
Persistent Computing Systems
as an Infrastructure of Computing Anticipatory Systems

Jingde Cheng and Feng Shang
Department of Information and Computer Sciences. Saitama University

Saitama, 338-8570, JaPan

{cheng. frank i @aise.ics.saitama-u.acJp

Abstract
Thc notion of anticipatory system, in particular, computing anticipatory system' implies

a fundamental assumption or requirement, i.e., to be anticipatory, a computing system
must behave continuously and persistently without stopping its running. However, the
requirement that a computing system should run continuously and persistently is never

taken into account as an essential or general requiranent by traditional system desip
and development methodologies. As a result, a traditional computing system often has
to stop its running and service when it needs to be maintained, upgfaded or

reconfigured, it has some trouble, or it is attacked. From the viewpoints of anticipatory
computing and persistent computing, this paper shows that a new type of computing
systems, named "persistent computing systems." is indispansahle to desigrr and
development of mre computing anticipatory systems. The paper also discusses how
persistent cornputing systems can be constructed by soft system bus technologY, and
present some new scientific and technical challenges on anticipatory computing and
persistent computing.
Keywords: Anticipatory computing. Persistent computing, Anticipatory reasoning-
reacting systems, Soft system bus, Design and du'velopment methodology.

I Introduction

The concept of an anticipatory system first proposed by Rosen in I 980s [33]. Rosen
considered that "an anticipatory system is one in which present change of state depends

upon future circumstance, rather than merely on the present or past" and defined an

anticipatory system as "a system containing a predictive model of itself and/or its

environment, which allows it to change state at an instant in accord with the model's
prediction to a latter instânt." Rosen considered that the ability to take anticipation is
the intrinsic difference between organisms or living sysæms and non-living systems.

Since the pioneering work of Rosen, many scientists from various disciplines have
given various definitions of anticipatory systems in order to understand the

characteristics of anticipatory systems.
Dubois defined that "a computing anticipatory system is a system which computes its

current states in taking into account its past and present states but also its potential

future states." Dubois also distinguished betrveen strong anticipation and weak

anticipation such that "strong anticipation refers to an anticipation of events built by or

embedded in a system, while weak anticipation refers to an anticipation of events
predicted or forecasted from a model of a system." [15-17] More formally, Dubois

lnternational Journal of Computing Anticipatory Systems, Volume l8' 2006
Edited by D. M. Dubois, CHAOS' Liège, Belgium' ISSN 1373-5411ISBN 2-930396-04-0

defined an incursive discrete weak anticipatory system as "a system which computes its
current state at time l, as a function of its states as past times, . . ., 1-3, t-2, /- I , present
time /, and even its predicated states at future times t+1, t+2, t+3, ...

x(/+l) : A(...,4t-2),(t-l).x(r), x*(r+l), x*(t+Z), ...; p)

where the variable x* at future times /*1, t+2, ...are computed in using a predictive
model of the system." (Note: r(r) are the vector states at time r and p a set of
parameters to be adjusted.) Dubois also defined an incursive discrete sfrong
anticipatory system as "a system which computes its current state at time /, as a function
of its states as past times, . . ., t-3, t-2, /- I , present time /, and even its predicated states
at futme times ,+1, 1+2" t+3, ...

x{r+l) = A(...,4t-2), r(t-l),.r(t), x(r+l), x(t+2), ...; p)

where the variable r at future times r+1, t+2, ... are computed in using the equation
itself." [8]

Nadin mentioned the following operational definitions: "An anticipatory system is a
system whose culrÊnt state is defined by a future state." "An anticipatory system is a
system containing a predictive model of itself and/or of its environment, which allows it
to change state at an instant in accord with the model's predictions pertaining to a later
instant, in faster than real trme." [28-30]

Butz, Sigaud and Gerard defined anticipatory behavior as *a process, or behavior,
that does not only depend on past and present but also on predictions. expectations, or
beliefs about the funre." [2]

From these definitions of anticipatory systems, we can see that the following two
characteristics are common in the definitions: (l) for any anticipatory system,
concerning its current state, there must be a future state referred by the current state, and
(2) for any anticipatory system, its states form an infinite sequence. Therefore, we can
say that the notion of anticipatory system, in particular, computing anticipatory system,
implies a fundamental assumption or requirement, i.e., to be anticipatory, a commuting
system must behave continuously and persistently without stopping its running.

