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Abstract- Artificiat neural networks, which are inspired by the structure and

functioning of the vertebrste-brain, are powerful modelling tools. However, the

black-box representation they provide does not allow the usage of the huge

accumulatioi of theoretical lcnowledge on system dynamics. Similarly, they also

do not seem to provide any clue for the symbolic operations typical for the

higher functioning mode of the human brain.
Iithis study a "chaos control" problem is used as a test case to demonstrate

the viability of extracting an analytical modelfrom an artificial neural netvvork'

The results are used to comment on the advantages ofhierarchical organisation

not only in artificial but also natural neural networks'
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l.Introduction
All living beings are endowed with a model (or set of models) describing themselves

and their environment. Considering the living being as a complex structure with many

organisational levels in the sense of Metasystem Transition Theory [Turchin, 1999], one

.À 
"u"n 

claim that any sub-system at any organisational level has a model about itself

and its environment. It should be noted that here the concept of "model" is used in a

more general sense meaning "representation".
At low organisational levels this representation is inseparable from physical,

chemical and geometrical properties of the structure. For example, such properties of a

receptor at a céll membrane can well be considered as a representation or a model of the

environment because they specify the acceptable ligands, i.e. those components of the

environment which are relevant and have a meaning for the cell.
Any "model" used by any organisational level of an organism is a result of a leaming

and adaptation procedure, which must have taken place in the course of evolution,

during the develôpmental stages of the organism or during its lifetime. Even the genetic

code ian be considered as such a model of the organism and its environment. The

models at lower and hence more ancient organisational levels are well established and

stable, whereas those at highest levels keep being constructed and revised during the

lifetime of the living being.
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The model at any level is used for anticipating or predicting the potential results of
actions and choosing the proper action or strategy in a given situation. At lower
organisational levels of an organism this procedure occurs quite automatically and it is
hard to specify the subject of choice and deliberate action due to lack of agency.
However, when we consider the higher organisational levels of an organism,
particularly when it belongs to a higher species, the deliberate, goal-oriented, model-
based behaviour accompanied by on-going model formation becomes apparent. [n
higher vertebrates the higher levels of the model are supposed to be hidden in the
synaptic dynamics of the brain, which in itself exhibits a hierarchical organisation.

In this paper we will try to arrive at some clues about the hierarchical organisation of
these highest levels, namely of the vertebrate brain, by considering a simplified
technological imitation: Artificial Neural Networks.

Within the last decades artificial neural networks (ANN's) have been developed,
which are meant to imitate the leaming process of the brain by modifying the synaptic
weights. They can be trained to represent -at least theoretically- any data set and hence
to become a model of the system that has produced the data. Although widely
recognised as a powerful modelling tool, artificial neural networks have the drawback
of being "opaque", i.e. they provide a non-analytical, non-transparent, black-box-like
description of the systems they represent. Consequently, no analytical investigations are
possible on these inaccessible intemal models.

On the other hand, neural networks as a model of the functioning of the (let us say,
human) brain do not seem to provide a support for what we observe when we look at it
from the other end, i.e. inhospectively. The neural network model, which possibly quite
well describes the brain at the neuronal level, does not account for the hierarchical,
abstract and analytic structures, which we celebrate as the crown of human thinking:
analyic thinking.

The aim of this paper is to demonstrate the advantages of using the synaptic
organisation of an artificial neural network as an intermediate tool for higher level
processing rather than as a direct model. The results of this approach, which allows a
combination of the immense modelling capability of ANN's with the advantages of
analytical models, will then be interpreted in order to draw some philosophical
conclusions about the trend towards a hierarchical organisation of the human brain.

For this purpose, the control problem of a chaotic system has been chosen as a test
case. The dynamic equations of the chaotic system are assumed to be unknown, hence
have to be estimated from the system data. In classical OGY control the least mean
square error estimate of the local system dynamics is obtained from system data and the
thus obtained local linear system model is used when applyrng a classical linear control
technique. An altemative approach presented in [Iplikci, 1999] employs an ANN, which
after being trained by the system data provides a suitable control action as its output.
The study presented in this paper, however, extracts an analytical model from an ANN
trained by system data and subsequently uses this analyical model when applying
classical control methods. A comparison of the simulation results obtained for chaos
control via ANN and chaos control using analytical equations extracted from ANN has
demonstrated the superiority of the latter in terms of control precision.
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Section 2 of this paper provides a brief review of the classical OGY control of

chaotic systems and of a modified version, where both modelling and control tasks are

achieved by an ANN. Section 3 presents the alternative approach based on using ANN's

as an intermediate tool. Simulation results obtained via classical OGY control, ANN-

based control and OGY control on basis of analytical system model extracted from

ANN are shown and compared in section 4. Finally, in Section 5 the simulation results

are discussed and some conclusions drawn from artificial neural networks are
generalised to comment on the nature of hierarchical organisation and the evolutionary
tendency of complexity increase in natural neural networks.

