An Analysis of Controllable Processes with Uncertainties
Rudolf F. Albrecht
University of Innsbruck, Institute for Informatics
Rudolf.Albrechte@uibk.ac.at

Abstract

Presented is an abstract model of controllable processes on partial ordered times.
Emphasized is the definition of structures, of variables and their control, of uncertainty,
and the study of partial ordered times and their mutual relationships. This is applied to
describe evolutionary processes in general spaces, modeling physical processes by
taking causality and operational time lag into account.

Keywords: Mathematical systems theory, theory of processes on partial ordered time,
processes with uncertainties, control theory, evolutionary processes.

1. Introduction

To show the occurrence of processes on partial ordered times and to clarify the
problem classes and concepts we are dealing with, we consider the following examples:

Example 1: Let (A, <a) = {a<b<c<d} and (B, <g) = {/<2<3<4<5} be two strictly
ordered independent processes, for example operation sequences on a computer, driven

by independent clocks "a" and "b", respectively. For process intercommunication, at
2 amessage is to send to a, which « is waiting for. This establishes an order relation

2 < a. By another intercommunication may be defined ¢ < 5. Then on AUB a partial
ordering <aU<pU< is defined as "global" time. A planned intercommunication 4 < a,
¢ < 2 causes a circle and does not create a global time. Process A waits for process B

and B waits for A (a "dead lock"). This is all well investigated in the theory of multi-
tasking and parallel processing computers.

Example 2: We consider the class F of functions f: [0, 5] - R, R the real numbers,
[0, 5] € R aclosed interval, in particular the subclass of polynomials Pef(n) of degree
n. Pel(2, [0, 5]) is described by y = ax’+ bx+ ¢, x is a variable on [0, 5],a € R\{0}, b
€ R, ¢ € R are variables, y is a variable on R, depending on "object" variable x and
on "control" variable (a,b,c), both are independent. ([0, 5], <) represents a "time".

1. Initial value problem: Present time instant is ¢ =0, posed is »(0) = 0, ¥'(0) = 1. There
are infinite many solutions ¢ = 0, b =1, variable a is uncertain, i.e. domain R\{0} is
known, but no value is determined. Posing y(0) =0, y'(0) = 1, y"(0) = 2, this determines

International Journal of Computing Anticipatory Systems, Volume 18, 2006
Edited by D. M. Dubois, CHAOS, Liége, Belgium, ISSN 1373-5411 ISBN 2-930396-04-0

o TeTE

one solution y = x*+x. The derivatives imply information about objects in the "nearest"
future ¢> 0; however, this problem representation is not understood to be anticipatory.
2. Anticipatory representations contain information (function- and derivative values or
functions of these, or domain restrictions) about objects in a "farer" future 0<r<5.
Posing 1(0) = 0, y(4) = 0, yields ¢ =0 and infinite many solutions. Adding a third
condition, (max y(x)) = 4 solutions are y = ax(x—4) for a =-1 and a > 4/5, i.e.
infinite many. Adding a fourth condition »(5) < 0, we find y = x(4—x). For this
example, the anticipatory representation can be replaced by the initial value problem
¥(0) = 0, y(0) = 4, y"(0) = —2. Mixed initial- and boundary value problems for linear
differential equations are extensively treated in text books.

3. For discrete time ... fu1, ty, ty+1.... a representation Xp+i = F(...Xn, Xp+1), ... Xn
known, x,.; the successor of x,, is not anticipatory but a fix point equation for x,.1,
which may have no, one, or many solutions. For example: For real numbers, the
equation x,.; = 5+x,+x,.1 has no solution if 5+x, # 0, and infinite many solutions for
5+x, = 0. If it is sure that a fix point exists, one can try to solve the fix point equation x
= F(...x,, x) approximately by iterations ™ = F(...x(’"))),.,=0,1,2,3,,__. This sequence
need not converge, or may converge but not to the fix point x wanted. Examples for
real functions: For equation x = —x, the fix point is 0, it cannot be reached by iterations
starting with x'” # 0. For equation x = x*, fix points are 0 and I, starting with D=1,
iterations either diverge or converge to 0, butnotto 1.

2. Structures

For any two sets /, S and any function &« / — S we use the following notations: 7 is
an indexing. / is a set of indices (e.g. names, addresses, co-ordinates), S is a set of
objects, 57y =der i) = s(i), Si Zaer (i, Spip), (Sidier =aet {(i, spy) | i€} < IxS denotes a
"family" (or parameterized set). (s;);c; represents the function ¢ and is also denoted by
sy with s;7 =) if ¢ is unmistakably specified. so=. In case = {i} we write also
s; forsy,. Ifthe set S is itself indexed by &, we write sy for an element of S;. Notice,
without reference to an indexing function ¢ notations like s;, si, is, etc. can denote
elements of a set. Then distinct elements need distinct names. However, in a family for
s;i # 5j, Sy = 57 is possible. The reciprocal 7 '(szy) of sz is a subset of 7 and in
general not a singleton.

