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Abstract
The constrained contml of triple integrator based on the rnodes decomposition is
introduced in this paper. The design combines the well known time optimal control with
the linearpole assigmmt control, i.e- the control consist of n phases similar to the time
optimal control, however the transients between these phases are "smooth" and the
dynamics of the transimts is given by the closed loop poles.
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1 Introducti,on

Recent decade in the control design is characteristic by a revival of theory of
constrained systems. The minimum time control, which was dominating the control
design from late ztO-ties to the beginning of 70-ties in the 20* century (see e.g. Pavlov,
1966; Athans & Falb, 1966) is, however, replaced by several new approaches as the
predictive control (sec e.g- Bemporad et a1.,2002; El-Farra et al.,2OO3), different anti-
windup solutions, positive invariance sets, etc. Motivation comes from different fields -

from the 8affic control, robot control, control of unstable systems, etc. A common
feature of the new approaches is that they are rather complex - even in the case of
simple control problems. So, they are not easy to understand and to apply. Traditionally,
the engineering community preferred simpler solutions, as e.g. that one proposed by
Kiendl and Schneider (1972), which was later used in robot control (Kunze, 1984;
Patzelt, 1981).

Parallel to this, family of new not yet widely known solutions (Huba, 1994; Huba
and Bistik, 1995; Huba et al.,1997; Huba, 1998; Huba et al., 1998; Huba, 1999; Huba
et al.,1999; Huba and Bistâh 1999; Huba, 2003; Huba and Bistâk, 2005; Huba, 2006)
was developed. They are relatively simple for understanding, easy to implement and so
appropriate also for extremely fast application and easy to tune by a procedure that can
be considered as a generalization of the well-known method by Ziegler and Nichols.

In this paper, the family of the already known approaches is extended by the control
design, which is based on the decomposition of the closed loop dynamics into particular
modes defïned by chosen real closed loop poles.
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2 Linear Pole Assignment Control Based on Modes Decomposition

Let us consider the 3d order integrator
i=Ax+ba (1 )

i=! f'l ftl fo ' ol
i '=zi  t= ly l 'o=lol ; ,1=lo o t l
2=u Lrl  LU L0 0 0_l

The linear pole assignment controller fulfills three requirements:

a) It deueases the distance pr{x@\= â'x ôf the representative point from the

plane S = {rla'x = 0,e' = (ao at or)} accordingto dp" I dt = atp. .

b) ft decreases the oriented distance p, {x(r)} of the representative point lying in the

I l'= "'n' I
plane J from the l ine I=jxlv, '=(v,o r1,, u,r)f,reS according to

|s=(_* *) J
d p r l d t = a r p r -

c) Along the line I the controller decreases the oriented distance no {x(r)}= a111

from the origin propcrtionally to the closed loop pole a, whereby

dpo / dt: arpo.

tr-ct us consider a closed loop syst€m x'ith dt1dz (d, <0. Since the

cmeçmding eigenvectors

f ,  1 r

v,=[a,r-A]- 'b=l+ + t l  Q)
La; di- at -J

tre not collinear, they forrr a basis, which can be used for expressing any state as a sum
of*ree modes

I = 4 r V r  * 4 z v z * e { t ,  e r , e z , 8 t  € R

Then- one can write



i  = i ,  + i ,  - t - i ,  =

= Ax+bz =

= A(x ,  +x ,  +xr )+b(u t  +u2 +u3)

After denoting xi = qiv i each subsystem can be expressed as

i ,  = Ax, *bu, = drx,

i, = Ax, +bu.. = drt3

So the 3d order dynamics can be decornposed into three l't order ones. The
appropriate interpretation based on appropriate choice of the oriented distance of the
representative point x to the plane (or the line) lead to the three control phases well
known from the time optimal control. All of the coordinates (x,,x'xr) are equivalent
in this linear case. However, in order to be able to speak specifically, let us suppose
following interpretation:

a) The l" equation describes the transient along the line given by v, to the origin
The dynamics is given by a,.

b) The 2nd equation describes the transient in the plane to the line given by v, by
decreasing the oriented distance measured in the direction of vr. The dynamics
of the transient is given by the second pole ar.

c) Similarly, the 3'd equation describes the transient to the plane given by v' v2 by
decreasing the distance measured in the direction of vr. The dynamics of this
transient is given by ar.

The total control signal can be gained as
3 3

u=Zr,=Zq,
i= l  i=l

The control algorithm described above guarantees that all three control phases are
running in parallel and the resulting controller is equal to that one derived by the
Ackerman's formula (see chapter 4). Fig. I shows the new base described above.

