-life space).

A transition ( (g,h), (f{g).f(h)) ) € fr is called a loop transitions of fx iff f(g) = f(h). A
proper (f-induced R-) transition is a transition which is not a loop transition.

Now we are interested in some special choices of f.

For the object concept mapping y: G & yG of K1|Kc the y-induced R-transitions on
the situation space S(T,C) =yG are called the R-transitions on S(T,C).

For the mapping yry : G > y1yG = S(T) the yry-induced R-transitions on S(T) are
called the R-transitions on S(T).

Analoguously the R-transitions on S(C) are the ycy-induced R-transitions on S(C)
and the R-transitions on S(T) x S(C) are the yy-induced R-transitions on S(T) x S(C).

In the example of Figure 2 with the usual linear order relation <¢ on the set G of the
72 time objects the arrows indicate the proper <¢-transitions on the situation space
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S(T,C). For example the transition ( (107,108), (y(107), y(108)) ) is represented by the
first-day-arrow from y(107) to y(108). The conceptual time system represented in Figure
2 'makes another transition' ( (207,208), (y(207), y(208)) ) at the second day which is
represented by the second-day-arrow from y(207) = y(107) to y(208) = y(108). That
shows that it is useful to introduce transitions in the form ( (g,h), (f(g).f(h)) ).

Following the transitions in Figure 2 in the usual linear order of the 72 time objects
from 100 to 323 we get an idea of a life track (or life line) of a conceptual time system
which will be introduced in the next section.

4.3 The Life Track of a Chained Conceptual Time System

In this section we introduce the life track (or life line) of a chained conceptual time
system in each of its spaces of situations, time states, states, and phases.

Definition: 'life track'

Let (T, C, <¢) be a chained conceptual time system on G. Let X be a set and
f: G —> X then the f-life space f= { (g, f(g)) | g € G } is called the f-life track (or f-life
line) on X. The elements (g, f(g)) € f are called the points of the f-life track.
For time objects g, h we say that the point (g, f(g)) precedes (<) the point (h, f(h)) iff g
<¢ h. The ordered set (f, <¢) is isomorphic to the ordered set (G, <g).
For the object concept mapping y: G — yG = S(T,C) of the formal context K|K¢ the
y-life track on S(T,C) is called the situation life track.
Using the mapping yr = yr1y: G > y1yG = S(T) we get the yy-life track on S(T) called
the time state life track.
Using the mapping yc = ycy: G = yeyG = S(C) we get the yc-life track on S(C) called
the state life track.
Using the mapping yy: G —> yyG < S(T) x S(C) we get the yy-life track on yyG
called the phase life track.

In Figure 2 the situation life track with its ordering can be reconstructed from the
labeling of the situation points by the names of the time objects using (G, <g) . The
same graphical representation is used if we draw a state life track of a particle moving in
the plane and indicate the time points along that line.

5 Conclusion

We have introduced transitions in conceptual time systems with a binary time
relation on the set of time objects. For chained time systems where the time relation is a
chain we have defined the life tracks in the spaces of situations, time states, states, and
phases. All these notions have been shown to be useful in practice by an example of
temperature measurements in an air-conditioning plant.
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