Let there be given a family (S))ie; of sets Sy with [= &, Sy 2 &. We define:

S =4rlJS;, for any J < I the (in general unordered) set product []S; =uer {(S)ies |
iel ieJ
sieS;, ied}, $* =4r J [1S;. [1 differs from the Cartesian product X, which is
Jcl ied
ordered and finite. If all S;; equal the set S we write S’ for [1S:- Any Rc S*

iel

defines a “structure" (or "general relation") on §. Classically, a relation is defined as a
subset of one Cartesian product.

The basic selection- and composition operations on sets, like subset selection ,
intersection M, union U, difference \, symmetric difference A, apply to structures R
of $* as sets of families, and to families as sets of pairs (i, s;7). For illustration, we
consider singleton relations R = {ry }c 8*, ry = (r)icv, R= {r'v}c S* r’v=(rDjer
Denotation A means "and", denotation v means "or".

(1) For R#R" holds: R""=4¢sRUR = {ry,r'v}, RER”", RONR =D.
Considering the families ry, 'y, examples for operations are:
(2.1) Selection by subsets of indices: For any K / the "projection of ry onto K" is
pr(K; ru) =dget (r)icu~x (compare with "call by name").
(2.2) Selection by subsets of objects: For T]S, the "selectionby T outof ry"is
iel
sel(T: ry) =aet (Fi)iew =aer {rj| r; € ru A rp € T} (compare with "call by value").
(3.1) Intersection of families: ry N r'y = (r"jew =aer {r' |7 j=ri =1 jeUNV}.
(3.2) The union of families: U r'y yields a family if r and r'v coincide on UNV.
Then (")evor =as {1’ 7| rj=r for jeUWV,r"j=r} for jeN\U,r";=r;=
r; for jeUnV}. If functions (oi: (i, r'}) = (r""))icu~v are given, a family on
UuV can be obtained. We assume o; = identity for r;=r":.
These operations can be extended to families (R));c; of general structures R; < S* by

application to all component families of the R;. For any (R))e;, with cardinality J>1
onto
we name functions K: (R));c; — R, R < S*, "concatenations" (infix notation «). In
particular, if for any J—tupel ((ri)icsj)ies (Fiidicigy € Rj, a commutative group operation
% (ri)jes = ri exists, K((rji)icij)es) may be defined as r)ier, I = U](j). K isthena
jed
commutative group operation. Examples for 2 are for sets: union U or intersection
., for lattices: join v or meet A, for additive groups: + . Reverse to concatenation &
is a partition 7 of a family sy into part families. The objects of the sets Sy, ie/, and
the indices can themselves be parameterized structures of other objects and other
indices, which are then on lower structural hierarchical level than the previous ones. For
example, a set {Mj; | iel} of sets My ora family ((mj)jcsn)ics of families (m;i)jesi)
are of higher hierarchical level than their constituents. The union |JM,, and a
iel
concatenation K(((mji)jcs)icn) = (M)jicvs U =aer JJ(1)x {i}, reduce the hierarchical
iel

level.
3. Variables and their Control

We consider a non-empty family (r,),cp of non-empty structures (i.e. general
relations) r;,. For all p let be r, = Ky(c, vjy), Kj being a concatenation, which can
depend on (c, vjy), and let ¢ be a structure which is independent of all vg,. ¢ can be
empty. To facilitate the representation of R = {r;, | pe P} we define as new objects the
variable var v on variability domain V' = {v; | pe P} with respectto R, written var v

149

: (V; R), variable var r = var x (¢, var v) on R, and var x : K = {kp; | peP}, the
domain of admitted concatenations to yield elements of R. We make the variables
"controllable" by associating to var x, x € {r,x,v}, a function val with val: (p, var x)
> x;. The val-functions are named "control-" or "assignment" functions. P or
indirectly any set Q with a given function az Q — P = a(Q), is a set of control- /
assignment parameters. For assignment according parameter p we write also val(var
X): p V> Xpp, or var x :=(p) X. The variable domains R, K, V' are sets of "states" or
"instances" of wvar r, var k, var v, respectively. p itself can be the result of an
assignment to a variable var p : P. If a "reset" function : x, = var x is known, i.e. if a
variable, its domain of definition and an assignment function va/ are known of which
X 1s an instance, application of val: (g, var x) = (x,) results in a substitution (re-
assignment) x, for x,.