2. OGY Control and Its Artificial Neural Network Version
2.1. Classical OGY Control

Since 1990 when Ott, Grebogi and Yorke the so-called OGY control [Ott et al.,
1990] has been widely accepted as an effective method of controlling chaotic systems.
Due its simplicity and the realistic assumptions, under which it can'operate, this method
has attracted the attention of many researchers'

The OGY control is applicable to chaotic systems the dynamic equations of which
are not known to the controller. The control input to the system is assumed to be
through a s-dimensional control parameter vector. These control parameters are allowed
to vary by a small amount about their nominal values, which are represented by a
nominal control parameter vector pno..

This approach is based on the presence of many unstable equilibrium points and
periodic orbits embedded in the strange attractors chaotic systems. Furthermore, the
instability of all these equilibrium behaviours is of saddle-type; i.e. system trajectories
tend to approach an equilibrium behaviour at least in one direction while they try to
escape from it in other directions. It is assumed that out of the large repertoire of
equilibrium behaviours one carn be chosen as the "desirable behaviour", which from
here onward will be referred to as the 'target". The ergodicity of chaotic systems on
their strange attractors guarantees that the system will sooner or later pass close enough
to any chosen target. The main idea of OGY control is to stabilise the otherwise
unstable target via small control parameter variations while the system is in a close
neighbourhood. The stabilisation is achieved by linear control techniques employing a
local linear model obtained from system data by least mean square error estimation.

First sufficient amount of system data is gathered and analyseri in order to choose the
"target". In order to provide a unified notation for discrete-time and continuous-time
systems, it is more adequate to work with a discrete-time representation of the
dynamics. In case of continuous-time systems the so-called Poincaré map (describing
the relationship between successive points, at which the system trajectory pierces the
Poincaré hyper-surface in a specified direction) will be employed. The chosen target
will be represented as an N-dimensional vector z*, either denoting an equilibrium point
of an N-dimensional discrete-time system or an equilibrium point of the Poincaré map
of an (N+1 )-dimensional continuous-time system.

Next another set ofsystem data is gathered from a close neighbourhood ofthe target
while steadily varying the control parameters in their allowable range in a random
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manner. These data can be represented as {z;, zi*r, pi} for i : 1,2, ..., L. Here, 7,i
denotes the n-dimensional state vector at the itn iteration in case an n-dimensional
discrete-time system, or the n-dimensional the vector representing the point where the
phase trajectory pierces the Poincaré surface for the i'n time in case of an (n+1)-
dimensional continuous-time system; p1 denotes the vector of control parameters applied
at the ith iteration and zi*r the phase point (or Poincaré surface piercing) reached at the
next iteration under the application of pi. A local linear model around z* can be
obtained from this data set by least mean square error estimation:

z i + 1  - z * :  A ( z i - z * ) +  B ( p i  - p n o . )

The controller waits until the system enters the OGY-region, a close neighbourhood
of z* where the local linear model is valid. Within that region Linear Control Theory is
employed to calculate pi which will stabilise z* as shown in eq. (2).

Pi = Pnon - b' g)'gg(r, - r*)

Since the control parameters are allowed to vary only within a limited range, pi is left
at its nominal value if eq. (2) gives a result outside this allowable range.

2.2. ANN-Based Chaos Control
In [Iplikci, 1999] Iplikci has demonstrated the possibility of employing ANNs for

OGY-type chaos control, i.e. local stabilisation of the chosen target using a neural
network. Here, instead of obtaining a local linear model as given in eq. (1), an ANN has
been trained by the data set lzi, zi+1, pi) for i : l,2, ..., L using port I for the present
state zi, port 2 for the next s'(.ate zi+1, and the output port for the control parameter vector
pi as shown in figure 1.a. In other words, an internal model is created in the neural
network, representing both the local system dynamics and its dependence on control
parameter variations.

