
In-Service Inspections of Multiple Systems
Under Availability Requirement

Konstantin N. Nechvalt), Nicholas A. Nechval2).Uldis Rozevskis2)
')Applied Mathematics Department, Transport and Telecommunication Institute

Lomonosov Street 1, LV-1019 Riga, Latvia
e-mail: konstan@tsi.lv

2Mathematical Statistics Departrnént, University of Lawia .
Raina Blvd 19, LV-1050 Rig4 Latvia

e-mail: nechval@junik.lv

Abstract
System failures are usually observed during regular maintenance or inspection and this
is especially the case fof systems in standby or storage, which is common.for safety
critical systems. A periodic inspection poticy is usually adopted. During the inspection,
a lot of information is gainsd about the status of the system. Such information should be
used in deciding upon the time for the next inspection. Hence sequential inspection is
more appropriate, especially when the aging property of the system is unknown, and has
to be estimated with the information from inspection. In this paper, a model is
developed and sequential inspection sb:ategies are studied in ûis situation. The focus is
on the case when there are multiple systems inspected at the same, but discrerc times.
We also do not assume a known distribution of the system lifetime, and the estimation
of that is incorporated into the analysis and decision-making. An availability criterion is
considered and numerical example is provided to illustrate the procedure.
Keywords: Multiple systems; Availability; In-service inspections.

I Introduction

A system can either be in an operational state or a down state. When the system is in
a down state, which represents the failure condition of the deteriorating process, this
event is named as a failure of the system. However, the state of the system may actually
be usually unknown unless it is inspected. This is typical for systems in storage and for
systems that can still perform a limited function after failure of some of its components.
Although continuous monitoring and inspection is possible; periodic or discrete time
inspection is usually employed, due to the cost and other practical constrictions. Here
the term of periodic inspection used does not necessarily mean that the system is
inspected after every fixed period of time regularly, but rather that the system is
inspected at some discrete points in time.

For systems for which failures are only detected at the time of inspection, it is
important to be able to determine the optimal time of inspection. Fewer inspections will
lead to lower availability upon demand, and frequent inspection will lead to higher cost.
when there is an availability requirement, the problem is usually to develop an
inspection policy that meets the availability requirements. The problem is formulated
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for periodic inspection to minimize the cost with respect to the time interval for
inspection (Cerone, 1993; Ito and Nakagawa,2000; Hariga, 1996; Vaurio, 1999). Most
of the optimal policies are derived based on average cost or reliability that are valid only
asymptotically. In general, the system reaching the limiting or steady-state, for example,
requires a long period of usage and usually it is not clear when its asymptotic results are
accurate enough.

Yang and Klutke (2000) studied some inspection schemes, in which they focused on
steady-state availabilities for several models under some inspection schemes. The
inspection policy defined is based on the availability of the system when it is required.
It is given as follows.

Suppose an inspection is carried out at time r, and'this shows that a down state (or
failure) of the system has not yet occurred. We now have to schedule the next
inspection. Let Ybe the random time to failure of the system. Then we schedule the next
inspection at time r > ,, where r satisfies

r r { I > r ; Y > t l = l - 0 .

Equation (l) says that the next inspection is scheduled so that, with probability 1-a, the
system is still working and free of a failure prior to inspection. Let Fs (y) be the
cumulalive distribution function of the time to failure, where dis a known parameter (in
general, vector). Then the inspection times (q, rz, ...) can be calculated recursively in
the following way. It follows from (l) that
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where [1r) = l- Fe(r), r0=0, 4("0) = I . lt can be shown that
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that is, in other words, the probability that the failure occurs in the time interval (ri,c;,r)
without failure at time ey is always assumed a.

It follows from (2) that

Fr(r,, ,1 = 1l - ùFu(r,), P-0.

With 16:0, rt, 12, ... can be calculated recursively from (4). So that:
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Fr( r , )  =  (1 -  a ) r ,  i  =1 ,2 ,3 , . . . ,

the time ri (i:l , 2, 3, ... ) is given bY

(5)

r ,  =  F ; t [ ( l  -  a ) i  f ,  i  =  1 ,2 ,3 , . . . .