In general let there be given a set X C X =gef }x[p/ | pePy. X determines a maximal
set Pc P such that X = {xp | P P} We write (P var x) = val™' (X) with respect

to the function val: Px{var x}— X. val”' is a homomorphism of pow X onto pow
(Px{var x}). pow means power set.

The variability domain of a variable can be structured by functions or general relations
and is also named "type" of the variable. Variables and control parameters can be
composite. We consider var v = (var vj)ep, var v, : ¥y = vy, | peP()}, var v : V =
{ipapier | p = @O)ie, € Py with V c[V,, P< [[P(). Letbe L=L"UL"" with

leL leL
L@, L"#3,L'nL""=. Let var v be partially assigned with control parameter p’
=@)icr- € P'= s pr(L"; P). Then var v* =g (Vi)ier” & (var vy)er . The control
parameter set for (var v\, is P =ger pr(L""; ext(p’; P), i.e. the projection onto L~
of the extension of the parameter family p’ into P. Notice. in general P"" < []Prl).
lel”
Visualization is shown in Figure 1. L = {1,2}, p(1) given, var p(2) : P".

pr
domain of
var p(2)

'
L

p(l) Pl
Figure 1

150

The terminology is: var v* is a partial variable, (the assignment to, the knowledge
about) var v* is incomplete, val(var v*) is indeterminate, however its domain (range)
is determined, the assumption, val(var v¥) = v for expected V € V'* is uncertain.

The domain of a variable can contain variables, which are then of lower variability
level with respect to this variable. In this way hierarchies of variables and their controls
can be defined.

For a function variable var y = var f{var x), or written var f: var x — var y, we assume
var f:{fp : Xp = Y, = f(X,) | peP}. We have varx, : X, = {x,, | qeO(p)}, var y, : ¥).
The assignments are: var / :=(p) f,, which determines X, and Y, after that var x, :=(q)
Xpg, then var y, : =f, (x,q) With pg or x,, as control parameters. var y depends on var
x, var y is of higher variability level than var x.

Example 3: Relational database, questionnaire. Let the scheme for var r be

number first name middle family name date of date of
initial birth death
var p var v, var v, var v; var vy var vs

The fixed structure ¢ is the zext and the frame, var r,, = ¢ K (Var Vi v p)ic 112345
concatenation is insertion into the scheme. The domains of the variables (types) are
denoted in the first line. For example, first name = set of all English prenames. A
variable of type date is structured: (var day, var month, var vear). A relation of var vs
with var vy is: year of birth < present year < year of death < vear of birth + 150, if the
person is alive. A partial assignment is for example:

var p =5, var vs; = William, var vs; := J. , var vs3 := Miller, var vs4 := 28.7.1968.
Control parameters are omitted. Entry into the scheme as line 5 is the concatenation k.

number first name middle family name | date of birth date of
initial death
5 William J. Miller 28.7.1968. var vs

The knowledge about William J. Miller is incomplete, however the range of var vs is
partly known: Present year 2006 < year of death < 2118. If Miller is now seriously sick,
adaptation to a more realistic bound is: year of death < 2048. Surviving 2010 is rather
certain, 2030 is not so certain, 2040 is rather uncertain, the uncertainty is graded. In
course of time, entries and the scheme can be changed, variables and their domains can
be deleted, and others can be added.

4. Time

We model "time" by a set (7, <) of time instances /-points ¢ as elements and with a
partial, irreflexive, asymmetric, transitive order relation <. We also write < < 7xT.
Any subset U c T is assumed to have the induced ordering. In particular, a subset C ¢

151

T is totally ordered, if for any ¢',¢t"'e C either t'=¢",or t'<t”, or t'<t, mutually
exclusive. Then C is a "chain" in T. Any chain C is element of 7. For te T, {(f)}

is a chain. 7 is the union of all chains in (7, <), thus 7 < UTC ,1.e. T is arelation
C chainin T

according our definition. Two chains C’, C*" are of the same "ordering type" if there
exists an isomorphism gz C’ <> C', this means x isa 1to 1 mapping and from c¢'<
¢* in C’ follows gc’) < c™*), from ¢"<c¢""* in C”" follows wie Yy <ue ™.
For UcT and VcT, achainin UUV which is not a chain in U and not a chain in V
is a "connector” of U and V.

