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Abstract

The constrained control of triple integrator based on the modes decomposition is
introduced in this paper. The design combines the well known time optimal control with
the linear pole assignment control, i.e. the control consist of # phases similar to the time
optimal control, however the transients between these phases are “smooth” and the
dynamics of the transients is given by the closed loop poles.

Keywords: pole assignment control, time optimal control, constraints, nonlinear, third
order system.

1 Introduction

Recent decade in the control design is characteristic by a revival of theory of
constrained systems. The minimum time control, which was dominating the control
design from late 40-ties to the beginning of 70-ties in the 20™ century (see e.g. Pavlov,
1966; Athans & Falb, 1966) is, however, replaced by several new approaches as the
predictive control (see e.g. Bemporad et al., 2002; El-Farra et al., 2003), different anti-
windup solutions, positive invariance sets, etc. Motivation comes from different fields —
from the traffic control, robot control, control of unstable systems, etc. A common
feature of the new approaches is that they are rather complex - even in the case of
simple control problems. So, they are not easy to understand and to apply. Traditionally,
the engineering community preferred simpler solutions, as e.g. that one proposed by
Kiendl and Schneider (1972), which was later used in robot control (Kunze, 1984;
Patzelt, 1981).

Parallel to this, family of new not yet widely known solutions (Huba, 1994; Huba
and Bistak, 1995; Huba et al., 1997; Huba, 1998; Huba et al., 1998; Huba, 1999; Huba
et al., 1999; Huba and Bistak, 1999; Huba, 2003; Huba and Bistak, 2005; Huba, 2006)
was developed. They are relatively simple for understanding, easy to implement and so
appropriate also for extremely fast application and easy to tune by a procedure that can
be considered as a generalization of the well-known method by Ziegler and Nichols.

In this paper, the family of the already known approaches is extended by the control
design, which is based on the decomposition of the closed loop dynamics into particular
modes defined by chosen real closed loop poles.
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2 Linear Pole Assignment Control Based on Modes Decomposition

Let us consider the 3" order integrator

X =Ax+bu (1)
s X 0 010
y=z; X= ; b=10]; A=|0 0 1
Z=u z 1 0 0 0

The linear pole assignment controller fulfills three requirements:

a) It decreases the distance p,{x(f)j=a'x of the representative point from the
plane S = {x‘a’x =0,a'=(a, a a, )} according to dp, /dt = a,p, .

b) It decreases the oriented distance p, {x(t)} of the representative point lying in the
X=Vq,
plane S from the line L={xjv,'=(v, v, v,)ht,LeS according to
i g s
dp, /dt=a,p,.

¢) Along the line L the controller decreases the oriented distance p, {x(t)}= x(1)
from the origin proportionally to the closed loop pole ¢,, whereby
dp,/dt=a,p,.

Let us consider a closed loop system with a, <a, <a, <0. Since the
corresponding eigenvectors

T
v, =[a,.l—A]"b=[—l—3 LZ i} )
i Q; a;
are not collinear, they form a basis, which can be used for expressing any state as a sum
of three modes
X=¢,V,+q,V,+4;V;, 4,,9,,9; €R (3)

Then, one can write
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X=X, +X, +X, =
=Ax+bu= )
=A(X, +X, +X,)+b(u, +u, +u,)

Afier denoting x; =g, v, each subsystem can be expressed as

X, = Ax, +buy, =X,

X, = Ax, +bu, =a,x, . (5)
X, = AX, +bu; =a;,x,

So the 3™ order dynamics can be decomposed into three 1% order ones. The
appropriate interpretation based on appropriate choice of the oriented distance of the
representative point x to the plane (or the line) lead to the three control phases well
known from the time optimal control. All of the coordinates (x,,X,,X,) are equivalent

in this linear case. However, in order to be able to speak specifically, let us suppose
following interpretation:

a) The 1* equation describes the transient along the line given by v, to the origin.
The dynamics is given by «,.

b) The 2™ equation describes the transient in the plane to the line given by v, by
decreasing the oriented distance measured in the direction of v,. The dynamics
of the transient is given by the second pole «, .

