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Abstract
We first consider the information flow and processing that is involved in perception
considering the requirgments necessary to explain the passage of elementary mappings
to object representation and cognitive characteiz.ation of representations. The
relationships between procedural implicit cognitive processes, and on the other hand,
linguistic declarative processes is discussed. A reference to Marcus's results is made,
taking into account experimental data and theoretical proposals, involving concepts of
Quantum Chemisûry made by our group.
Kelvords: Valence, Quantum Chemistry, Cognition, Multilayer Perceptrons

I Intmduction

The limits on multilayer perceptron accounts can tell us something, which is how to
make better models. The limits on multilayer perceptrons motivate three basic
components of cognition: representations of relationships between variables, structured
representations, and representations of individuals that are distinct from representations
ofkinds.

There is an asymmetry inherent in the research stratery of starting with simpler
models as a means to discover what fundamental elements are really needed: while
negative arguments can be decisive in ruling out particular classes of elements, positive
arguments can never be decisive. At best, positive arguments can merely be what
philosophers politely call nondemonstrative.

What this asymmetry means here is that while u/e can be confident that certain
classes of models simply cannot capture a certain class of cognitive and linguistic
phenomena, we can never be sure of the altemative.

We will not prove that the mind/brain implements symbol-manipulation. We will
describe how symbol-manipulation could support the relevant cognitive phenomena. All
that we can do is to provisionally accept symbol-manipulation as providing the best
explanation.

First we need to figure out how components frurdamental to make symbol-
manipulation are implemented in neural hardware. It has been argued that physically
localizable registers, implemented as inter or intracellular circuits with feedback, might
serve as a subsbate for the storage of values of variables (Marcus, 2001).
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Second, even if the components of symbol-manipulation do play a real and robust
role in our mental life, it is unlikely that they exhaust the set of components for
copition. It seems likely that many other basic computational elements play important
roles in cognition. For instance it seems quite likely that the representational formats
for encoding images are distinct from the sorts of representational formats that support
the encoding of propositions.

Differences between the cognition of humans and other primates may lie not so much
in the basic-level components but in how those components are interconnected, in their
modular architecture. To understand human cognition, we need to understand how basic
computational components are integrated into more complex devices- such as parsers,
language acquisition devices, modules for recognizing objects, and so forth- and we
need to understand how our knowledge is structured, what sorts of basic conceptual
distinctions we represent, and so forth.

To take but one example, a system that can represent nrles and structured
representations has the in-principle ability to represent abstract principles that rnight
constrain the range of variation in the world's languages, but the computational
components do not by themselves tell us which among infinitely many possible
linguistic constraints are actually implemented in the human mind.

If we know what the basic computational elements are, we are in a better position to
urderstand how cognition is realized in the underlying neural substrate. It is here that
connectionism has its greatest potential to help us to undentand how basic
computational elements work and interact with each other.

To date, progress in cognitive neuroscience has been hindered by the enormity ofthe
gap btween our understanding of some low-level properties of the brain on the one
hand, and of some very high-level properties of the mind on the other. As we come to
identi$ and attaining a better understanding of the intermediateJevel building blocks, it
may become easier to relate neuroscience to cognition.

2 Our Contribution

2.1 Introduction

There are two specific problems that we have to address when we try to make sense
ofthe way our sensory and nervous system machinery construct a representation both of
the extemal environment and the potentially cognitive record of events. Our formal
systems for dealing with neural computation are represented by logic systems, systems
of des and inference, script garrunars, case grammars, etc.

One of the major neurophysiological achievements of the )O( century was the
verification of the concept of feature detectors in the frog by Letfvin, Maturana, Pitts
and McCulloch (1959) and the discovery by Hubell and Wiesel (1963) of simple,
complex and hypercomplex visual cells, as well as the identifrcation by Koch and Crick
(2000) ofsubgroups ofactivated cells during the pendular alternating representations of
Necker cubes or altemating gratings in area V4.
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Other examples refer to the abstract representation for instance of visual responses to
doghood or else cathood in the Infero Temporal Cortex and in the Frontal Cortex.

If we ask ourselves how such a representation can be attained by a sensory system
like the visual system, we veriff that there is a first level of point to point mapping of
the external space into Retina and at a second level, a function space representation
level as it occurs with Hubel and Wizel feature detectors or the so called bug detectors
of Lettvin, Maturana, Pitts and McCulloch (1959).