Notations used in the following are: A ("for all"), V ("it exists"), = ("not"), A
("and"), v ("or"), =gs ("is defined by"), < in a formula stands for < or <, mutually
exclusive in this formula.

By < on T (partial) order relations on pow T can be defined. For subsets U, V, W
of T examples are:

(1) U=nV =aet AuelU(VveV(u=<v)), from U<V, V=W follows U= nyW.

(2) U-<(V)AV =gef A\VE V(Vue U(u < v)), from U'((V),\V, V-<(V)AW follows U< (v)/\W
(3) U=V =qet (U=)V and U<\ V), also denoted by U<V.

Notice: From U<V and V<U need not follow U = V. Example: U = the interval
[0,1] of real numbers, V' = the interval [0,1] of rational numbers.

A particular case is: U<,V =ger A(u,v)eUxV (u <v).

(4) (U< V) =gt (=V(uv)eUxV (v<u)). In general, < 1is not associative. However,

from U< W,V W and V < W\ follows UUV < W\V. If U<,, V then U< V.
For U= {u}, V= {v}. W= {w}, these orderings reduce to <. By order relations on
pow T order relations on pow(pow T) can be defined, and so on.

If T is finite then to each subset U of 7 exists a set U,y of minimal elements,
i.e. Upin < U\Uppin. We consider a recursive procedure (A) which is basic in the theory
of algorithms and of evolutionary systems:

We use (N, <), the strictly ordered natural numbers, as "algorithmic" or "evolution”
time, a time (7, <) and as initial data n =1, 7" =4t T, A; =4 @, and do recursively
(A1): select a non empty set A,4 < 7" < T of minimal elements of it
(A2): concatenate (A4,, AyA) t0 A, =gef An U AyA with the ordering induced by <,
(A3): concatenate (7", A,4) to T™"V =4 T" \ A,A4 with the ordering induced by <,
(Ad): if 7" % & then replace n by n+ 1, goto (Al), else denote n by n* and

terminate (A).
The selection of A,4 may be controlled and may be subject to conditions. The
procedure always terminates by exhausting the finite set 7. We have UA A< ﬂTi 3

i<n i<n+l
Ua4 n NT' =D.If ¢=(t)i-12..m is a maximal chain in 7, then m < n* <card T
i<n i<n+l

(cardinality of 7). The set Ngosw = {1,2,...n*} or any isomorphic set can serve as

152

global time for the process (AyA)n<n*. ApA +> 1, n € Ngiopas, is @ homomorphism, the
elements of A,4 are independent with respect to Ngiopa. A "shortest” global time is c.
In topological terms, {7(") | n€ Ngiobut} forms a filter base with limit &, {4, | n€ Ngiopar}
forms an ideal base with limit 7. Generalizations of the procedure (A) are treated in
Section 6.:

Example 4: T={t | i=1,23,..9}. Letbe: G= {(t;<ty), (1< ty), (14< t), (14< fj) (t7<
1g), (1< to)}. By associability, H = {(1:< ts), (t2<ts), (t;<t5), (t;<t6)}. The set of chains
is C = {(t;)VOGUHU(< 1y < t5), (t2 < tg < tg), (t; <ty < t5) (t; < t4 < tg)}
TU(TxTYJ(TxTxT). One possible decomposition is: A4 = {12, t3}, AoAd = {t;, 17}, A3A =
{ts, 1o}, AgA = {15, 13}, AsA = {15}, a maximal chain is {(t; < t; < 1)} with length 3, card
T=9. For example, Aj4 U AxA = (T3 = {14, ts, 1, 13, 1o}), the connector set of A;4 with
AxA U A3A O AA U AsA s {([_7, tq), (12, t5), (tg, ts), (12, 14, 15), (12, 14, t6)}. See Figure 2.

5. Processes and Process Homomorphisms

Let there be given: A time (7, <), a subset U < 7, a non-empty set S, an indexing
U— S with 1+ sy, sy € S. Frequently, S < pow Z, Z a non-empty set. Then sy =
(s)iev is a "process on U" with "state" s;; at . The ordering < on T induces an
ordering on sy : t <t <> (if and only if) s, <s’;~ All concepts defined by the ordering
of T are transferable to processes. Let sy = (s)ey be another process. If UnV = &
then sy and sy are "concurrent" on UNV.If UnV = then sy and sy are named
independent ("parallel"). If a time (7, <) and a set S are given, the set of all processes