However, the requiranent that a computing system should run continuously and
persistently is never taken into account as an essential and/or general requirement by
traditional system design and development methodologies. A fact to support this
proposition is that $7s sannot find 'persistence' and/or 'persistent' related technical
terms defined or listed in various computer dictionaries, computer glossaries,
encyclopedia of software engineering, and handbooks of software reliability such as
[23-27,32, 4l]. As a result, although there are some individual computing systems that
are designed and developed with considerations on fault tolerance U,22], in general a
traditional computing system often has to stop its running and service when it needs to
be maintained, upgraded or reconfigured it has some trouble, or it is attacked, because
at the first stage of design and development of a system it is impossible to completely
speci$ all possible troubles, attacks, and end user requests that appear in the stage ofits

62

everyday use. Therefore, traditional computing systems cannot provide an
infrastructure for computing anticipatory systems.

From the viewpoint of anticipatory computing and persistent computing, this paper
shows that a new tlpe of computing systems, named "persistent computing systems," is
indispensable to desigrr and development of true computing anticipatory systems. The
paper also discusses how persistent computing systems can be constructed by soft
system bus techniques, and present some new scientific and technical challenges on
anticipatory computing and persistent computing.

2 Persistent Computing and Persistent Computing Systems

Percistent Compuing is proposed by Cheng as a new methodology that aims to
develop continuously dependable and dynamically adaptive reactive-systerns, called
"percistenl compating systems," in order to build more tough, useful, and human-
friendly reactive systems fll, 12, 14]. Concepûrally, a reactive system is a computing
system that maintains an ongoing interaction with its environment, as opposed to
computing some final value on termination [2],3l]. Apercistent computing system is
a reactive system that functions continuously anytime without stopping its reactions
even when it is being maintained, upgraded, or reconfigured, it had some trouble, or iÎ is
being attacked [1], 12, 14]. Persistent computing systems have the two key
characteristics and/or fundamental features: (1) persistently continuous functioning, i.e.,
the systems can fimction continuously and persistently without stopping its reactions,
md (2) dynamically adaptive frmctioning, i.e., the systems can be dynamically
maintained, upgraded or reconfigured during its continuous functioning.

From the viewpoint of function (here we use "fimction" to mean 'lrovide correct
computing service to end us€trs"), all states of a computing system can be divided into
thee classes: fandbnal stu:tes, partially functional states, and disfunAional stotes. ln
a functional state, the system can function completely; in a partially functional state,
the sptern can firnction partially but not compleæly; in a disfunctional state, the systern
camot function at all. While, from the viewpoint of reaction (here we use 'leaction" to
mean "react to the outside envirmment"), all states of a cornputing system can be
divided into thrce classes: reactive states, partially resctive states, and dead stubs. In a
reactive state, the system can react completely; in a partially reactive state, the system
cæ react partially but not cornpletely; in a dead state, the system cannot react at all.
Therefore, a system in functional state must be also in reactive state; a system in
partially functional may be in either reactive state or partially reactive state; a system in
disfrrnctional state may be in either reactive state, partially reactive state, or dead state.

Based on the above definitions, we can also define a persistent computing system as
a reactive system which will never be in a dead state such that it can evolve into a new
functional state in some (autonomous or controlled) way, or can be recovered into a
functional state from a partially functional or disfunctional state by some (autonomous
or controlled) way. While, a traditional computing system is different from the
persistent computing system in that it must eventually be in a dead state.

63

Persistent computing and persistent computing systems are motivated by the
following problems: (1) to solve the problem of automated theorem finding f4, 5, 39,
401, (2) to develop autonomous evolutionary information systems [8, 13], (3) to build
anticipatory reasoning-reacting systems [9, 10, 20,34j, and (4) to provide users with the
way of computing anytime anywhere, i.e., ubiquitous computing lll, 12, l4]. Refer to
[4] for some more detailed explanations. Besides the third problem that is directly
related to computing anticipatory systems, the other three problems are also some how
related to computing anticipatory systems. For example, anticipatory reasoning can be
regarded as the problem of automated theorem finding in a formal theory based on
temporal relevant logics; Torres-Carbonell, Parets-Llorca, and Dubois have discussed
the relationship between software systems evolution and incursive discreæ sûong
anticipatory systems [36]; if we consider computing anticipatory systems from not ooly
the aspect of time but also the aspect of space, then they certainly concem ubiquitous
computing.

Persistent computing and persistent computing systems are proposed with the
considerations based on the following fundamental principles [6, 7]:

Tbe wholeness pri*ciple of concunent systems: "The behavior of a concurrent
system is not simply the mechanical putting together of its parts that act concurrently
but a whole such that one cannot find some way to resolve it into pare mechanically
and then simply compose the sum of its parts as the sarne as its original behavior."