¢) Similarly, the 3™ equation describes the transient to the plane given by v,,v, by
decreasing the distance measured in the direction of v,. The dynamics of this

transient is given by ;.
The total control signal can be gained as

u:ZuI.:Zqi ©)

The control algorithm described above guarantees that all three control phases are
running in parallel and the resulting controller is equal to that one derived by the
Ackerman’s formula (see chapter 4). Fig. 1 shows the new base described above.
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Plane S

Figure 1: Linear pole placement based on modes decomposition.

3 Non-linear (Constrained) Pole Assignment Control Based on
Modes Decomposition

Let us consider a constrained control signal
ue(U, U,) (M
A transient of the representative point from an initial state on the line given by the
eigenvector v, laying outside the proportional band does already not follow this line.
The particular subsystems do not more change themselves autonomously only in their
own coordinates X;, but also in the other subsystems coordinates. There is again
necessary to assign to each of the control phases some interpretation. The following
assignment has been used (for more details se e.g. Kabat, 2000).

1. The transient of the representative point in the phase space to the reference
braking surface (RS) is given by a,,v,.

2. The transient along the RS to the reference curve (RC) is given by a,,v,.

3. The transient along the RC into the origin is given by «,, v, .

The control phases in this control algorithm combine the time optimal control with
the linear pole assignment control. Each control phase is given by particular constraint
of the control signal, but the transition between the control phases is described by the
chosen corresponding closed loop pole. So each control phase is given by two
parameters:

a, - describing the dynamics of the transient of the representative point x, inside the

linear subsystem (proportional band)
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t,- the time , which is needed to reach the “linear” subspace under influence of limit
control values.

One part of the final control phase (the linear one), corresponding to the transient
into the origin, when the other coordinates x, and x, are zeroes, is given by the closed

loop pole «,. The representative point moves along the line given by the eigenvector
v,, whereby the coordinate

X, €<UjV1 U37jv,> ®)
Let us denote the constraint of the control signal in the final control phase as U,

whereby

Jj=12 9
The interval of linear control is restricted to points (8) expressed as

xlquvl;qle<Uj U3_j> (10)

The second segnment of the final control phase (non-linear) is described by the time
t,, that represents the time of the transient of the representative point using u =U ; to

the border points of the linear subsystem ’ X, =U ;V,- This 2" segment is created by
points x, derived as the result of backward integration of (1) on the interval ¢ e (0 tl>
using ¥ =U; and starting from the points /X, . One gets

1’ -4
| 6
2 12

N@)=|0 U —h v+ LU, =12 (11)
0 0 1 s
L

So, x, represents all points of the 1* subsystem, and these points are given by the
couple of parameters (g,,, ). For each segment it varies just one of them: the parameter
q, while t, =0, when x, e(Uj UH>Vl and ¢, >0 while g, =U for points outside
of the linear segment (8). So let us introduce the following generalized denotation
X,(q,,t,), i.e. the points lying in the proportional band (the control signal is not
saturated) are represented as X,(g,,0) and the points lying outside (8) with saturated
control signal are represented as x,(U j»1,). For points in the proportional band
X, =X,(q, ,O)r:'(Ulv,l 0), the control signal is u, =¢,. The control signal for the
points outside the proportional band x,(U,t,) is u, =U,. Such a representation of

these points describes the transient along the RC with dynamics given by the closed
loop pole «, with respecting the control constraints. The RC is invariant set of the
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system X, = AX, +bu, with constrained control signal u, e<Uj U, /.>, 1.e. after

approaching the RC, the system remains on the RC.

In the second control phase is still x, =0. The transient take place along the surface
given by x,, x, towards the RC (characterized by x,) in this phase. The goal is to
approach the RC characterized by x, =0 and x; =0. In the proportional band of the

second subsystem x, € <0 U, ; —q, )>v2 ,Le.

9,€(0 (U, ,-U))) (12)
The “linear” dynamics of this transient is given by «, only. This gives the 1%

segment of the Reference Surface. The second segment of the RS is given as the result

of backward integration of (1) on the interval ¢ e (0 t:> starting from those points

where ¢, is saturated using u =U, ;. Using generalized denotation of the RC one gets

the expression of RS as

X=x2((U3~—j -q,),1,)+X,(q,,1,) =

1 —t, o 3l 6
-2 g * (13)
=10 1 -t |x(q-1)+q,v,)+ é U,
0 O 1 —t,

In the starting control phase the 3™ subsystem x, is in the proportional band for
X, € <(Uj -4,-9,)Vs (Us;—q, *q:)v3> ,1.e.