Let Nbe the random number of inspections until the tbilure occurs' Then

Pr{N < j }  = Pr{Y S r i l  = Ft(r  1)

and

E{N} =lrer{ l r  = i }  =I . i  tPr{N > i - l } -Pr{N > 7} l

=Ëo* " ' i )=ËF, ( r ,1=a ' .

For example, if a=0.05 then, from (8), on average 20 inspections will be necessary.
Thus.

(6)

(7)

(8 )

q :  sup{r > 0: Pr{ l> t l  > l -al ,

r j= sup{t> rr .-r :Pr{I}  t ;Y> r4\ >l-a\ ,  p2.

(e)

(10 )

This inspection policy is named as "quantile-based inspection policy". It makes use of
the information about the remaining life that is inherent in the sequence of previous

irxpection.times. The value of l-a can be seen as "minimum availability required"
during the next period when the system was still operational at last inspection time.
However, it is assumed in (Yang and Klutke, 2000) that the distribution of system
lifetime is known and the policy is used for a single systeni, that is, only one item is
inspected. In many cases, there can be several similar systems operating simultaneously
on one site or under the same environment. The distribution of system lifetime, in most
cases, is also unknown.

Lam and Yeh (1994) discussed a sequential policy and compared it with some
continuous strategies based on a finite-state continuous-time Markov model; see also
(Yeh, 1997). Brint (2000) discussed the problem of sequential inspection sampling for
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maintained systern and presented a Bayesian formulation. Chelbi and Ait-Kadi (2000)
also considered some general inspection strategies. These papers all deal with the case
of a single system.

In this paper, we develop a sequential inspection policy for the case when there are a
number of systems on the site or in storage. The condition of the systems is inspected
and failed systems are replaced or repaired in such a way that they become as good as
new. The time to the next inspection is determined based on the results of previous
inspections. Furthennore, the system lifetime distributjon is not assumed to be knowrl
but incorporated into the analysis and decision-making. Availability criterion is
discussed and numerical example is provided to illustaîe the procedure.

2 In-Service Inspections of Multiple Systems

We assume that there are z iterns (or systems) in the field and they are inspected at
the same, but discrete times. The following assumptions are used: (i) the inspections are
carried out at times tt, 12, ...; and all m systems are inspected each time; (ii) failures are
observed only by inspectiono and replacement or perfect repair is carried out for failed
systems; (iii) the inspection action does not intervene with the system if failure is not
found; (iv) the inspection time and repair/replacement time are negligible; (r) the
lifetimes of all systems have the same distribution with cdf F6Q).

2.1 Complete Information About Fs(y)

Let us assume ûrat the parameter dis known and l-a is the required availability or
the probability that the system is still functioning (i.e., it is in an operational state). Let

"or, 
={f,if a faih.ne of ttre ftth system is detected

otherwise.

at the yth inçectioq 
' t )

When the reliability function Fr(r\ of the Èth system is known and there is only one

system t, then it follows from (4) that the time.to the next inspection is Âriry which is the
solution of

Fr(",,0r+ Àrr*r) = 11 - a)Fr@,rrr),,f20, (12)

assuming Yvk)= "': Yx*):0, where r;19 is the time of thelh inspection of the &th
system. To determine the time to the next inspection of all the z items (or systems) it
can be used the following criterion:
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Then the time of the next inspection of all the n systems is given by

t1+f tf\. (14)

In this case, every system in the fiéld satisfies the minimum availability not less than
l-a when the system is operational on the last inspection time.

It will be noted that the time of the first inspection of all the m systems, q, can be
found from

P r l m i n  Y r 2 t ' l = l - a ,' l < t<a  ^ (ls)

where )t* is a random variable representing a lifetime of the Èth system, Èe {1, ..., rn}.