(4)

(6)
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Figure l: Linear pole placement based on modes decomposition.

3 Non-linear (Constrained) Pole Assignment Control Based on
Modes Decomposition

Let us consider a constrained control signal
u e(tt, ur) e)
A transient of the representative point from m initial state on the line given by the
eigenvector v, laying outside the proportional band does already not follow this line.
The particular subsystems do not more change themselves autonorrrously only in tbeir
own coordinates x,, but also in *re other subsysterns coordinates. Theæ is again
neoessary to assign to each of the control phases some interpr@tinn. The following
assignment has been used (for more details se e.g. Kahit,2000).

l. The transient of the representative point in the phase space to the refuence
braking surface (R$) is given by dr,! 3.

2. The transient along Se R.S to the referc,nce curve (RC) is given by a*v ,.
3. The transient along the RC into the origin is given by at,y t.

The control phases in this control algoriûm combine the tirne optinal control with
the linear pole assignment control. Each control phase is glven by prticular consfraint
of the control signal, but the transition between the contol phases is described by the
choseo corresponding closed loop pole. So each control phase is given by two
paramercrs:

a, - describing the dynamics of the transient of the representative point x, inside the
lincar subsystcm (proportional band)
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/, - the time , which is needed to reach the "linear" subspace under influence of limit
control values.

One part of the final control phase (the linear one), corresponding to the transient
into the origin, when the other coordinates x3 and x, are zeroes, is given by the closed
loop pole a,. The representative point moves along the line given by the eigenvector
v,, whereby the coordinaæ

t - ,  \x, e (Urv, U, i"r) (8)

Let us denote the constraint of the control signal in the final control phase as U,

whereby
j =1,2 (9)

The interval oflinear control is restricted to points (8) expressed as
xr = qrvr ;q,  e(U i  u.r) (10)

The second segrtm€nt of the final control phase (nonJinear) is described by the time
t,thart re,presents the time of the transient of the representative point using z =(J j to

the border points of the linear zubsystem i X, =(J iv,. This 2d segment is created by

points x, derived as the result of backward integration of ( 1) on ttre interval r e (0 t, )
using I =U , and starting from the points / X,. One gets

( 1 1 )

So, x, represents all points of the l"' subsystem, and these points are given by the
couple of parameters (q,,r, ). For each segment it varies just one of them: the parameter

4, while /r = 0, when x, e (U, Ur-,)", and /, > 0 while gr =U i for points outside

of thc lincar scgmcnt (8). So lct us introducc thc following gcncralizcd dcnotation
xt(qt,tt), i.e. the points lying in the proportional band (the control signal is not
saturated) are represented as x,(4,,0) and the points lying outside (S) with saturated
control signal are represented as x,(Ur,/,). For points in the proportional band

xr =xr(4r,0)e(U,v, 0), the control signal is ur=gr. The conhol signal for the

points outside the proportional band xr(U,,tr) is r, =Ur. Such a representation of
these poinæ describes the transient along the ÀC with dynamics given by the closed
loop pole a, with respect'4g the control constraints. The RC is invariant set of the

f,,=,,
1- tr-

6
. 2
tl

2
- I l

f  . 2 1

l' 't, +l
x , ( t , )=10  I  - f ,  

14 ,n ,+

L'o 'l
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system ir =Axr *bur with consffained conffol signal a, e(U, U, ,), i.e. after

approaching the RC the system remains on the RC.

In the second control phase is still x, = 0. The transient take place along the surface

given by x, x2 towards the RC (characterized by x,) in this phase. The goal is to

approach the RC characterized by x, = 0 and Xr = 0. In the proportional band of the

second subsystem x, .(o (U yi -QJ)v., i.e.

q r . (o  (u3- j  -u  j \ )

The "linear" dynamics of this transient is given by at only. This gives the l"

segment of the Reference Surface. The second segment of the RS is given as the result

of backward integration of (1) on the interval le(O lr) starting from those points

where q, is saturated using u =Ur_j. Using generalized denotation of the rRC one gets

the expression of RS as
x =xr((U r- ,  -  7r) , t  z) + x,  (q,  ,  / ,  )  =

- t2

I

0

(  l 3 )

In thc strting conlrol phase the 3d subsystern r, is in the proportional band for

r

q r e ( u i - 4 r - Q z  u r - i - r , - e r )  ( 1 4 )