9:€(U,-9,-9, Uy ,-4,-4,) (14)

Similarly to the previous subsystems, the result of the backward integration using
u =U ;on the interval ¢ e (0 t3> starting from those points where g, is saturated, gives
the 3™ subsystem. Using generalized denotation x,(qg,,?,), the general point of the
surface can be represented as x,(q,,?,)+X,(q,,t,) and any point of the state space can
be expressed using modes decomposition as
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X=X,(q5,1;)+X,(q,,1,)+X,(q,,t,) =

g5 =t
I R 6
2 ‘) (15)
=0 1 —1 (xl(ql7tl)+x2(q2’z2)+q3v3)+ 7 Uj
0 0 1 oy

Note that the whole state space can be parametrized by x, =x,(q,,t),
X, =X,(q,,1,), X; =X;(q;.t,), using parameters g¢,,i =1,2,3 that describe the length
of the vectors in the proportional bands of the subsystems and ¢,,i =1,2,3 describing

these vectors outside theirs proportional bands (the control signal of the subsystem is
saturated). The sequential choice of the coordinates of the subsystems guarantees, that
the control signal is saturated only if the third subsystem is saturated also.

The control algorithm is similar to the linear one, but it depends on computing the
parameters q,,7,,i =1,2,3, which are more difficult to obtain.

The final control is
3
U=y u, (16)
i=l

where u, are control signals of particular subsystems. The RS is given by the points
where u, =U, but we divide it according to the parameters ¢,,t,,/. Let us denote

following:
RS0 - the segment of RS, where 1, =0,7, =0
RS/, - the segment of RS, where ¢, > 0,7, =0
RS’» - the segment of RS, where ¢, = 0,7, >0
RS2 - the segment of RS, where ¢, > 0,¢, > 0

Following figures show RC and RS for j=1, a =-05, a,=-1, a,=-2,
ue(-1 1).
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Figure 2: Eigenvectors v,,i=1,23 and RC'.

RS’ o

Figure 3: RS'o, RS',.

— RS

Figure 4: RS'
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The proportional band (PB) of the system (1) is given by points where
| 43€<U|_‘11*‘I2 Uz—ql"q2>~
Let us denote ¢;... =U, -4, —4,,93,... =U, —q, —¢, - Fig. 5 shows the segments
of PB corresponding to particular segments of RS.

03\,»

4

Figure 5: PB corresponding to the segments RS0, RS’,RS’1»,RS'>.

Figure 6: RS and PB in the phasé Space.
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4 Non-linear Control Algorithm

The control algorithm is based on determining the parameters gq,,¢,,i=123.
However, parameter ¢, is not needed, because there is enough to know whether x, is in
the proportional band or in the saturation domain, so let us assign ¢, = 0. To find these

parameters there is necessary to solve (15), however the results obtained by symbolic
solutions can be used now. The formula for evaluation of x, differs for each segment

and it depends on x,, X, , so the control algorithm can be divided into following steps:

1. START
2. RS’
a. ¢,,4,,q, are unknown

b. t,=0,¢,,=0
c. solve (15) for q,,9,,9;
d. IF (10), (12) are not fulfilled THEN GOTO 3

3
e. sat(g;)u=y, g, GOTO6

i=l1

a. t,,4,,q, are unknown

b. ¢q,=U,,t,=0

c. solve (15) for ¢,,q,,q,

d. TF ¢, >0, (12) are not fulfilled THEN GOTO 4

3
e. sat(gy),u= q, GOTO6
i=1

4. RS’

q,-95,t, are unknown

q,=Us,;—¢q,,t, =0

solve (15) for q,,9;,¢,

IF ¢, >0, (10) are not fulfilled THEN GOTO 5

3
sat(qy),u =Y q, GOTO 6

i=1

RO o

o

q5,t,,t, are unknown
q, =Uj’q2 =U3—j —Uj

solve (15) for g,,¢,,¢,
IF ¢, >0,¢, >0 are not fulfilled THEN GOTO ERROR

o op
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3
e. sat(q,)u= Zqi GOTO 6
i=1
6. If the distance of the representative point from the desired state is greater than ¢
GOTO 1
7. END

| S Verifying Control Algorithm by Simulation

The following simulation verifying the control shown above has been made in the
| computer algebra system MAPLE v 9.5.