It can be shown that an abstract not semantically signifrcant representation of what
later on will be identified as objects can be built using as components of the
representation, the so called geons (Simôes da Fonseca, 1999). If we ask ourselves a
question about the meaning of those representations in terms of linguistic declarative
statements, the answer, in most cases, will be that at this level all those identifiable
components of the representation have no meaning- and nevertheless these meaningless
representations give birth to meaningful representations of objects.

In other words, at the first level we have the representation of individual or singular
components of stimuli, at a second level we have identified partial invariants we call
features and at a third level we have the assembling of these elementary components as
complex relational ensembles.

At this point begins the semantic interpretation of the symbolic representations which
were constructed in this visual domain. We can speak at this level for instance of visual
meaning or auditory meaning or else somato sensory meaning that remains at a
procedural nondeclarative latent unconscious knowledge.

A task of building a visual meaning is comparable to the construction of a dictionary
from a foreign langrrage into the native language of the user. The elements of the
relevant symbolic components of the representations are thenftxed in memory through
learning processes and is rendered accessible to further uses and generalized to a
manifold of distinct adaptive subsystems. Finally a second dictionary integrates the
psychological representations and computations at the service of social relationship
schemata.

Our claim is that in most of the brain processes, if we ask during a meaningful task
what is being represented and processed, the answer will be nonverbally representable
symbols of distinct systems of invariants- much as Picasso representations of a person
produce a porbait of peculiarly assembled and placed particular distortions of
components of faces and bodies which nevertheless do not loose their linguistic
declarative meaning.

So, besides ofthe problem ofhow knowledge architecture can be represented as a
semantic network or else by a representation with components in the frequency domain,
or else by geometric representations and still Treelets representations (Marcus, 2001),
the truth is that no veri/icotion will be feasràle unless we find the abstract concepts that
are the correlates of the symbols and relationships implemented by the CNS.

So we can divide our research in four distinct domains: 1) the domain of nonverbal
but nevertheless operative components of knowledge architectures that in some measure
will give rise to semantic systems; 2) systems of symbols; 3) intermodality coordinate
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transformation systems; 4) individual representations and concept representations as
classes of equivalence.

2.2 Cognitive Competence with or without Conscious Awareness

It is known since the pioneering work of Helmholtz (1954) that percuting an object,
for instance a table, with a metallic object or else with a book and so producing two
different sounds, if we ask a listener which of the two sounds was more acute. the
subject will immediately answer that it was the first one produced by the metallic
object. He does so in a completely qutomstic manner that does not require any
conscious judgement.

Helmholtz called this phenomenon unconscious inference.
Pavlov himself referred to conditioned responses as being the result of unconscious

inference.
[a the forties of the )O( century, Leeper made a very competent revision of a class of

phenomena that express what he denoted as unconscious inference. This kind of
problem appears immediately and in a variety of forms if we make the introspection of
our voluntary acts. Namely, if we want to grasp a book on a table that is at a distance
that requires the execution of a certain number of steps, we may clearly formulate our
intention and proceed performing the complex behaviour that leads to the attainment of
the goal.

At first sight it seems trivial, but it isn't.
First we must formulate a conscious plan of action with the orientation of the eyes,

we must leave the chair on which we are seated, stand up, make a detour around the
table, walk a small distance, approach with the right hand, in general, the book, under
the control of the eyes, grasp it the right way adapting the tension of the muscles of our
fingers to the weight we predicted and finally produce the utterance "I got it!".

Let we consider this situation in some more detail: - what is initially in our conscious
experience is the perception of the book, the place on which it lies, the awareness of the
position on which rile ane and of our intention of grasping the book.

In no moment the clear consciousness of our intention is accompanied by any
canscious awareness of any subjective lmowledge of any one of the details of the plans
and of any one of the movements we must execute.

Nevertheless this simple behaviour requires in a summarised form that we orient our
eyes adequately all along this behaviour; to move from our initial place we must
coordinate in an exact manner the muscles of our inferior member as well as muscles
around spinal column, of our abdomen and still we must maintain an adequate position
of our neck and head. To make these acts in a true conscious form and under a true
voluntary control, we should take all these decisions in q conscious way,but that is not
the case.