The uncertainty principle in mcasuring and monitoring concarrEnt sys/eins: "The
behavior of an observer such as a run-time measurer or monitor cannot be separated
from what is being observed."

The self-measurernent prtnciple in designing, developing, and maintaining
concunent systems: "A large-scale, longJived, and highly reliable concurrent system
should be constructed by some fimction components and some (maybe only one)
permanent selÊmeasuring components that act concurrently with the function
components, measure and monitor the system itself according to some requirements,
and pass run-time information about the system's behavior to the outside world of the
system."

The dependence principle in measuring, moniturtng, and controlling: ..A system
cannot control what it cannot monitor, and the system cannot monitor what it cannot
measurg."

Based on the above fundamental principles, we considered that a persistent
computing system can be constructed by a group of control components including self-
measuring, self-monitoring, and self-controlling components with general-purpose
which are independent of systems, a group of functional components to carry out
special takes of the system, some data/instruction buffers, and some data/instruction
buses. The buses are used for connecting all components and buffers such that all
data/instructions are sent to target components or buffers only through the buses and
there is no direct interaction which does not invoke the buses between anv two
components and buffers.

64

3 Design and Development of Persistent Computing Systems by Soft
System Bus Technology

Conceptually, a sofi system ôts, SSB for short, is simply a communication channel
with the facilities of data/instruction transmission and preservation to connect
components in a component-based system. It may consist of some data-instruction
stations, which have the facility ofdata/instruction preservation, connected sequentially
by transmission channels, both of which are implemented in software techniques, such
that over the channels datalinstructions can flow among data-instruction stations, and a
component tapping to a data-instruction station can send data/instructions to and receive
datalinstructions from the data-instruction station Il l].

The most intrinsic characteristic or most important requirement of SSBs is that an
SSB must provide the facility of data/instruction preservation such that when a
component in a system cannot work well temporarily all data/instructions sent to the
component should be preserved in some data-instruction station(s) until the component
works well to get these datalinstructions. Therefore, other components in the system
should work continuously without intemrption, except those components that waiting
for receiving new datlinstructions sent from the component in question. It is this
facility of data/instruction preservation that supports persistent computing in the sense
that the maintenance, upgrade, and reconfiguration of a persistelt computing system can
be done without stopping the running of the whole system.

From the viewpoint of structure, an SSB may be either linear or circular. On the
other hand, from the viewpoint of information flow direction, datalinstruction flows
along an SSB may be either one-way or bidirectional. Therefore, there may be four
types of SSBs: linear one-way, linear bidirectional, circular one-v/ay, and circular
bidirectional SSBs.

An SSB may be implemented as a distributed one as well as a centralized one. The
transmission channels of a distributed SSB may be implemented in a wired netwotk, a
wireless network, or a hybrid one by remote message-passing procedure calls, while the
transmission channels of a centralized SSB may be implernented in the host computer
by usual message-passing procedure calls.

Conceptually, an S.SB-ôased system is a cornponent-based system consisting a group

of control components including self-measuring, self-monitoring, and self-controlling
components u'ith general-purpose which are independent of systems, and a group of
functional components to carry out special takes of the system such that all components
are connected by one or more SSBs and there is no direct intemction which does not
invoke the SSBs between any two components [11, l4].

Similar to SSBs, the connection between components and data-instruction stations in
a distributed SSB-based system may be implemented in a wired network, a wireless
network, or a hybrid one by remote message-passing procedure calls, while connection
between components and data-instruction stations in a centralized SSB-based system
may be implemented in the host computer by usual message-passing procedure calls.
The most simple, centralized SSB-based system may include only one central control
component as the selÊmeasuring, self-monitoring, and self-controlling component,

while a large-scale, distributed SSB-based system may include many self-measuring,
self-monitoring, and self-controlling components respectively. All control components
of an SSB-based system should be invisible and inaccessible to any end-user. On the
other hand, a functional component in an SSB-based system may be a one with complex
intemal structure to perform some difficult task as well as a very simple one only with
the ability of communication with a data-instruction station.