| Parameters of the simulation with initial state outside the PB:
Chosen closed loop poles

a, =-150,=-3,0,=-6
Initial state

x =[14.145,-6.097,0.833]"

Figure 7: Trajectory in the phase space.
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Figure 8: Control signal and output

Fig. 8 shows that the control signal approaches the constraint three times.

6 Constrained Controller for Double Integrator Using Reverse Order
of Poles

The non-linear algorithm described above has been designed just for the poles
configuration a, <a, <a, <0. To explain, why this configuration is important in
designing the constrained pole assignment controller, let us analyze similar problem for
the double integrator plant, as well. We will show the effect of choosing the reverse
order of the poles (o, <a, <0) in several simulations, which have shown that the
output was not monotone for each initial condition starting under the reference (brakmg)
curve, however the control signal has been designed to be continuous.

s s 03 w2

e=ss= | inear part of the RC

——— Non-linear part of the RC “mi

@ Phase trajectory o0

Figure 9: Phase trajectory, control signal and output of the first simulation.
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The first simulation (Fig.9) shows the overshoot using poles a, =-3,a, =-2 and
the input constraint U e (—1 1) with initial condition [— 0.023,-0.367]" . The second

simulation starts in [1.054,—1.452]T and the overshoot occurs as well (Fig. 10). The last
T

simulation shows the monotone output with initial condition [1.412,~1 637]

04 \
j \
021

LZNL B e e e e
1] 1 2 3 4 5

Figure 10: Phase trajectory, control signal and output of the second simulation.

The optimal control sequence of the 2" order system corresponds to two constrained
exponentials. The first one corresponds to the limit “braking “ with ¥ =U; and te the
proportional control with the pole «,. The acceleration phase corresponds to the limit
control signal (U L j) and to the pole a,. If we denote the difference between the

instants ¢, and ¢, as A, then, with the time starting at ¢ = A, i.e. at the instant when the
proportional part of braking begins, the resulting control can be written in the form
u(t) - [U37j _Uj kzz:l + Ujeal(fAA)

The value u(A) then denotes the amplitude of the 2m (braking) phase (the first one is
given by U, _;), whereby
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Figure 11: Phase trajectory, control signal and output of the third simulation.
4, =u(8)=[U, ,-U k= +U,
We can speak about braking, when 4,U, ; <0. So the limit situation corresponds to
1 - Uj
4,=02A=—I——
a, U, -U,

Then, for the poles satisfying o, < @, <0 also the 3" pulse of the control signal occurs.
It has maximal amplitude at the time instant ¢, corresponding to the extreme of u(t),
when u(t,)=0. Solving this condition for the above defined limit value of 4, for

one gets
1 a,

L=A+
a-a

o,

{22
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By increasing the ratio of «, /a, the value of this 3" amplitude u(t3) increases. E.g.
for a, /a, =2 u(t,)=-0.25U ,, while for @, /a, =3 u(t,)=-0.385U .

This occurrence of the 3 pulse in the control signal is associated with an overshooting
at the plant output. Since it is frequently not allowed, the practical exploitation of the
design based on the decomposition to constrained modes is reasonably limited to the
situation described by, <, <0, or @, <a, <a, <0 in the triple integrator case.

7 Conclusion

The simulations have shown, that for @, <a, <a, <0 the control designed for the

triple integrator consists of three phases well known from time optimal control.
However, now the transients between these phases are “smooth” and they have
dynamics specified by the closed loop poles. That gives to this algorithm a reasonable
advantage in controlling systems with parasitic time delays and unmodelled dynamics,
the measurement and quantization noise etc. The analysis of the control designed for the
double integrator plant has been used to show the effect of a reverse order of the closed
loop poles. This can be eliminated by the design based on the invariant sets approach
that requires to decrease the distance from next lower invariant set in a direction
specified by vectors not identical to the closed loop eigenvectors.
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