Similar$ to the previous subsystems, the result of the backward integration using

u =(J ,on the intewal / € (0 t, ) starting from those points where 4, is saturated gives

the 3'd subsystem. Using generalized denotation xr(q,tr), the general point of the

surfacecanberepresentedas x,(4,,tr)+xr(q,rr) andanypointofthe state spacecan

be expressed using modes decomposition as

(  l 2 )

t r -  |

TI
- t ,  

l(x r(q,, t ,  )+ q,v " ) +
l t
,l

[ '

=lo
l0
L
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r l
t t -  |- l

) l
- / ,  

l ( * ,  
(q , , t , )  +  x r (q2 , t  z )  +  q ,v ,  )+

r l
I

f'
=lo

L'

x  =  x  r (q ,  t  3 )  +  x  r (g  z ,  t  r )  +  x r (q  p  t  )  =

- t 3

I

0

Note that the whole state space can be parametrized by Xr = xr (q1,t1),

r, =xr(qrt:), x: =xt(Qz,tt), using parameters q,,i=1,2,3 that describe the length

of the vectors in the proportional bands of the subsystems and t,,i=1,2,3 describing

these vectors outside theirs proportional bands (the control signal of the subsystem is
saturated). The sequential choice of the coordinates of the subsystems guarantees, that
the control signal is saturated only ifthe third subsystem is saturated also.

The control algorithm is similar to the linear one, but it depends on computing the
parameters q i ot i,i = 1,2), which are more diffrcult to obtain-

The final control is
3

u =Zu, (16)

where z, are conffol signals of particular subsystems. The RS is given by the points

where u-, =û, but we divide it according to the parameters t1,t2,.i . Let us denote

fbllowing:
RS lo - the segment of Àt where /, = 0, /" = 0

RSrr - the se-ement of RS, where r, > 0, /" = 0

RS/: - the segment of RS, where /, = 0,/, > 0

R,S/r: - the segment of R.S. where /, > 0,t, > 0

Fo l low ing  f igures  show ÂC and.RS fo r  7=1,  &r=-0 .5 ,  a r=- \  ,  a t= -2 ,

r r  e  ( - t  l ) .

- t r '  I
6 l

, '  IL lu ,
)  l r' l

- t .  I- l
I

l

(15)
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Figure 2: Eigenvectors v,.i =1,2,3 and ÀC'

F i g u r e 3 :  R S ' o , . R S ' r .

Figure 4: R,S'
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The proportional band (PB) of the system (l) is given by points where
q ,  e ( I l ,  - Q t  - Q z  U z  - Ç ,  - q r l .

Le t  us  deno te  Q3^ in=Ur -g r -4z ,Q t * -Uz -e t -4 r .F ig .5  shows  the  segmen ts

of PB corresponding to particular segments of RS.

Figure 5: PB corresponding to the segments RS / o, ÂSr r, ÂSr r :, RS' : .

Figure 6: RS and PB in the phase space.

42



4 Non-linear Control Algorithm

The control algorithm is based on determining the parameters qi,ti,i=1,2,3.

However, parameter /, is not needed, because there is enough to know whether x, is in

the proportional band or in the saturation domain, so let us assign /r = 0. To find these

parameters there is necessary to solve (15), however the results obtained by symbolic
solutions can be used now. The formula for evaluation of x, differs for each segment

and it depends on x, x2 , so the control algorithm can be divided into following steps:

I. START
2. .RSjo

a' Qr,Tz,Qt are unknown

b .  t r  = 0 , t 2  = 0

c. solve (15) for q1,ez,et

d. IF (10), (12) are not tulfilled THEN GOTO 3

e. sat(qr),u =Zn, GOTO 6

3. R,S'r
a' tr,Qz,Qt re unknown

b .  q ,  = U , , t ,  = 0

c. sotve (15) for t1,e2,gt

d. IF r, >0, (I2)arenot fullilled TI{EN GOTO 4

e. sat(qr),u--14, GOTO 6

4.  RSjz
a' Qt,Qt,tz are unknown

b .  g z  = U y j  - Q 1 , t 1  = O

c. solve (15) for er,qt,tz
d. IF r, > 0, (10) are not fulfilled TI{EN GOTO 5

e. sat(qr),u =i q, GOTO 6

5. RS jrz

z. Qt,tDtz are unknown

b.  q ,  =U i ,Qz  =Ur_ i  -U 
t

c. solve (15) for q,t*t,

d. IF /r > 0,tz ) 0 are not fulfilled THEN GOTO ERROR
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3\"-e. sat(qt),u = Le, GOTO 6
i= l

If the distance of the representative point from the desired state is greater than e
GOTO I
END

5 Verifying Control Algorithm by Simulation

The following simulation verifting the control shown above has been made in the
computer algebra system MAPLE v 9.5.