As a matter of fact an unconsciaus, procedural translation is capable of at[aining a
complete syntactic translation of our cognition into a 'machine language' understanding
of our intention. Paradoxically what gives sense to our conscious experience is art
unconscious experience that is not accessible for us.
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It does it so in an extraordinarily competent form * that is, it solves what
philosophers call the mind-body problem.

The picture is still not complete because first our position in space must be evaluated
by Parietal Area 5, these data must be coordinated with visual information in Parietal
AreaT which coordinates also the information it receives from Visual Frontal Area.

All this information is sent to the Pre-Motor Area and the Supplementary Motor Area
that plan the coordinations involved in the action.

This information is sent to the Putamen Nucleus whose neurons are desinhibited.
Thereafter they inhibit the neurons of the Globus Pallidus.

ln consequence, the cells in the Dorsal Lateral Nucleus of the Thalamus are
deshinibited and give permission to start action and the Motor Area enters in action and
sends the commands for movement that still \rrill be coordinated by Cerebellum and
finally by Brainstem and the Spinal Cord.

l,et us stop here and reflect on the Neurocomputational requirements of the
translation of our Intention\nto Behsviour that leads to the achievement of the Goal we
did choose.

Again we must putatively admit that an Unconscious System made all the choices
about possible Trajectories of our Body wlttch implies a complex ensemble of
transformations from the visual and somatic mappings together with motor mappings to
render available the necessary information to the Frontal Cortex and in particular to its
Fxecutive Agencies.

This is the true syntactic and semantic meaning of producing a plan and executing it.
Our acceptance of the adequacy of the plan during its performance tlre;t expresses itself
in not rraking any correction is accessible at the level of Conscious Awmeness, btfi
what justifies this Conscious Experience is not any other set of Conscious Experiences.

Rather an Unconscious Experience gives rise, content and meaning to ttre Conscious
Experience. The final satisfaction of grasping the book will result from the reduction of
drive that is consequence of fulfilling the initial motivation.

It is accompanied by some fonn of subjective evaluation that again is produced by
some components ofthe Limbic and Neocortex systems.

The moral of this story is that our problem in Neurocomputation is not that we don't
know the mechanisms and processes but rather we don't hove the tdeas necessary to
understand what is being compuæd.

The real problem is that \ile are lacking the understanding of the architecture of
lonwledge tlrat is submitted to Neurocomputational procesæs.

lVe know nevertheless that a first rank tennis player like Agassiz has no possibility
ofdeciding his hits using verbal declarative processes and perhaps he even does not see
the ball when he beets it.

If we think about extraordinary animal performances like the possibility that pigeons
possess for forming a class of equivalence with all landscape that have trees and
distinguishing neatly such stimuli from landscapes without trees it is reasonable to
conclude they behave according with nondeclarative but nevertheless cognitive
operations.
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This makes us to retum to our argument. We may putatively admit that the two
cognitive systems, the verbal declarstive arrd the procedural implicit coexist in humans,
the verbal declarative being philogeneticaly more advanced and differentiated.

The bulk of the question ùout consciousness would need, to be answered, some
knowledge about what implicit processes do that declarstive verbal processes cannot
do.

We know furthermore that they work together and relevant interactions occur during
concept formation, planning, commands of execution and control processes along the
execution ofthe successive stages ofan intentional plan.

A promising hypothesis would be that for most of human actions, thoughts and
feelings, work memory would take care of most of the interactions and would be
responsible for most conscious experiences.

If we look into philosophical, mathematical and artistical cognitive processes, a
strong argument in favour of this hypothesis is found 

'tnthe 
processes of mental training

of athletes of high competition who train hours a day thinking and imagining the
complete sequence of movements they would perform if they were competing. They
don't make any move and solely imagine it, and results prove thatpure imagination is
transloted into better command, control and strength (Jeannerod 1997, Hall and
Schmidt, 1995, Orlick, 1986).

Psychiatric patients may be trained the same way to enhance the quality of their
performances either professional, interpersonal or motivational. They succeed better in
controlling distractors, environmental variations, social interferences and many sorts of
interference thatwould reduce,without this mental training, their efficiency.

23 What to do?

Next we summarise some of the results that Marcus (2001) has obtained using a
multilayer perceptron approach that are in some way a first step towards a new approach
to Neuroscience and Cognitive Science.