153

on S over T is P= USU . Each subset of P is also named process. Two processes
Uecl

sy, s'v are time isomorphic if a <-isomorphism ¢ : U <V exists for them. If in

addition for all weU holds s = '), then the processes are time invariant with

respect to . If S is ordered itself, (S, <s), and if the indexing ¢ is a <g -

homomorphism, i.e. for ¢’ <" holds «t') <s «t"), then ¢(7) is a time.

onto

We consider a function fi X = (x)icv = Y= Wder,x =y In general, time (U,
<y) is independent of time (¥, <y). Let & be the domain of the x;;, and Y be the
domain of the y;;. We say X, Y are "input-" and "output processes" respectively to the
"processor” f. Functional dependency is denoted by —, >. We further assume, / is a
<-homomorphism, i.e. for x, <x’- holds fix;) < fix’;), subscripts of < omitted. The
set extension F of f is a homomorphism with respect to set inclusion <. For (v») we

-1
consider the reciprocal image f(y»)= (x)wcv». In case F is independent of U, F

maps U* onto {*} and (xjj)cu» onto (y*;). Let U and V' be sub-times of a time
(T, <) with the induced ordering. To model physical reality, where a cause is not later
or simultaneous with its effect and all operations take time, we assume, the "time delay

condition" AxeX(—(fix) < x) holds, in our notation: x < fix). This excludes
mathematical identity for f but includes operational time delay x < flx). If

AxeX(x<flx)), then X < Y (according our definition of <), because f is surjective.
Under these assumptions, the "processing time" of /" is UuV < T. We denote Xy =ger
{xp | teU}, Yy =t {ypy | t€V}. Output data may be used as input data at later time.
For example, if the objects are sets, if y'y < ypy and x"py xpy with ¢ < ¢", then
x"im = y'py is possible. By causality, input X* exists not exclusively originating from
the output, by intention, output Y* exists not exclusively used for input. We say, the
processes X*, Y* are "external”, i.e. their states are given, observable, measurable.
available, accessible for other applications.

Example 5: For real numbers let be Y = {yi+2 = X2 =ger (Xpr+17 X Xp)e+2 | teN}, X=Yu
X* X* = {x;, x;} given, Y* = . f is multiplication x. This is physically an infinite
operation without an external result, only changing "internal states". x+1; and x;; have
to be memorized. However, if the output process is external then Y = Y* For x;; =x3
=1 the process is stationary. This example is covered by classical automata theory.

'
Example 6: (T, <) = (R, <), letbe X* = (tzl)le[(). *] O<t*eT, Y* = ((jfzdr Yar)ie(04%)> @
0

is a < - isomorphism with ¢ < ¢(r), expressing the operational time delay. This example
is not covered by classical automata theory.

154

An object x, € X may be uncertain, but known to be an element of XcX,ie varx,:
X . Then the functional result ys is undetermined but an element of F(X) ¥, i.e. var
ys = F(var x;) varies on F(b). In addition, F can be uncertain.

Example 7: Let be T < (R+, 9x(R+, <), R+ denotes the set of non-negative real
numbers. A partial ordering << on T is given by ((¢, t") <<(s',s") < (('<s) A ("
<s") excl. or (' <) A (¢ <s")). For example, to X = (x;)e7, X7 € R+, let correspond
Y =((s(t) = 'y x "y, KX))ier> @ (X() € Ri. From 1 <<r* follows s(f) < s(r*). If var
t: [a, b]x[c, d], a < b, ¢ < d, then var s: [axc, bxd] (this is an example for interval
arithmetic on R, the time delay is neglected).

Under certain assumptions and for a universal time, processors can be concatenated to
a composite processor (or "network"): For illustration, let be F: x, = vv: X x 7,
y'"', apartition of y,; X', X" admissible given input parts. For given concatenations
K,k letbe X' =gef X uw K X X ' =detX w K X" Gixy oy Hix >y
Figure 3 is a visualization.

X X w
I
\)
1
- >
= G Y:z
Xy Vo > >
~N ~ / \"
> x5
@ P >
@ f X'u
» — |\ J
J J
> —
H > |V -
£= e
[)
® O Lo.ioaaee
yr! " i‘” x w
Figure 3

’

For the composed processor the input processes are x,, X , X", the output processes are
¥ v, ¥,y s The relation "part of the output of a processor F' is a part of the input
of a processor G" is a connector C(F,G). If not empty, it generates an irreflexive,

transitive ordering F < G ("G depends on F™) on the set of processors composed. < is

155

compatible with < for the processes. In reality, C(F,G) represents itself a processor
("channel"), copying output of F as time lagged input to G. The assumptions we made
are: x, is in the domain of F; x’, is in the domain of G; x"’, is in the domain of H
("domain condition"). For example, if this is violated by input arriving too early or
because input parts have to be sequenced for processing, a connector needs
synchronizing devices like memories or transmission delays.