As an example, Fig. I shows a circular SSB architecture of SSB-based system. The
group of central confol components includes a central measurer (Me), a central
recorder (R), a central monitor (Mo), and a central controller/scheduler (C/S), all of
which are permanent components of the system, and are independent of any application.
These central confol components are connected by a circular SSB such that all data and
instructions are sent to or received by components only through the SSB and there is no
direct interaction which does not invoke the buses between any two components. The
functional components are measure{ recorded monitored, and controlled by the central
contml componen3. All measurement data, instmctions issued by the central confrol
components, and communicating data between components flow along the SSB.

Fnlctfuul Coryatats

Fig. I A circular SSB architecture

66

As this example shows, in an SSB-based system, the group of central control
components can be regarded as the 'heart' andlor'brain' of the system, the SSBs can be
regarded as 'nerves' and/or 'blood vessels' of the system, while the functional
components can be regarded as the 'mouth', 'eyes', 'nose', 'hands', and 'feet' of the
system. This is a completely new, control-oriented design and development
methodology quite different from the traditional design and development methodology
that is function-oriented. Refer to [1] for some detailed discussions on SSB and SSB-
based systems from the viewpoint of software engineering.

SSBs can provide system desigrrers and developers a variety oftechnical benefits and
firnctional advantages to make target systems more reliable, secure, adaptive, and
flexible. Using SSBs, system designen and developers can build persistent computing
systems such that they can be easily maintained and upgraded, without changing the
basic system architecture, by adding some new components for satisfuing new
requirements, replacing an old or problanatic component with a newer or sounder one,
and removing some useless components. The maintenance and reconfiguration of a
persistent computing system built by SSBs even can be done without stopping the
running of the whole system, if those components adde{ replaced, or removed are
functional components but not permanent control components.

To achieve the goals, a persistent computing system buih as an SSB-based system
must ât least satisfu the following basic requirernents:

Rl: Any contol component in an SSB-based systan must not be stopped.
R2: Any coffiol component in an SSFbased system must not be dependent on any

special fimctional component in the system.
R3: Any functional component in an SSB-based system must be able to be

maintained upgraded, replaced, added to, or moved from the system without stopping
tfermniqg of the whole system.

R4: The stop of nrnning of any functional component in an SSB-based system must
not lead tothe stûp of running of the whole systerr.

R5: All daalinstmctions sent to a frrnctional cornponent in an SSB-based system
must be preserved if the functional comporcnt does not work, until the functional
conrpon€nt works well and must be resent to it.

R6: The SSBs must not be depeûdeût on any special computing environrnent
including computers, operating systems, and programming languages.

R7: All data/insructions flowing over SSBs must have the unified forrn.
R8: The SSBs must be able to be implemented in distributed way as well as

centralized way.
R9: Any control component in an SSB-based system must be invisible and

inaccessible to the outside world of the system.
Rl0: Any instruction to and any operation on any functional component in an SSB-

based system must be authenticated.
Rll: All datalinstructions flowing over SSBs must be able to be enciphered in

different degree of security according to different security policies of application
systems.

67

R12: The interaction between an SSB-based system and its outside world must be
able to be stopped when the interaction will lead to a disaster.

In order to satisff the above basic requirements and to provide system designers,
developers, and maintainers with enough technical benefits and functional advantages,
the SSBs and its associated technologies must at least provide the following firnctions
andJor facilities:

Fl: The way for system desipers, developers, and maintainers to identiff and
speci$ any component in an SSB-based system.

F2: The way of self-measuring, self-monitoring, and self-recording of system states.
F3: The way for components to send data/insructions to and receive data/instnrctions

fr om data-instruction stations.
F4: The way for componenB to speciff partners in cooperation and communicæioo.
F5: The way for control components to mânâge firnctional components including,

adding, upgrading, replacing, and removing the functional components md starting or
stopping the running of them.

F6: The facility of datalinstnrction presenation and retransmission-
F7: The facility of authentication.
F8: The facility of encipherment.
F9: The way to stop the interaction betwecn an SSB-based system and iS outside

world

4 Scientilic and Technical Challenges

Until now, there is no persistent computing system that has been implemented to
satisff all requirements for persistent computing systems. Probably, even some
implementation issues have not been identified. To implement a true persistent
computing system useful in practices, we have to solve many scientific and technical
challenging problems.

A scientific and theoretical fiindamental problem is how to define a persistent
computing model formally. Traditionally, the notion of computability in computer
science is intrinsically a finite concept such that any computable problem must be able
to be computed within finite steps. However, anticipatory computing itself as well as
persistent computing intrinsically concems an infinite sequence of states to be
computed. Thrs, from the viewpoint of computation, we have some fundamental
questions as follows: What is "computable" by a persistent computing system as well
as an anticipatory computing system? Is there some intrinsic difference between the
notion of "cornputability" by persistent computing as well as anticipatory computing
and the notion of Turing-computability? Is there some intrinsic difference bet\ileen the
notion of "computability" by persistent computing and that by anticipatory computing?
Is any Turing-incomputable problem "computable" by a persistent computing system as
well as an anticipatory computing system?