3 Symbolic Processing versus Connectionism

3.1 Localist and Distributed Representations

Some input and output representations are localist and others are distributed. In
localist representations each input node corresponds to a specific word or concept. For
example in Elman's (1990, 1991, 1993) syntax model, each input unit corresponds to a
particular word and also each output unit corresponds to a particular word.

Other localist representational schemes include those in which a given node
corresponds to a particular location in a retina like visrlal array (Munakata, McClelland,
Johnson and Siegler, 1997).

In distributed representations any particular input is encoded by means of a set of
simultaneously activated nodes, each of which can participate in the encoding of rnore
than one distinct input. For example in a model of the inflection of the English past
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tense proposed by Hare, Elman and Daugherty (1995), input features correspond to
speech segments in particular positions: 14 input nodes correspond to 14 possible onsets
(beginnings of syllables), six input nodes conespond to six possible instantiations of the
nucleus (middles of syllables), and 18 input nodes correspond to 18 possible codas
(ends of syllables). The word bid would be represented by the simultaneous activation
of 3 nodes corresponding to ô in the initial position, i in the nucleus position, and d in
the coda position. Each of those nodes would also participate in the encoding of other
inputs.

In some models input nodes do not correspond to anything obviously meaningfttl, for
example consider each node as the digit of a numerical input in some base.

3.2 Multilayer Perceptrons and Synbol-Manipulation

The vast majority of the connectionist models that have been used in discussions of
cognitive science are multilayer perceptrons, either feedforward or simple recurrent
networlrs that have the advantage of the learning capability about sequences of elements
presented over time.

Among the many domains in which such models have been used are the acquisition
of linguistic inflection (e.g., Rumelhart and McClelland, 1986a), the acquisition of
grammatical knowledge (Elman, 1990), the development of object pennanence
(Mareschal, Plunkett and Harris, 1995; Munakata" McClelland, Johnson and Siegler,
1997), categoization (Gluck and Bower, 1988; Plunkett, Sinh4 l|dâfier and Strandsby,
1992: Quinn and Johnson, 1996), etc.

4 How Multiluyer Perceptrons Appeared in Discussions of Cognitive
Architecture

The idea tbat connectionist networks might offer an alternative to synbol-
manipulation started to become prominent with the work of J. A. Anderson and Hinton
(1981). This idea became even more prominent in 1986 with the publication of an
inlluential paper by Rumelhan and McClelland (1986a). Rumelhart and McClelland
presented a two-layer perceptron that captures certain aspects ofchildren's acquisition
of the English past tense. Similarln Bates and Elman (1993) suggest that their particular
connectionist approach "runs directly counter to the tendency in traditional cognitive
and linguistic research to seek lhe rule'or 'the grammar'that underlies a set of
behavioural regularities". And Seidenberg(l997) writes that the kind of network he
advocates "incorporates a novel form of knowledge representation that provides an
alternative to equating Imowledge of a language with a grammar. Such networks do not
dir e ctly incorporate or implement tr aditional grammar s" .

Still, although such claims have received a great deal of attention, not everyone who
advocates multilayer perceptrons denies that rymbol manipulation plrys a role in
cognition. A weaker but commonly adopted view holds that srrtîbol manipulation exists
but plays a relatively small role in cognition (Touretzky and Hinton, 1988).

129



5 Theoretical Considerations for the Elimination of Svmbol
Manipulation

One reason that multilayer perceptrons seem especially attractive is that they are
"more compatible than symbolic models with what we know of the nervous system"
(Bechtel and Abrahamsen, l99l). Nodes are loosely modeled on neurons, and the
connections between nodes are loosely modeled on synapses. Conversely, symbol
manipulation models do not, on their surface, Iook much lilæ brains, and so it is natural
to think of multilayer perceptrons as perhaps berng more fruitful wrys of understanding
the connection between brain and cognition.

A different reason for favoring multilayer perceptrons is that they have been shown
to be able to represent avery broad range offunctions. For virtually any given function
there exists some multilayer perceptron with some configuration of nodes and weights
that approximate it (Hadley, 2000).

Still others favor multilayer perceptrons because they appear to require relatively
little in the wry of innate structure. For researchers drawn to views in which a child
enters the world with relatively little initial structure, multilayer perceptrons offer a
way of moking their view computotionally explicit.