After being trained, the ANN provides as an output the necessary control parameter
vectof pi \ /hen any present state zi within the OGY-region is fed to port I and z* (i.e.
the desired next state) is fed to port 2 (figure 1.b).

Training Phase Control Phase

Figure l. Training (a) and control (b) phases of the ANN used for chaos control.

( l )

(2)

ft)( a )
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For this purpose Radial Basis Function (RBF) based neural networks have been

preferred due to their high approximation capability. The architecture of an RBF-based

neural network with input x and output y is shown in figure 2. For the sake of simplicity

a single scalar output is considered. However, the scheme can easily be extended to a

configuration with many output nodes.

Figure 2. The architecture of an RBF-based neural network with input x : {xr, ' '., xr}
and output y.

The network uses a linear model.

F(" )=  I , * ,h" , ( " )

where w.'s are the weights and the h.'s are the Radial Basis Functions. Gaussian,
Cauchy and multi-quadric functions can be used as a Radial Basis Function. In this
work multi-quadric basis functions (equation 4) have been preferred because they
provide a slightly better approximation.

h ( x ) =

Here, c is the centre and r is the radius of the function. The training algorithm tries to
cover the data space with a sufficient number of radial basis functions at appropriate
loci (c's) and with the appropriate radii such that the predicted sum-squared error is
minimised. In that sense, Radial Basis Functions can be regarded as a smooth transition
between Fuzzy Logic and Artificial Neural Networks. Further details can be obtained
from Orr's web page [Orr, 1996].

3. OGY Control Using an Analytical Model Extracted from ANN
Although powerful modelling tools, artificial neural networks can be criticised for

not lending themselves to analytical calculations. However, Karacor in fKaracor,2t02f

(3)

(4)
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has demonstrated a possibility of using a neural network as intermediate modelling tool
to reach an analytical description of the latent model in it.

The study presented here is an OGY-control based on an analytical model, which is
extracted from a trained ANN, rather than obtained directly from system data on basis
of least mean square error criterion. The model can be extracted from a trained ANN by
means of Taylor's expansion about the equilibrium point and the nominal values of the
control parameter vector in the spirit of Lyapunov's linearisation method for non-linear
systems.

However, if desired, the model extracted from the ANN can be taken to any higher
order by considering the higher order terms in the Taylor's expansion, thus allowing a
model valid for a larger neighbourhood of the equilibrium point.
Let us assume that an RBF-based ANN has been trained by the system data {zi, zi*r, pi}
for i : 1, 2, ...,L gathered from a close neighbourhood of z* as shown in figure 3.

Figure 3. Training of a neural network from which an analyical system model will

An RBF-based ANN trained as given in figure 3 by data gathered from the close
neighbourhood of the target z* has the following representation for (2,*1) the jth
component of z1a1:

M

(r,*,I = | *;.h;. (r,,p,)
m = l

where \.(a) can be expressed as follows:

(s)

hr(2,,p,)=

Hence Taylor's expansion about z* ffid pno,n can be expressed as given in eq. (5).

;.hi^(z*,pn".)*[Ë*,,9*P L,=..fQ,-,*) e)

*llp, -p--ll'

f  + ôh,,  (z*,p,\  I
* 
Là 

* - -Ë: |,,=,'* -1fu' 
- Pno' )+ H 'o'r '

The first term on the right hand side of eq. (7) can be identified as the j'n component
of z*. Taking it to the left and generalising the equation for all j:1,...0 tr €g. (8) can be

1'- +llz, -c,-
(6)

rj.

(r,., ),
M=I*

m = I
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obtained, which results in the eq. (1) when higher order terms in (a - z*) and (pi - n.n')
are neglected.

z i+ t - z * :  l ( z r - z * ' )+  B (p i -pno - )4H .O .T .  (8 )

Comparing eqs. (7) and (8), the matrices in eq. (7) can be identified as follows:

2 { =

M

I* ' .

M

I*'.
m=l

/ \
dn r r \Z i ,Pno . , f  I- l -

ô 2 ,  
t , ' = z '

:

$*.  ôh,* (z* ,p, )  ,
# 

rm 
ô2,  

lp i=Po, -

.