Starting with a finite set {F;|ie/} of time independent processors F; onlevel n=0
("atoms"), compositions of composite processors on level n generate processors on
level n+1 (hierarchy of compositions). A physical object which represented a
processor, may be reused after its processing time w at "later" time w’,w N w'= .
Use may change the physical object and the processor.

Example 6: (T, <) = (N. <), Xz, vy non-negative integers. For n=1,2,3,... let be X+
= (o — D) While Xpy 2 1, Vo ety = Oy + 1 X)) (ee1)y @) = n°, with initial
values: Xy = 5,y/1] =0.We find x= (5;,42,33,24,15),}/ = (0|,54,219,48)6,8025,1053(,).

Varieties of times, processes, processors, connectors and networks can be described
by controlled variables. We revisit Section 2 and apply the previous reasoning on time
behavior of objects.

We consider a function variable var y = var f{var x), var f :{f, : X, = Y, = f(X)) |
peP}, varx, : X, = {x,, | g€ Q(p)}, var y, : Y,. The assignments are: var f:=(p) f,, which
determines X, and Y, after that var x, :=(q) x,,, then var y, : =(pq) ypq = f(xp,) With
pq or x,, as control parameters. We assume, (S, <s), (7, <r) are given times, S(pq) <
S, T(pg) < T are sub-times with the induced orderings. Now let the objects x,q, yp; be
Processes, Xp; = (Xpgs)seswan Vog = WpgdreTpg = Jo((Xpgs)sesipg)- TO process xp, the
process y,, is assigned but not states x,, to states y,,. However, if a point wise
function A, @ (Xpgs)sespg) = VpgrreTipg) 1S IVen, i.€. Xpgs > Vpqr, the set extension H, of
h, maps processes onto processes. By causality, (s(pq)eS(pq)) < (t(pq)e T(pq)).

Let us assume: P = {p}, thus omitting index p in the following, S =4r | JS(g), for ¢

90
#q' to have S(q)NS(q") = T, AGeQ(H: (Xg5)sesi > Vang))), thus S(g) = {#(q)}, and
T={q) | qeQ}. H is a < - set homomorphism. In addition, / implies a <-
homomorphism Hiime: S — T. Time (7, <7) is a coarsening of time (S, <s). The
=1
reciprocal image H ((y/)ier+) to a process (Ver=, I'* < T, is a family of processes,
iy -1
((Xgs)ses) | S(q@) = H iime(N)ier= For given 1, by causality, {t} < H ime(t). An example is
a compiler, transforming a series of statements in a higher order programming language
into a series of series of instructions in a lower level language. If for all g,q'€eQ a <-
isomorphism o(q.q"): S(¢) — S(q") exists, i.e. a 1 to 1 mapping preserving <, and for
all s € S(q) X457 = X 015> then (Xvar gs)sesvar 9 With var g: Q is a time invariant
representation with respect to {S(q) | g€ O}.

156

6. Evolutionary Systems

Let there be given a time (7, <). Any subsets U, V' of T have the ordering induced
by <. Concatenation U x V (also written (U, V)) is defined by UuV with ordering
induced by <. We consider a set U € pow T and make the following assumptions:
(Al): U cT\U and U is a maximal set such that U<U ,

(A2): AU c (ULU) such that AU =g AU\ U# @,

(A3): AU < U \AU)

From these assumptions follows: UnU = & (by definition of <), thus UnAU = o,

(C1): AU < (U \ AU), (AU LU) < (U \ AU), (proof: by (A2), (A3), and for any X,Y,Z:
X< YAZc N XQYZ,(X<ZAY<QZ) = (XVUY < 2)),

(C2): A(u, v)e(UxAU)(ﬁVte T\AU(u<r<v) (proof: u<t A teAU = te U \AU (A1),

<v = —1(AL/ < \AU), this contradicts (A3)).

Zala ¥

il

b0 means <

Figure 4

Figure 4 shows an illustration. Applied to chains C(UUAU) on UUAU with CcU)
=def C(UuAl7 U, C(AL7) =der C(UUAU)r\AL~/ , we have the following cases,
visualized in Figure 5:

(a) if max C(U) and min C(A(j) exist: max C(U) < min C(Aﬁ), (jump)

(b) if max C(U) and not min C (AU) exists: {max C(U)} <., C(AU), (Dedekind cut);
(c) if not max C(U) and min C(AU) exists: C(U) <., {min C(AU)} (Dedekind cut);
(d) if not max C(U) and not min C(AU) exist: C(U) <., C(AU), (gap).