Another scientific and theoretical fundamental problern is how to define the notion of
function and the notion of reaction of a computing system formally such that their

68

difference can be used for distinguishing functional states, partially functional states,
and disfunctional states from reactive states, partially reactive states, and dead states.

The concept of autonomous and continuous evolution of a persistent computing
system also should be clarified philosophically and theoretically.

The biggest technical challenge offered by persistent computing is how to protect,
maintain, upgrade, and reconfigure control components of a persistent computing
system. Because the control components are the pivot of a persistent computing system,
a trouble of any control component may lead to a dead state of the whole system.

Any of reliability and security policies, requirements, functions, and facilities of a
persistent computing system must be able to be updated, exchanged, added, or deleted
while running of the whole system without stopping service. How to satisfy this
requirement is a completely open problem.

In order to implement a persistent computing system, the methodology and
technology for self-measuring, self-monitoring, and self-controlling are indispensable.

To implement a true persistent computing system, at first we need to have some
technical ways previously to test and debug it. A persistent computing system has to be
maintained, upgraded, and reconfigured during its continuous and persistent running.
This raises a new technical challenge: how to test and debug a persistent computing
system running continuously without stopping?

Testing is an indispensable step in software development and maintenance. A
program error is a difference between the actual behavior ofa program and the behavior
required by the specification of the progrm. The purpose and./or goal of tesfing me to
find errors in a target program/system. Traditionally, testing is defined as the process of
executing the target program/system to determine whether it matches its specification
and executes in its intended environment [38].

Debugging is another indispensable step in software development and maintenance.
A program "bugi'relative to a program error is a canse of the error. A bug may c:urse
more than one srror, and also, an error may be caused by more than one bug.
Traditionally, debugging is defined as the process of locating, arralyzing, and ultimately
correcting bugs in the target progam/system [3]. In general, debugging is performed by
reasoning about causal relationships between bugs and the errors which have been
detected in program/system by testing. It begins with some indication of the existence
of an error, repeats the process of developing, verifiing, and modi$ing hypotheses
about the bug(s) causing the error until the location of the bug(s) is determined and the
nature of the bug(s) is understooq ûÊû corrects the bug(s), and ends in a verificdion of
the removal of the error [3].

Testing and debugging a concurrent program/system is more difficult thm testing
and debugging a sequential program/system because a concurrent program/system has
multiple control flows, muhiple data flows, and interprocess slarchronization,
communication, and nondetenninistic selection. An intrinsic characteristic of
concurrent programs is the so'called 'hnreproducibility of behavior," i.e., for a
concurrent program, two different executions with the same input may produce different
behavior and histories because of unpredictable rates of processes and existence of
nondeterministic selection statements in the program [3, 35].

69

Ahnost all the existing testing and debugging technologies take programs of a system
rather than the running system itself as the objects and/or targets. A fundamental
assumption underlying the existing testing and debugging technologies is that any
program can be executed repeatedly with various input data only for testing and
debugging without regard to stopping the task that program has to perform. However,
for persistent computing systems this fundamental assumption does not hold no longer.
Therefore, we have to find a new way to test and debug a system running continuously
and persistently.

Some major new issues in testing and debugging persistent computing systems are as
follows:

First, since continuous and persistent running without stopping services is the most
essantial and/or general requirement for persistent computing systems, it is of course
specified in the specification of any persistent computing system. Therefore, a
completely new class of errors in persistent computing systems should be
o'running/serving stop" errors, i.e., those system situations stopping the running of the
whole system. From the viewpoint that the most intrinsic characteristic or most
imporfant requirement of persistent computing systems is continuous and persistent
running without stopping services, this new class of errors should be most serious one to
any persistent computing systein. We have to find some systematic method to test the
runninfserving stop erroni.

ln order to test any behavior of a target program/system according to a requiremenf
the requirement must be testablg i.e., to be precisely and unambiguously defined.
Traditionally, a requirement is defined to be testable if it is possible to desip a
procedure in which the functionality being tested can be executed, the expected output
is known, and the output can be programmatically or visually verified [19]. Obviously,
this traditional definition for the testability of requirement has to be revised such that
the requirement of non-stop running/serving is taken into account. On the other hand
the IEEE Standard 610 only defined the following six different types of requirements:
desigrq functional, implementation, interface, performance, and physical requirements
1241. If we consider the non-stop running/serving is a ftinction that a persistent
computing system must be able to perform, then it can be classified into functional
requirements; otherwise a new tlpe of requirement has to be defined. Only after we
have an explicit precise, and unambiguous definition for the testability of requirements
on non-stop running/serving, we can start on tÊst planning, test case design, test data
generation, and test result evaluation for persistent computing systems.