$ *  ôh*(z* ,p ' )  ,
?t 

sm 
azt rP'=P*

and B - (e)
ôh".  (2,  ,pno.  )

lz ,=atazi

If a more precise approximation is desired higher order terms in eq. (7) can be
included where the associated matrices can be found taking higher derivatives, a
calculation not presanted for the sake ofbrevity.

After obtaining the local linear model the control action can be calculated from eq.
(2) as used in the original OGY method. If the resulting control parameter variation is
outside the allowable range, plis simply left at its nominal value.

4. Simulation Results
The different control approaches presented in sections 2 and 3 have been applied to

two discrete-time chaotic systems and one continuous-time system shown in Table l.

Table l. Chaotic systems used for comparing different local chaos control strategies.

Name System equations Coordinates of the chosen
target

Nominal values and
allowable variations of
the conûol parameters

Logistic map x n * t  = p x n ( l - x n ) x* :0.7436 p n o . = 3 . 9 + 0 . 1

Henon map
xn+r  =p*0 .3y "  - x l

Yn+ l  =  xn

x* = 0.8777

Y* = 0.8717

p , . * : 1 .37+0 .03

Lorenz system

i = o ( y - x )
j , = (px -y -xz )

2 = (xz -pz)

Periodic orbit piercing the
Poincaré surface tbrough
y = 8.4313 at
x* = 14.23 and z* = 39.80

ono-: 10 4 0.3
pno*:28 + 0.84
pno,n:2.67 + 0.08

Table 2 shows the model parameter matrices for the three chaotic systems considered
in this study. In case of discrete-time maps, also the true values of the model
parameters, which are analytically calculated from the system equations, are given for
the sake of comoarison.
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Table 2. Model parameters estimated by different methods for the three chaotic

Formoftheanalyt icalmodel: zi+1-z*: A(2,-"*)+ E (pi-p*J

System Method of estimation A B

Logistic
Map

Analytical (true value) -1.90008 0.1 90659
Least mean square est. 1.8862 0.177s
Exhacted fromANN 1 .8915 0. I 854

Henon
Map

Analyical (tnre value) f-r.za:+ o.ll
L  l  0 l t;l

Least mean square est. l-r.tazz o.zzotl
L r 0287 0.055U

I o.rzsa ]
L- 0.56831

Extracted from ANN [- r z:+s o.:oaz I
L 1.0007 -0.0003302_j I r.ooz: "l

10.000335s31

Lorenz
System

Least mean square est. [oots+ o.rasl
L 0.s5 2.07 J

Io.oooa
fo.oo r s

-o.oo: o.t+lzl
0.0091 0. l5 l5J

Extracted from ANN fo.os+r o.rarl
L 0.621 2.r l

[o.ooos -o.oor o.r:sl
fo.oor: o.ooar o.r:o]

In Table 3 the performances of various model and controller combinations are
compared indicating the following criteria:

Radius of training region: The radius of the phase space about the target where the
training data are gathered.

Maximum control region radius: The maximum radius of the neighbourhood about
the target where the OGY method can stabilise the target.

Training sample size: The number of the training patterns representing the input-
output relation of the system. This number defines the amount of data used to train the
neural network or to obtain the estimates of matrices in the linear model used in the
original OGY method. For the different control approaches, which make use of a neural
network, the same amount of data is used in order to allow a fair comparison. This
amount corresponds to the minimum number of training patterns needed to obtain a
reasonable performance from the OGY controller employing a linear analytical system
model extracted from the neural network. On the other hand, for a reasonable control
performance a much higher Érmount of training data is needed when estimating the
matrices by least mean square error criterion.

Training time: The total computation time (in seconds) spent during the data
gathering and training phases. For the original OGY conhol method this time consists
of data gathering only.

Average deviation from target: The root-mean-square deviation of the state(s) of
the system from the target, after it has been stabilised. These values indicate the control
quality.
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Average control effort: The root-mean-square deviation of the control parameters
from their nominal values dwing stabilisation of the target. It indicates the average
control effort needed to stabilise the target.

Average convergence time: The average time (in terms of number of iterations)
until the system converges to the target. For the sake of a fair comparison, the systems
have been started from the same initial condition when simulating different control
approaches.