Multilayer perceptrons are also appealing because of their intrinsic ability to leam
(Bates and Elman, 1993) and because of their ability to gracefully degrade: they can
tolerate limited amounts of noise or damage without dramatic breakdowns (Rumelhart
and McClelland, I 986b).

Since multilayer perceptrons have context-independent representations ofcategories
we may count them as having symbols. In this sense we may say that a multilayer
perceptron is a symbol manipulation system. But the important question that we will
address next is whether the mind is a system that represents variables, operations over
variables, structured representations, and a distinction between kinds and individuals.

6 Relations Between Variables

Although it seems clear enough that we can manipulate algebraic rules in seriol,
deliberate reasoning, not everybody agrees that abstract relationships between variables
play an important role in other aspects of langlage and cognition. For example,
Rumelhart and McClelland's (1986a) two layer perceptron was an attempt to explain
how children might acquire the past tense of English without using anything like an
explicit rule.

What we want to do here is to clarifu the relqtionship berween multilayer
perceptrons and devices that perform operations over vqriables. A befter understanding
of that relationship will help clarify whether the mind does in fact malæ use of
operations over vqriables and also clariff how such operations can be implemented in a
neural substrate.

The distinction between encoding a variable with a single bucket and encoding a
variable with a set of buckets is helpful because the relationship between multilayer
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perceptrons and operations over variables can be understood in similar terms. The læy
question is whether a given input variable in a particular network is encoded using one
node or a set ofnodes.

This difference - in whether a particular variable is encoded by one node or by many
nodes - is not the same as the difference between localist and distributed
representations. While all models that use distributed representations allocate more than
one variable per node, it is nat the case that all localist models allocate a single node
per variable. In Elman's sentence prediction model the input to the model is a single
variable that we might think of as current word. Although any given instantiation of that
variable (say, cat) will activate only a single node, every input node can potentially
indicate an instantiation of the variable current word. For example, the node for dog
might not be active at this moment, but it might be active during the presentation of
another sentence. Elman's sentence prediction model is thus an example of a localist
model that allocates multiple nodes to a single input variable.

We are now ready to consider the relation between multilayer perceptrons and
systems that represent and generalize operations over variables. We argue neither that
multilayer perceptrons cannot represent abstract relationships between variables nor
that they mast represent abstract relationships between variables. Simple claims like
"Multilayer perceptrons cannot represent rules" or "Multilayer perceptrons always
represent 'concealed' nrles" simply are not correct. The real situation is more complex.

7 Models that Allocate one Node to Each Variable

Models that allocate a single node to e.ach input variable behave very differently
from models that allocate more than one node to each input variable. Models that
allocate a single node to each input variable are (with some caveats) simpler than
models that allocate multiple nodes to each variable. One node per variable model can
only represent universally quantified one-to-one mappings (UQOTOM.It follows that
all that a learning algorithm can do is choose between one UQOTOM and another. Sucft
models cûnnot learn arbitrary mappings. For example they cannot learn to map an
irput number that speciJies the alphabetical order of a person in a phonebook to an
output that specifies that person's telephone number. ln this way they provide a
candidate hypothesis for how operations over variables can be implemented in a neural
substrste and not for a mentol architecture that eliminates the representation of abstract
relationships between variabl e s.

I Models that Allocate More than One Node per Variable

Models that allocate more than one node per variable tao can represent UQOTOM,
but they do not have to. When such a network represents identity or some other
UQOTOM, it represents an abstract relationship between variables, which is to say that
such a network implements an algebraic rule.Models that allocate asingle node to each
variable only can represent abstract relationships between variables, whereas models
that allocate multiple nodes to each variable sometimes represent abstract relationships
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between variables and sometimes do not: what they represent is afimction of what their
connection weights are. ln these latter perceptrons some connection weights represent
UQOTOM, others represent many to one mappings, and still others canrepresent purely
arbitrary mappings. In this way multilryer perceptrons thqt allocate more than one
node to each variable are quite flexible.

One might ask whether this flexibility suggests that multiple-nodes-per-vmiable
multilayer perceptrons are the best way of implementing abstract relationships between
variables in aneural-lilæ substrate. What we suggest next is that their flexibility is both
an asset and a liabilig and this liability justifu a search for altemative ways in which
abstract relationships between variables can be implemented in a neural subshate.