2.2 Incomplete Informatiron About Fs (y)

' 
Let us assume that the parameter d is not known, but there is a sample of

observations X":(Xr, Xz, ..., X.) from Fs(x) as the resul8 of tests conducæd on the
similar systems. Let I/ be the random time to failure of the system and Fe(y\ = Fe(x)-
After the /h inspection at time f, the state of each system is observed and the state
vector is denoted by Yr:(I71ry,...,Yjot). We summarize the information as

X*J^:(X", yr, ..., y). (16)

Let l(*t: W(Yp,ri11,1,Xn+in) be an ancillary statistic (Nechval, 1982, 1984; Nechval et

al.,2000,2001a,2001b, 2002) whose distribution does not depend on fl where I/r is the
random time to failure of system k. The inspection times (q14, rz@), ...) for only one
system t can be calculated recursively on the basis ofrelation

pr{ y, > r,,,,,..:y,. > T,,,.,. xn+ Jn = xn* J* ) - 
Pr lYr > r i *uH;Xn* .t^ 

= xn*.i^ |
- ( ^  ' / + r r K , - ^  ' / r { r '  - -  ,  p f { y O > T 1 g r ; X r * i . = X r * i ^ \

(17)

w' ! : If(Yr, 11 -r 1r;Xdfl ,
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wk. = w(t iç,,1,r i-114rx"* 
i^), wr\*t = w(T i*t1t 1,T ix;1rxn*i'), (le)

Pr{W{ r.t;X' =x'}:1. In this case, for only one system È, the time to the next

inspection is Â1r; which is the solution of (17) assuming Yw: '.' : Yi&): 0 and
îi+r1r;:111*1*L11ry. To determine the time to the next inspection of all the la systems, it can
be used the followins criterion:

a, = lllila,,*,'

Then the time of the next inspection of all the nr systems is given by

4, = fY 
\!oy_Yç,X' ), 

w = t(tt,xn ).

tyr:ri+41, (21)

ln this case, every systeln in the field satisfies the minimum availability not less than
l-a when the system is operational on the last inspection time.

It will be noted that the time to the fint inspection, î10 cîrt be fbund from

P.{,?11, Y* > rr;X' - x" } = Pr {W > w;X' = x'} = (l - a), (22)

where

(20)

(23\

Example

We consider in this example the problem of estimating the time to the first inspection
(or warranty period) for a number of aircraft structure components, before which no
visually detectable cracks in materials occur, based on the results of previous waranty
period tests on the structure components in question. If in a fleet of zn aircraft there are
rz of the same individual structure cornponents, operating indepandently, the length of
time until the first visually.detectable crack of the minimum size s* initially fornred in
any of these components is of basic interest, and provides a measure of assurance
concerning the operation of the components in question. This leads to the consideration
of the following problem. Suppose we have'observations of times Xt, ..., X;, ..., Xn to
initiation ofthe visually detectable crack ofthe size a* as the results oftests conducted
on the components; suppose also that there are rn components of the same kind to be put
into future use, with times I!, ..., Yk, ...,I- to visually detectable crack initiation. Then
wewant tobeab le toes t imate ,on thebas iso fXr , . . . ,X i , . . . ,Xn , theshor tes t t ime l l l l
among the times Yt, ..., Yk, ..., Y.to initiation of the visually detectable crack of the size
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d. tn other words, it is desirable to construct lower simultaneous prediction limit (or
the time to the first inspection), 4, which is exceeded with probability l-a by
observations or functions of observations of future sample consisting of rr units. In this
example, the problem of estimatin9 Yo\, the smallest of rn observations from the
underlying distribution, based on an observed sample.of n observations from the same
distribution, is considered. A solution is proposed for constructing a lower simultaneous
prediction limit, 4, for lirl. The results have direct application in reliability theory,
where the time until the first failure in a group of rn items in service provides a measure
of assurance regarding the operation of the items.

Here we consider also the problem of sequential inspections. Afienrion is restricted to
invariant families of distributions. The technique used here emphasizes pivotal
quantities relevant for obtaining ancillary statistics. It is a special case of the method of
invariant embedding of sample statistics into a performance index (Nechval, 1982,
1984; Nechval et al., 2AOA, 200la,200lb, 2042) applicable whenever the statistical
problem is invariant under a group of transformations that acts transitively on the
parameter space (i.e. in problems where there is a unique best invariant procedure). The
analysis ofproblem considered here is easily seen to be invariant under location and
scale changes.