Secon{ as we have mentioned, a fundamental assumption rurderlying the existing
testing technologies is that any program can be executed repeatedly with various input
data only for testing without regard to stopping the task that program has to perform.
Therefore, almost all traditional and/or usual requirements, i.e., design, functional,
implementafion, interface, performance, md physical requirements, should be
reconsidered If the testability of a requirement is underlain by the fundamental
assumption, then it has to be revised or redefined.

Thir{ in testing a persistent computing system, any testing action must not distuô
the task of any sound component in order to satisfu the requirement of non-stop

70

running/serving. If the testing concerns not only one component but also other
components, how to perform the testing well but do not disturb those sound components
may be a diffrcult issue.

Fourth, debugging a persistent computing system must be more difficult than testing
it because debugging must make some modification to remove bugs from the system
and then correct it. Similar to the case of testing, in debugging a persistent computing
system, any debugging action must not disturb the task of any sound component in
order to satisff the requirement of non-stop running/serving. This must be more
diflicult than testing because debugging has to modiff the system.

Fifth, because any persistent computing system is a concurrent system, in general, its
behavior is not reproducible. Moreover, because a persistent computing system being
debugged is running continuously, some interaction with its outside environment may
be taken place during debugging. Therefore, it must be quite difficult to establish a
mapping from the programs of the system to its actual behavior at various time points.
This means that the reasoning about causal relationships between bugs and the errors
may be quite difficult. Our consideration is that temporal relevant logic is an
indispensable tool for this task.

Finally, for an SSB-based persistent computing system, when a functional
component is tested or debugged it may need a substitute to play temporarily the part
for the functional component being tested or debugged. Therefore, some switchover
technology is necessary. On the other han{ if the control components or data-
instruction stations need to be tested and/or debugged, the task is more difficult than
testing and debugging functional componenb, because some run-time information may
be not available in these situations. It is obvious that the switchover of control
components or data-instruction stations must be difftcult by far.

5 Concluding Remarks

We have presented that to be anticipatory, a computing system must behave
continuously and persistently without strying its nrnning and showed that a new fpe
of computing systsms, named *persistent computing systems," is indispensable to
design and development of true computing anticipatory systems. We also discussed
how persistent computing systems can be constructed by soft system bus technology,
and prese,nted some new sci€ntific and technical challenges on anticipatory computing
and persistent computing.

Having persistent computing systems as an infrastructure, we can design and develop
various true anticipatory computing systems. We are working on the scientific and
technical challenges presented in this paper in order to implement persistent computing
systems. We are also working on design and development of a general-purpose
package of soft system bus with control components and datalinstruction stations such
that any persistent computing system can be constructed by adding various functional
components to the package.

7 l

Acknowledgements

The work presented in this paper was supported in part by a grant from The
Telecommunications Advancement Foundation, Japan, a grant from CASIO Science
Promotion Foundation, Japan, a grant from Support Center for Advanced
Telecommunications Technology Research, Iapan, and a grant from Japan Society for
the Promotion of Science under Grant-in-Aid for Scientific Research (B) No. 18300005.

References

[1] R. J. Abbott, "Resourceful Systems for Fault Tolerance, Reliability, and Safety,"
ACM Computing Surveys, Yol.22, No. l, pp. 35-68, 1990.

t2l M. V. Butz, O. Sigaud, and P. Gerard, "Anticipatory Behavior: Exploiting
Knowledge About the Futsre ûo Improve Current Behavior," in M. V. Butz, O.
Sigau{ and P. Gerard (Eds.), "Anticipatory Behavior in Adaptive Learning Systæ:
Foundations, Theories, and Systems," Lecture Noæs in Artificial lntelligense, Vol.
2684, pp. I - 10, Springer-Verlag, 2003.