The flexibility in what multiple nodes per variable models can represent leads to a
flexibility in what they can leam: they can learn UQOTOMs and they can learn
arbitrary mappings. But what they learn depends on the nature of the learning
algorithm. The learning algorithm most commonly used, backpropagation, does not
allocate special status to UQOTOMs. Instead a many nodes per variable multilayer
perceptron that is trained by backpropagation can leam a UQOTOM, such as identity,
multiplication, or concatenatiory only if it sees that UQOTOM illustratedwith respect to
each possible input and output node.

Many nodes per variable multilayer perceptrons that are trained by baclqropagation
can generalize one-to-one mappings within the training space, but assuming thot the
inputs are binary, they cannot generalize one to one mappings outside the training
space.For example (Marcus, 1998c) found that if his MLP is trained only on inputs
with a rightmost digit af 0, it will not generalize identity to inputs with o rightmost digit
of I. Insteail. whether the rightmost digit is a I or a 0, the model always retums an
output in which the rightmost digit is 0. For example, given the input 1l11, the model
generally retums 1110, an inference that is mathematically justifiable but totally
different from what humans typically do.

It can be shown (Marcus, 2001) tttat arry many-nodes-per-variable multilayer
perceptron that are trained by backpropagation cannot generalize one-to-one mappings
between nodes. This is because the learning that results from bacforopagation is, in an
important sense, local.This localism has the consequence that if a model is exposed to a
simple UQOTOM relationship for some subset of the inputs tlnt leaves same nodes
untrained, as in Elman's (1990,1991,1993) syntax model, in which each input unit
corresponds to aparticular word and also each output anil correspondsto aparticular
word.

A localist algorithm is a liability only if it is used to capture phenomena in which an
organism can freely generalize.In cases where organisms cannot freely generalize, it is
possible that localist algorithms may be appropriate. But in some cases it appears that
humans can freely genenlizn from restricted data and in these cases many nodes per
variable multilayer perceptrons that are hained by baclEropagation are inappropriate.
We point out this fact because the literature on connectionist models of cognitive
science is filled with distributed multilayer perceptron models that are trained by
backpropagatioru and many of those models are aimed at accounting for aspects of
mental life in which humans do appear to be able to freely generalize from incomplete
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input data. Humans can freely generalize one to one mappings but distributed
multilayer perceptlons that are trained with localist learning algorithms cannot. For
these cases we must seek altemative models.

9 Alternative Models that Generalize lrom Restricted Data

In general, what is required is a system that has.five properties. First the system must
have a way to distinguish variables from instances. Second the system must have a way
to represent abstract relationships between variables like an equation. Third the system
must have a way to bind a particular instance to a given variable. Fourth the system
must have a way to apply operations to arbitrary instances of variables. Finally the
system must have a way to extract relationships between variables on the basis of
training examples.

9.1 Conjunctive Coding

In MLPs tbe cunent instantiation of a given variable is indicated by a pattern of
activity. There are a number of other possible ways to indicate tJlre binding between a
variable and its current instance. One possibility is to devote specific nodes to
particular combinations of a variable and an instance.

It seems likely that cor{unctive coding plays some role in our mental life. For
example, experiments with single-cell recordings by Funashi et al(1993) have indicated
that certain neurons are most strongly activated when a particular object appears in a
particular position. We may assume that these neurons conjunctively encode
combinations of objects in particular positions.

But the brain must rely on other techniques for variable binding as well. Conjunctive
codes do not naturally allow for the representation of binding between a variable and a
novel instance. Moreover, conjunctive encoding schemes may require an unrealistically
large number of nodes, proportional to the number of variables times the number of
possible instances.

92 Tensor Products

A more general, more powerful way of doing codunctive binding is the tensor
product (Smolensky, 1990). A tensor product is a way of representing a binding
between a variable and an instance. A tensor product is not by itself a way of
representing a relationship between variables or a way of applying operations to
variables. Further machinery would be required to represent or extend relationships
between variables. We do not discuss such machinery here but instead focus only on
how tensor products represent bindings between variables and instances.