In all cases there exists no time point ¢ between C(U) and C(Aﬁ). If this holds for all

chains in UUAU we say U and AU are "adherent" or neighboring, UUAU is a
successor of U. A visualization is shown in Figure 5. If all cuts of all chains in (7, <)
are Dedekind cuts, we say (7, <) is continuous.

5y

cal) aal)
® v——/ 3-"‘/
o o
(a) (b)
caU) cal)
(o -———/ :v-—-—/
““n -
(© ()

Figure 5

Starting with an Upnii and assuming the procedure can be recursively repeated, the
family of indexed successors ((UuAﬁ)m)mem OF Increments (AU m)meM Creates a
well-ordered ("algorithmic", "evolution-") time (M, <).

We are going to define processes on the time structures studied. Let there be given a
non-empty set X of objects and a time (7, <), a time process variable varw: W
pow X and an object process variable var(xy) =qef var Xvarw =gef (Var X)ievarw With
domain Z(var w) c X** . For simplicity sake, we restricted the general case [].X,

(evarw
with distinct sets X, X for ', to X' ™. Admitted are only concatenations var(xy)
x var(x'y) = var(x"wow), WnW' = J, var x", = var x, on var W, var x", = var x'y on
var W', i.e. without overlap. We apply this to the evolution equation

var(xy eav) = var'(xy) xvar?(Axay), upper indices indicate the variable level.

We assume: var U, var AU are subject to the conditions (Al, A2, A3), var AU = var
AU. By our restrictions, x is independent of (var(xy), var(Axay)). Omitting possible
control parameters p for var(xy), g(p) for var(Axav), let be assigned var'(xy) = xy
e I(var(xy)). This restricts the domain AX(var(Axay), var(xy)) of var(Axay) to
AX{(var(Axay), xv). The result is

varm(xu «av) = (xv) Kvar(”(AxAU), var(”(AxAU) is a control variable for varm(xu ©AU)-
If Axay is assigned to Var“)(AxAu), we have var(xy ca0) = (xv) K (Axav) = XU & AU-
Let there be given an initial object process (x'y)o, and let continuations be possible. We
obtain by recursion for an evolution time (0 < succ 0 < succ(succ 0) < ... <m)

(xU)succ m= (. -(((x,U)O K (AxAU)O)succ 0) K (AXAU)succ 0)succ(succ 0) --) oo K(AXAD)M = (x’U)O K

m
K (Axay), because « is associative. According the assumptions made, k is
#=0

independent of ((Axav)uw (Axav)suce x)- If a further continuation starts with an initial
process (X'y)sucem to be concatenated with (xy)sucem and so forth, we have a process of
("external") initial objects and the ("internal") object process controlled by var(Axa).

158

If a commutative group operation .o : XxX — X is defined (see Section 2), two
overlapping evolutionary object processes can be concatenated to one object process. If
TxX is a metric space, for continuous and differentiable functions 7 — X, limits in the
evolution equation can be defined.

Example 8: We consider the partial ordered space 7 < (R, <)x(R+, <) of Example 7,
functions 7 — R and a chain C with time points (r,). In general, r, r' are
independent. If »'= y(r), we can describe C by (7, 7 (r)),cv. For the ordering <<, y
has to be monotone. We choose < induced by (R, <), set t=r and consider the chain

(, D)ero.y Y (f, 0)epi2. With chosen initial process (x = 0, x'y = —1) and given

4
derivatives %=2t for [0<r<1), x=—e""' for [1<1<2), we find x(1) =0+ [2zdr =7
0

for [0<t<1), x(1) = -1 - [e™™'dr=-1+ (™" — 1) for [1<1<2). For 1 - 1: x(1) - 1,
1

x(f) > 2; x(1) = -1, x(1) =—1. Neither x(#) nor x(7) is continuous at ¢ = 1. [0<r<2)
is a continuous set. Let us assume, ¢ is undetermined and varies in intervals: [t ~ 0.1, 7 +
0.1) for 0.1 <<1.9,[0,7+0.1) for0<<0.1, [+~ 0.1, 2) for 1.9<t<2. Then for ¢ e
[0, 0.1), var x(?): [0, (+ 0.1)*]; for ¢ e [0.1, 0.9), var x(¢): [(~— 0.1)% (++ 0.1)*]; for 7 €
[0.9, 1.1), var x(): [-2 + ™%, 1); for r € [1.1, 1.9), var x(r): [-2 + ™%, -2 + ' 1};
for ¢ € [1.9,2), varx(f): (2 +e”', 2+