3.1 Data Model

Let Z":(Zc Zz, . .., Zn)be a random sample of observations

, _lnla,(r 1r,.,) / ai(r, -1 \1
L i - J .  i = l ( l \ n : È 1  .

",, 

- t i-tu)
(24)

from fatigue tests on a particular type of structural components of aircraft, where ai(r11i)
is the size of the crack which was detected at the time of flight hours q1;,1 in the ith
component. It is assurned that cracks start growing from the time the aircraft entered
service, i.e. rs=0, and a{ro(i)=a( ro) (an initial crack size) is approximately between 0.02
and 0.05 mm that was found through quantitative fractography tbr typical aircraft
metallic materials (Barter et al., 2005). Choosing a typical value for initial crack size
(e.g., 0.02 mm) is more conservative than choosing an extreme value (e.g., 0.05 mm).
This implies that if the lead cracks can be attributed to unusually large initiating
discontinuities then the available life increases.

Let us asisume that Zi, Vl=l(l)r, follows the Weibull distribution with the cumulative
distribution function

z r ) 0 ,

otherwise,
Fee)= 

{1, 
*0,_, z, t o)6f,
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where Ê(o,ô, the parameters oand ô(40, è0) are not known. For instance, consider
ttre data of fatigue tests on a particular type of structural components of aircraft IL-86
given in Table l. The data are for a complete sample of sizc n = 7.

Table l: The data of fatigue tests on a particular type
of structural components of aircraft IL-86 for a(ro)4.02 mm initial discontinuity

Component
i

Flight hours

1x104)
Tr{D

2.0

4.6

5.3

5.7

6.2

2.0

2.0

2.0

2.O

2.0

,5{.68 ( Sn-zr r-r-o-ss=0.8.

0.02 0.8689

0.02 0.80?925 i

| 0-742769

0.02 i  0.719558

0.02 i 0.667416

0.02 i 0.582933 i

6.4

3.1.1 Goodness-of-Fit Testtng

We assess the statistical significance of departures from the Weibull model by
performing crrpirical di$ribution fimction goofuess-oÊfit test. We use the ^9 statistic
(Kryr ffi I amhersoq 1977). For complete datasets. the S statistic is given by

ç (ln(2,,*r, /zo)'l

, -,o#n,\ Y' ) -" 
5lIln(2,,.', /2,,,))
fr(. Mi )

= 0.68, Q6)

The values of Miare given in Table 13 (Kapur and Lamberson,1977). The rejec'tion
region for the alevel of significance is {,F&;r-o}.ft" percentage points for.Sn;l-a wêrê
given by Kapur and Lamberson (1977). For this example,

f f 
ln(z,r*r, /zrrr)l

fil. Mi )
g(ln(zq+rr /rr,,)')

t  l -  |

f i tMi )
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Thus, there is not evidence to rule out the Weibull model.
It is well known (Nechval et al., 2003) that if I, ô aremaximum likelihood estimates

for â, ofrom a sample of size z, then the quantities

i - - 1 , 2 , . . . , n - 2 ,

form a set of n-2 functionally independent ancillary statistics.

3.2 Time to the First Inspection

Let us assume that we deal with a fleet of the m aircraft, which are entered service.
Then it can be shown that for the single structural component of each of the ln aircraft
with o(ro)e (0.02, 0.05) at the time r0=0, the first inspætion time (or warranry period),
4, is given by

(3 l)

(32)

w, =6rf+}
\ o )

(28)

- _lnfaî ta(rùl' '  -;;pt,lô

with w which satisfies

Pr { I i r l  >  r t ;Zn  =zn l  =Pr {W <w,Zn =z ' l  = l -  Pr { t / ' }w ,Zo =zn l : l -a ,

where  

w =g ln f  th lo* to ( ro ) r )
lo Yrt, )

is an ancilla$ statistic whose distribution does not depend on the unknorwn parameters ô
and o(Nechval et al., 2003), a# is the initial size of the visually detectable crack, Ilry is
the minimum time to initiation of this crack in the above components, ôand i are the
MLE's of a and â, respectively, and can be found (by a fixed point iteration) from
solution of