[,1] J. Cheng, "slicing Concurrent Pmgrams - A Graph-Theoretical Appoach," in P. À
Fritzson (Ed.), "Automated and Algorithmic Debugging lst lntemational Workshop,
AADEBUG'93, Linkoping Sw-ede.rL May 1993, Proceedinç," Lectute Notes in
Computer Science, Vol. 749, pp - 223-240,Springer-Verlag, 1993.

[4] J. Cheng, "Entailment Calculus as the Logical Basis of Automated Theorem Finding
in Scientific Discovery," in "Systematic Methods of Scientific Discovery - Papers
from the 1995 Spring Symposium," AAA.I Technical Report SS-95-03, pp. 105-110,
1995.

[5] J. Cheng "EnCal: An Automated Forward Deduction System for General-Purpose
Entailment Calculus," in Advanced IT Tools, IFIP World Conference on IT Tools,
IFIP96 - 14th World Computer Congress, edited by N. Terashima and E. Altman,
Chapman & Hall, pp.507-514,1996.

[6]J. Cheng, "The Self-Measurement Principle: A Design Principle for Large-scale,
Long-lived, and Highly Reliable Concurrent Systems," in Proc. 1998 IEEE Annual
International Conference on Systems, Man, and Cybemetics, Vol. 4, pp. 4010-4015,
IEEE Systems, Marq and Cybernetics Society, 1998.

[7] J. Cheng, "Wholeness, Uncertainty, and Self-Measurement: Three Fundamental
Principles in Concurent Systems Engineering," in Proc. l3th Intemational
Conference on Systems Engineering, pp. CS-7-CS-12, 1999.

[8] J. Cheng, "Autonomous Evolutionary Information Systems," Wuhan University
Journal of Nahrral Sciences, Vol. 6, No. l-2, Special Issue: Proceedings of the
lnternational Software Engineering Symposium 200 l, pp. 333 -339, 200 l.

[9] J. Cheng, "Anticipatory Reasoning-Reacting Systems," in Proc. Intemational
Conference on Systems, Development and Self-organization, pp. 16l-165,2002.

[10] J. Cheng, "Temporal Relevant Logic as the Logical Basis of Anticipatory
Reasoning-Reacting Systems," in D. M. Dubois (Ed.), "Computing Anticipatory
Systems: CASYS 2003 - Sixth Intemational Conference," AIP Conference

72

Proceedings 718, pp. 362-375, The American Institute of Physics,2004.
[1lj J. Cheng, "Connecting Components with Soft Sysûem Buses: A New Methodology

for Design, Development, and Maintenance of Reconfigurable, Ubiquitous, and
Persistent Reactive Systems," in Proc. lfth International Conference on Advanced
Information Networking and Applications, Vol. I, pp. 667-672, IEEE Computer
Society,2005.

ll2l J. Cheng, "Comparing Persistent Computing with Autonomic Computing," in Proc.
l lth Intemational Conference on Parallel and Distributed Systems, Vol. Il pp. 428-
432, reEE Computer Society,2005.

[13] J. Cheng, "Autonomous and Continuous Evolution of lnformation Systems," in
Knowledge-Based Intelligent Information & Engineering Systems, 9th International
Conference, ediæd by R. Khosla, R. J. Howlett, and L. C. Jain, Lecture Notes in
Artifi cial Intelli gence, Vol. 3 68 l, pp. 7 58 -7 67, Springer-Verl ag, 200 5.

[14] J. Cheng, "Persistent Computing Systems as Continuously Available, Reliable, and
Secure Systems," in Proc. lst International Conference on Availability, Reliability
and Security, pp.63l-638, IEEE Computer Society,2006.

ll5l D. M. Dubois, "Computing Anticipatory Systems with Incursion and
Hyperincursion," in D. M. Dubois (Ed.), "Computing Anticipatory Systems: CASYS
- First Intemational Conference," AIP Conference Proceedings 437, pp. 3-29, The
American Institute of Physics, 1998.

[6] D. M. Dubois, "lntroduction to Computing Anticipatory Systems," International
.Ioumal of Computing Anticipatory Systerns, Yol.2, pp. 3-14, 1998.

[17] D. M. Dubois, "Review of lncursive, Hyperincursive and Anticipatory Systems -
Foundation of Anticipation in Electromapetism," in D. M. Dubois (Ed.),
"Computing Anticipatory Systems: CASYS'99 - Third International Conference,"
AIP Conference Proceedings 517, pp. 3-30, The Americm lnstitute of Physics, 2000.