Up to now, we disregarded general concatenations &((x')cv. (X")ier) = ((X))rew, also
causality and the operational time delay. We use the notations x¢, x'y, yy for past
object process, past initial process, past control process, respectively. var(Ax,y) = var
Axvaray, var(Ayay) = var Ayyar ap, var (Ax'ayr) = var Ax'y,ar are process continuation
variables, subject to assumptions (A1,A2,A3). Omitting the prefix var, a general
formulation of the incremental equations is in case
(X): The incremental control process {(Ayay) and the incremental initial process
(Ax'ay) are given, the controlled incremental object process Ax,y is to determine. We
consider (Axay) = flxu, yv» (Ayay)), with assumptions: V< AV, U< AU, & # AV(min)
AV, AV(min) the set of <-minimal elements in AV, (V, AV(min)) are adherent. Let f
be a time continuous <- homomorphism, then (Axaumin) = fxv, Y, (AVarmin), (U,
AU(min)) are adherent. By causality: AV eAV(Ay; < fixu, y», (Ay;))). Renaming
(Ax"au") =der (Axav), we set (Axay) = (Ax'av?) & (Ax"pu+) if concatenation i, is
defined. Processing time is AV AU’ U AU". In case of anticipatory systems we would
have processes X;, y; with U<U, V<V in the arguments of f which are not
adherent xy , yy.

(Y): The incremental object process (Axay) is given, an incremental control process Ay

is to determine which would be a control of it when later to reproduce. In general, there
can exist many control processes leading to the same object process. We consider one of

159

them, (Ayar) = g(xu, yr, (Axap)). Then assumptions and reasoning analogue to case (X)
can be applied.

In a physical representation of f and g, the memorized history xy, x'u, yy (or parts
of them) represent the "states" of the "processors" f and g, influencing their functional
behavior. By definition, succ xy = Xy K Axay, succ yy = yy K, Ayay, & and kK,
concatenations of x-, y -families. If £, g are strict homomorphisms with respect to the
concatenations ki, &y, then (Axay) kx succ (Axay) = (Ax'av?) & suce (Ax'av) & flxu &
(Axav), v K (Ayar), (Avar) &, succ (Ayay)). Analogously, (Ayay) &, suce (Ayay) = glxu
i (Axav), Yv K (Avar), (Axau) K succ (Axay)). By recursion, integral representations are
obtainable.

The operational time delay is assumed to be describable by a time isomorphism ¢ :
AU - ¢ (AU) c T, AU < ¢ (AU), AAU) U (succ AU) = ¢ (AU U succ AU), and v :
AV — w(AV) c T, AV < w (AV), w (AV) Uy (succ AV) = w (AV U succ AV).

7. Conclusion

The article is based on classical set theory and analysis as presented for example in
[2,3,4] or in any other equivalent text books. The concept of families, general set
products and relations, concatenations, order relations among sets of subsets of a partial
ordered set, variables and their control, procedure (A), composition of processors, are
already considered in [1]. Seemingly, processes on general partial ordered times, the
importance of the adherence condition, the assumptions Al, A2, A3 which imply the
well-ordering theorem, the use of relation <, are not treated in the literature (compare
for example [5,6,7]). [7] is on our line, has more details and less general concepts. For
modeling of physical systems, causality, operational time delay and uncertainty are
regarded.

References

[1] Albrecht R. F.: "On mathematical systems theory". In: R. Albrecht (ed.): Systems:
Theory and Practice, Springer, Vienna-New York, pp. 33-86, (1998)

[2] Alexandroff P.S.. Einfiihrung in die Mengenlehre und die Theorie der reellen
Funktionen, VEB Deutscher Verlag der Wissenschaften, Berlin 1956

[3] Bourbaki N.: Théorie des Ensembles, Hermann et Compagnie, Paris, 1954

[4] Gihler W.: Grundstrukturen der Analysis, Vol. I and II, Birkhduser Verlag, Basel-
Stuttgart, 1977, 1978

[5] Pichler F.: Mathematische Systemtheorie, Walter de Gruyter, Berlin-New York,
1975

[6] Mesarovic M.D., Y.Takahara: Abstract Systemstheory, Springer Verlag, Berlin,
Heidelberg, New York, London, Paris, Tokyo, 1989

[7] Wunsch G.:.. Systemtheorie-Prinzipien und Systemklassen, in Handbuch der
Systemtheorie, Oldenburg Verlag, Miinchen-Wien, 1986, pp.1-35

160

	Casus_v18_pp147-160_Albrecht