(2e)

(30)

(  ,  n  - 1 1 / a -
o= l l ) - r , ,  I

l n a '  I
\  t=t  . /

' = l[r". ",)[Ë,f )-' - ;Ë",1
r54
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F
t
I ,, Sequential Inspections

Let us suppose now that an inspection is carried out at time !, and this shows that the
visually detectable crack of the initial siz.e a* has not yet occurred. We now have to
schedule the next inspection. Then the inspection times can be calculated recursively as

. ( lrr1on lor(r,)l )t i+r = r i -,yr?_l 
ô, ̂ p@;6; ),

(34)

where adr) is the crack size which was found (say, througlr quantitative fractography)
at the time of flight hours a7 in the kth component, Ée {1, ..., m},

(35)

wj*, is determined from

Pt {Wfu < wk, *r;Zo* 
i^ = zn* i^\=@

Pr{Io > ri*iYr) rirZ'*t'

= (2 r , . . . ,2* j ^ ) , (37)

(38)to?) =rylp, ^ l(t)m, rr(r),

w! = 6 ,,rrf 
r r"t"o l<'i-')ll, i, = 6 *{ =t "[on'*tt'-'il],r  l  

[ . ô ,  Y 1 - r i t  
)  

'  
[ d ;  

r 1 - t i t  
)
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Yrlw!-r > 4*r;Z'* 
i' =zo*i'\

ôrand ârwhich are the MLE's of oand â, respectively, can be found (by a fixed point
iteration) from solution of

Yr {lf! > wki ;Zn*i^ = z"*i'l

* .  
^ " . i r ' t i n (  , ; tà , \ (  L  n+ im -  t  ' 1 - (n+rn)

t  
n+ im-2" " " t  L t " 'Y t ' " t '1 " ' * i  

*  Le '6 i t " | " 'a i )1  db
_ 0  \  t = l  )

-f  
- . ,-  -r 'd r '  

*#n(' , '  
a)( '{4n r;-,  In(r,  r  ; .  ) ' )-( 

n* r-)

) s n * r n - ! e  
i = r  

l I  
d s

0  \ , = t  )

( n+ im \l 
'di

ô,=l-J .  I  r ! ,  1'  (n+ imfr '  )

- l -  I
I n+im I

n+im f,l I

\s' 
* i ̂  - z e' 

6 in'{n(' i r a i

t,=l(T,t *.,XT ,!,)'
l-\ 

t=t '/\ /

e" ' f* ,  * ' i " " ' , rn i ' , 'o,) l  
" ' , "

i= l  l

-f 
rn * i ̂  -z r" 

ô 

"'{"(' 
" 

u )('i",i', rn(",, 
", )'1 

-t "* "o' r,
. ,  l H  I
0  \ , - l  t

t40)

.  (41)

(42)

(43)

(44)

nla# tarlr
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4 Conclusions

In this paper the model in (Yang and Klutke, 2000) is extended ùo the case of
multiple systems. Under availability requirement, sequential inspections are obtained to
ensure that the availability is at the required level. Sequential inspections are important,
especially during the set-up and installation stage. Frcquent inspcction leads to a high
cost and infrequent inspection will lead to low availability of the system upon demand.
Although the cost might be an issue in this type of analysis, the focus here is to meet the
availability requirement with an appropriate time to next inspection.

The sequential inspection procedure and decision making procedure studied in this
paper allows an appropriate level of availability to be reached with minimum cost as
well. Furthermore, we do not assume the distribution of system lifetime to be
completely known which is usually the case. The information from the inspection can
be used to determine the parameters of system lifetime disribution. Hence. such a
combined estimation and decision-making analysis is important and useful in practice.

Although the procedure proposed in this paper can be implemented easily, there are
several inæresting questioos tlrat could be raised- Since the estirntion for parameters of
the lifetime distribution is required at the beginning, one could investigate different
estimation methods and also investigate the effect of the estimation error. A common
assumption is the independence of the failures and the case of dependence is of
inæresting. Modelling of the dependence is generally difficult, as specific models
describing the degree ofdependence will be needed.
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