[18] D. M. Dubois, "Mathernâtical Foundations of Discrete and Functional Sysæms
with Strong and S/eak Anticipations," in M. V. Butz, O. Sigau4 and P. Crerard
(Eds.), "Anticipatory Behavior in Adaptive Leaming Systems: Formdations,
Theories, and Systems," Lecture Notes in Artificial lntelligence, Vol. 2684, pp. I lG
I 32, Springer-Verlag, 2003.

[19] E. Dustin, "Effective Software Testing: 50 specific ways to improve your testing,"
Addison-Wesley, 2003.

[20] Y. Goto, S. Nara, and J. Cheng, "Efficient Anticipatory Reasoning for Anticipatory
Systems with Requirernmts of High Reliability md Higb Security," Intemational
Journal of Computing Anticipatory Systems, Vol. 14, pp. l5G17l,2004.

[21] D. Harel and A. Pnueli,'On fhe Development of Reactive Systems," in Logics and
Models of Concurrent Systems, edited by K. R. Apt, Springer-Verlag, pp. 477498,
1985.

ï22)H. Hecht, "Fault-Tolerant Software for Real-Time Applications," ACM Computing
Surveys, Vol. 8, No. 4, pp- 391-407,1990-

l23l D. S. Hermann, "Software Safety and Reliability: Techniques, Approaches, and
Standards of Key Industrial Sectors," IEEE-CS Press, 1999.

[24] IEEE-CS, IEEE Standard 610, *IEEE Standard Computer Dictionary - A

73

Compilation of IEEE Standard Computer Glossaries," 1990.

[25] IEEE-CS, IEEE Standard 610.12-1990, *IEEE Standard Glossary of Software
Engineering Terminology," I 990.

[26] M. R. Lyu (ed.), "Handbook of Software Reliability Engineering" McGraw-Hill,
1996.

[27]I. L Marciniak (ed.), "Encyclopedia of Software Engineering," John Wiley & Sons,
New York / Chichester / Brisbane / Toronto I Singapore, 1994.

[28] M. Nadin, "Anticipation - A Spooky Computation," International Journal of
Computing Anticipatory Systems, Vol. 6, pp.3-17,2000.

[29] M. Nadin, "Anticipatory Computing" Ubiquity - The ACM IT Magazine and
Forum, Views - Vol. l,Issue 40,2000.

[30] M. Nadin, *Not Everything We Know We Learnd" in M- V. Butz, O. Sigaud, and
P. Gerard (Eds.), *Anticipatory Behavior in Adaptive Learning Systems:
Foundations, Theories, and Systems," Lecture Notes in Artificial Intelligence, Vol.
2684, pp- 2343, Springer-Verlag 2003.

[31] A. Pnueli,'Specification and Development of Reactive Systems," in Information
Processing 86, edited by H.-J. Kugler, IFIP, North-Holland pp. 845-858, 1986.

L32lP. Rook (ed.), "Software Reliability Handbooh" Elsevier, London / New York,
1990.

133] R. Rosen, "Anticipatory Systems - Philosophical, Mathematical and
Methodological Foundations," Perganton Press, Oxfor{ 1 985.

[34] F. Shang and J. Cheng, "Towards hnplementation of Anticipatory Reasoning-
Reacting System," lnternational Journal of Computing Anticipatory Systems, Vol.
14,93-109,2004.

[35] K. C. Tai and R. H. Carver, "Testing of Distributed Programs," in A. Y. Zomaya
@d.), "Parallel and Distributed Computing Handbook," pp. 955-978, McGraw-Hill,
1996.

136l J. J. Tones-Carbonell, J. Parets-Llorca, and D. M. Dubois, "Software Systems
Evolution, Free V/ill and Hyperincursivity," International Journal of Computing
Anticipatory Systerns, Vol. 12, pp.3-22,2A02.

t37l M.
'Weiser, "Some Computer Science Problems in Ubiquitous Computing,"

Communications of the ACM, Vol. 36, No" 7, pp. 75-84, 1993.
[38] J. A. Whittaker, "What Is Software Testing? And Why Is It So Hard?," IEEE-CS

Software, Vol. 17, No. l, pp. 70-79,2000.
[39] L. Wos, "Automated Reasoning: 33 Basic Research Problems," Prentice-Hall,

1988.
[40] L. Wos, "The Problem of Automated Theorem Finding," Joumal of Automated

Reasoning, Vol. 10, No. I, pp. 137-138, 1993.
[41] A. Y.H. Zomaya (ed.), "Parallel & Distributed Computing Handbook," McGraw-

Hill. 1996.

74

	Casus_v18_pp61-74_Cheng