The different control strategies, results of which are presented in Table 3 are as
follows:

Analytic model + OGY control (AM+OGY): ln this approach the local linear
model is calculated from known system equations and is used by the linear controller
given in eq. (2). Its results are given for the sake of comparison. For the Lorenz system
this item is missing because an analytical description of the corresponding Poincaré

Tnhle i Simrrletion resttlts for fhe fhree chnofic svstems

q)

o

(h

Criteria
AM

+
OGY conûol

Classical
OGY

contol

ANN
based
conûol

ANN +AM
+OGY
contol

àô
Èl

Radius of training region

Maximum control region radius

Training sample size

Training time

Average deviation from target

Average control effort

Average convergence trme

o.+s

0.0000298
0.000226

1 8

0.5
0.45

10,000
25

0.000455
0.0072

t76

0.5
0.45
250
63

0.00067
0.08
M I

0.5
0.48
2s0
32

0.0000342
0.000242

2 1

Radius of training region

Maximum control region radius

Training sample size

Training time

Average deviation from target

Average control effort

Average convergence time

1.76

0.0000509
0.000092r

65

0.5
1.55

10,000
22s

0.0044
0.0045

528

0.5
1 .50
1000
922

0.0054
0.072
553

0.5
1 .61
1000
391

0.000783
0.000932

486

o

N

o

Èl

Radius of training region

Maximum control region radius

Training sample size

Training time

Average deviation from target

Average control effort

Average convergence time

1,5
2.32

50,000
4263
0.056

0.0422
284

1 .5
2.20
3500
72r3
0.063
0.0463

292

1 .5
2.42
3500
5701
0.019
0.0157

122
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map cannot be obtained although we know the differential equations goveming the
continuous-time system.

Classical OGY: In this approach a local linear model is obtained from the training
data by least mean square error criterion and is used by the linear controller given in eq.
(2).

AlrlN-based control: Here a neural network trained with system data directly
provides the necessary control parameter variations.

Analytic model extracted from NN + OGY control (ANN+AM+OGY): This is
the novel approach presented in this paper. A linear system model is extracted from the
trained neural network by Taylor's expansion and is used by the linear controller as in
the classical OGY method.

Table 3 reveals the slight disadvantages of the ANN-based control as compared to
the classical OGY method in all respects except for the advantage in terms of the
amount of training daia needed. Furthermore, tables 2 arrrd,3 demonstrate the superiority
of the ANN+AM+OGY method over both other methods.

5. Discussion and Conclusion
The results obtained in this case study can be interpreted at various levels of

generalisation:
a) This study, on basis of the specific example of chaos control, demonstrates the

possibility of extracting analytical models from artificial neural networks.
Whether the simple method of Taylor's expansion can be used for extracting an
analytical model depends on the type of the problem. In the specific example of
OGY+ype chaos control Taylor's expansion provides a valid method because here a
local model around the target-state and the nominal control parameter values is
needed. In cases where such a condition is not valid, different methods may be
needed for exkacting analytic models from trained neural networks.
It should also be noted that not all types of artificial neural networks lend
themselves to Taylor's expansion. For example neural networks which use hard
non-linearities are not suitable because their derivatives are undefined at the point of
nonJinearity. Also recurrent and feedback type neural networks are not suitable for
Taylor's expansion.

b) The control quality depends both on the correctness of the model and the quality of
the controller. In that respect, the results obtained for different model/controller
combinations considered in this study are compared below:

The first thing that strikes one's attention in table 2 is the superiority of the
analytic model extracted from an ANN over the estimates obtained by least mean
square error criterion (this can at least be directly observed in case of the maps
because the true matrix values are given), although the former uses much less data
than the latter. This is a result of the high approximation and interpolation capability
of RBF-based neural networks as compared to the simple least mean squaxe error
approximation algorithm. The superiority of the control performance of
ANN+AM+OGY as compared to the classical OGY control is due to the accuracy
of the ANN+AM system model.
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On the other hand, the control superiority (particularly apparent in terms of

smaller "average deviation from target" and smaller "avetage control effort") of the