Parameters of the simulation with initial state outside the PB:
Chosen closed loop poles

At :  - l .5 ,Az  =  -3 rAt  =  4

Initial state
x = [4. 145,- 6.097, 0.833]r

Figure 7: Trajectory in the phase space.

6.

7 .
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Figure 8: Control signal and output

Fig. 8 shows that the conhol signal approaches the constraint three times.

6 Constrained Controller for Double Integrator Using Reverse Order
of Poles

The non-linear algorithm described above has been designed just for the poles
configuration dtld, <at<0. To explain, why this configuration is important in
designing the constrained pole assignment controller, let us analyze similar problem for
the double integrator plant as well. We will show the effect of choosing the reverse
order of the poles (a,<ar<O) in several simulations, which have shown that the
output was not monotone for each initial condition starting under the reference (braking)
curve, however the control signal has been designed to be continuous.

'r"' Linear part oftlæ.RC

- Non-linearpartofthe RC

- Phasetrajectory

Figure 9: Phase trajectory, control signal and output of the frrst simulation.
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The first simulation (Fig.9) shows the overshoot using poles ar=-3,dr=1 and

the input constraint U e(-l l) with initial condition [-0.023,43677r. The second

simulation starts in lt.OS+,-t.+SZ]t and the overshoot occurs as well (Fig. l0). The last

simulation shows the monotone output with initial condition lt.+tZ,-t.enl' .

Figure 10: Phase trajectory, control signal and output of the second simulation.

The optimal control sequence of the 2nd order system corresponds to two constrained
exponentials. The fint one coresponds to the limit "braking " with u = U i and to the

proportional control with the pole a,. The acceleration phase corresponds to the limit

control signal (Ur-, -U 
,) and to the pole ar.If we denote the difference between the

instants t, and /, as Â, then, with the time starting at t = L, i.e. at the instant when the

proportional part of braking begins, the resulting control can be written in the form

"Q)=lur_, 
-u,b"u *(J .eo,( t- t )

The value u(l) tfren denotes the amptitude of the 2d (braking) phase (the first one is

given by Ur-r), whereby
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3

Zq,

Ffguc 11: Phase tajectory, ccmtol signal and output of the third simulation.

A, =u(6\=lu-, -u ,bo,^ +(J j
'We 

can speak ebout braking, when ArU ,-, < 0. So fte limit situation corresponds to

A.  =o+  a  = Ih  
-U  i

'  &, Ur-, *U,

Then, for the poles sæisSing dr 1dz < 0 slso tre 3'd pube of the control simal occurs.

It has maximal arnplinrde at tlæ time instant /, corresponding to the extre,me of uQ),

when ri(rr)=0. Solving this condition for the above defined limit value of A, for t,

one gets

t ^ = L +  
|  

l n d "- 
dt-dz ar

, r 3 r r
nQ)=]gt l ' ' - " ' l r -LIu ,

\ a r )  L  a z )
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By increasing the ratio of a, I a, the value of this 3d amplitude ,(r, ) increases. E.g.

fo r  a , la r=2  uQt )=-0 .25Ui ,wh i le  fo r  a r la r=3  ak)  = -0 .385U; .

This occurrence of the 3'd pulse in the control sigral is associated with an overshooting
at the plant output. Since it is frequently not allowed, the practical exploitation of the
design based on the decomposition to constrained modes is reasonably limited to the
situation described by a, < a, < 0, or d j < d z < d, < 0 in the triple integrator case.

7 Conclusion

The simulations have shown, that for dt<dz<at<0 the control designed for the
triple integrator consists of three phases well known from time optimal control.
However, now the transients between these phases are "smooth" and they have
dynamics specified by the closed loop poles. That gives to this algorithm a reasonable
advantage in conûolling systems with parasitic time delays and unmodelled dynamics,
the measurement and quantization noise etc- The analysis of the conûol designed for the
double integræor plant has been used to show the effect of a revene order of the closed
loop poles. This can be eliminated by the design based on the invariant sets approach
that requires to decrease the distance from next lower invariant set in a direction
specified by vectors not identical to the closed loop eigenvectors-
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