ANN+AM+OGY method over the ANN-based control is a less trivial result. One
may wonder why such a large difference in the control performance arises when in

both cases neural networks are used trained rvith the same data. In this case the
answer lies in the control function rather than the modelling. The ANN-based

controller consists of a neural network with the current state and the desired next
sate as its inputs and the control parameter (which will take the system to the desired
state at the next iteration) as its ouçut. The only'ùiay to use such a black box for

stabilising the taxget is to feed the target-state as the desired state. This is, however,
a rather primitive control approach that cannot make use of the theoretical
knowledge, which tells that it may not be always possible to take the system to the
target-state within one step. ln such cases the output of the neural network will be a
meaningless algorithmic artefact. As opposed to that, the OGY controller in the
ANN+AM+OGY approach exploits System and Conhol "Theory to produce
meaningful control inputs, which drive the system closer to the target at each
iterative step.

c) The following basic conclusions can be drawn from this analysis:
A modular structure where tasks at different hierarchical levels (in this case,

modelling is a task at a lower hierarchical level and control at a higher level) are
fulfilled by different parts is more efficient than a mono-block structure, which tries
to fulfil all tasks at the same time. This is due to the fact that in a modular structure
each part can be optimised for the particular task it is responsible for (in the case of
ANN+AM+OGY, an artificial neural network for efficient data interpolation and a
well-established analytic controller for stabilising the target).

Reduction of large amounts of raw data in terms of real system variables to a
smaller number of symbolic parameters can provide an efficient way of data
compression and data interpolation. This is what lies at the heart of neural networks,
which -after being trained by tens of thousands of data pattems- are characterised by
many (but definitely less than the amount of training data by orders of magnitude)
weighting coefficients (plus centres and radii of radial basis function in case of
RBF-based neural networks). This operation not only allows a huge data reduction
but also results in a transformation from real variables to symbolic variables.

Efficient representation ofknowledge gathered and refined from past experience
(in this case, Dynamic System Theory and Control Theory) can only be realised in a
highly symbolic manner (in this case, analytic descriptions of dynamic systems and
analyic descriptions of controllers, which guarantee stability). This operation results
in an even further data reduction (note the small number of paxameters
characterising a linear system model) and a transformation into more symbolic
variables.

Tasks, where the relevant information contained in large amounts of data have to
be efficiently combined with knowledge gained from past experience, require a
hierarchical structure as a modelling and computation tool. In such a system lower
level units have to handle and reduce large amounts data expressed in real variables
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into symbolic variables; whereas higher level units have to process symbolic results
from lower level units.

d) Although the presented results originate from a rather simplistic engineering
problem far from being representative even for the simplest task of the simplest
vertebrate, the logical conclusions drawn from them inspire a generalisation to
natural neural networks that make up the brains of higher vertebrates:

The modelling and control efficiency needed in face of the complex life tasks may
have created a selective pressure not only towards larger brains but also towards
more hierarchically organised brains. One of the main characteristics posed by the
life tasks is the necessity to combine reliable past knowledge with limited amounts
of up-to-date data. Past knowledge has to be represented in a highly compressed
symbolic manner for the sake of efficiency. In the technical example presented in
this paper this corresponds to the theoretical knowledge on system dynamics and
linear control, which is not integrated into the artificial neural network but is
provided by the operator.

A human being, if asked to perform a similar task, e.g. to model and control an
unknown system, would also make use of some theoretical knowledge represented
in a highly symbolic manner is stored in and retrieved from higher organisational
levels of the synaptic network. In the terminology of the technical example
presented in this study, it can be said that "the higher organisational levels of the
human brain use the lower levels as intermediate computational tools". The natural
neural network that makes up the human brain can be understood only in view of the
complex hierarchy it exhibits. Only in view of this fact can the seeming distance
between abstract and analytic thinking capacity of the human brain and its neural
network structure be bridged.

Keeping in mind the complex life tasks, which require an appropriate combination
of past knowledge with present data, which in return requires higher organisational
levels operating in terms of more symbolic variables, one can claim that the human
brain with its most symbolic mode of operation -analyic thinking- must have
emerged under this selective pressure.

It should, however, be noted that the technical example considered in this study is
too simplistic to account for a phenomenon that renders this selective pressure much
more severe; namely the circular dynamic relationship between the model, the
actions and the entities to be modelled (i.e. the self and the environment). The
constructed model of the self and the environment gives rise to actions, which
eventually alter both the self and the environment, and this circular relation
constitutes one of the major positive feedback mechanisms that drive the increase of
complexity [Karatay and Denizhan, 2000] both in the brains of higher vertebrates
and in the environment.
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