In the tensor product approach, each possible instance and each possible variable is
represented by a vector. A particular binding between a particular variable and a
particular instance is represented by applying a process analogous to multiplication. The
resulting combination, a tensor product,is avector of greater dimensionality.
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One way in which tensor products differ from the simple conjunctive scheme is in
the role of a given node. ln the conjunctive scheme each node is dedicated to the
representation of a single particular binding. ln contrast in the tensor product scheme,
every node participates in every binding.

The tensor product scheme has two fundamental advantages. First, it is potentially
more efficient. The simple conjunctive scheme requires i*v nodes, where i is the
number of instances and v is the number of variables. The tensor product scheme
requires a*ô nodes, where a is the length of the vector encoding the instance and â the
length of the vector encoding the variable. For example, if there are 128 instances and 4
variables, the tensor product scheme is considerably more efficient requiring 7 + 2 +
14:23nodes, 7 nodes to represent the instance (in binary code we have 2'=128 possible
combinations), 2 to represent the variable and 14:7*2 to represent the possible
combinations of the two. The simple conjunctive scheme requires 128*4:512 nodes.
Second, the tensor product scheme can more readily cope with the addition of new
instances. Assuming that the new instance can simply be assigrred a new vector,
representing a binding containing that instance is simply a matter of plugging a new
vector into the preexisting tensor product machinery. Nonetheless, despite these
advantages, we think that tensor products are not plausible as an account of how we
represent recursively structured representations.

93 Registers

A limitation of the binding schemes discussed so far is that none provides a way of
storing a binding, they are all transitory and last while a certain input is constant. One
obvious way to implement ttis memory is to use devices that have two or more stable
states; digital computers use memories with lwo stable states (0,1). If registers are used
in the BrairU they might be bistable or have more than two stable states; we are not
aware ofany evidence that directly bears on this question.

We agree with Marcus(2001) that registers may be central to human cognition.
Trehub(1991) proposed that autaptic cells- cells that feed back into themselves-could
serve urs rapidly updatable bistable devices. A related proposal comes from
Calvin(1996), who proposed a set of hexagonal self-excitatory cell assemblies that
could serve as registers.

Although MLPs do not provide for registers, it is an easy matter to construct bistable
registers out of nodes and connections. AU that is needed is a single node that feeds
back into itself. If the input is 0, the output tends to go to 0; if the input is l, the output
tends to go to l. If the input is 0.5, which we can think of as the absence of a write-to-
memory operation, the output tends to remain unchanged. Once the input is taken away,
the model tends to remain stable at one or another attractor poinl (0 or l). In this way
we may use the self-feeding node as a memory component within a more structured
network.

Although it is often assumed that knowledge is stored in terms of changes in synaptic
connection weights, it is logically possible that knowledge is stored within cells. For

134



I
example the reciprocal modulation of ion channels could provide an intracellular basis
for registers.

Registerso however they are implemented, can provide a basis not only for variable
binding but also, more generally, for the kinds of memory in which we leam things on a
single nial. Such rapidly updatable memory clearly plays an important role throughout
our mental life. Whatever rapidly updatable neural circuitry supports these kinds of
everyday experiences could also be used to support regisûers that store instances of
variables.

9.4 Temporal Synchrony

Although that at least some registers will be defined in terms of physically isolable
parts of the brain (cells, circuits, or subcell assemblies), several other possibilities have
been proposed in the literature. Most prominent among these altemative possibilities is
temporal synchrony, also known as dynamic binding (Shastri and Ajjanagadde, 1993),
which we can think as a framework for representing registers in time rather than in
space.

ln the temporal synchrony framework, both instances and variables are represented
by nodes. Each of these nodes oscillates on and off over time. A variable is considered
to be bound to its instance if both fire in the same rhythmic phase.

This proposal is motivated by the suggestions of neuroscientists such as von der
Malsburg (1981) and Singer et al (1997) that the synchronization of the activity of
neurons may play an important role in neural computation. One potential limitation of
temporal synchrony is that it is likely to be able to keep distinct only a small finite set of
phases, typically estimated as less than 10. Hence such a system can simultaneously
represent only a small set of bindings. Nevertheless Shastri and Ajfanagadde (1993)
have suggested that the limitation on the number of phases can capture limits in rapid
reasoning, while Hummel and Holyoak (1997) have suggested that the limitation on
phases can help to account for some phenomena in our computation of analogy. But it is
clear that temporal synchrony is inadequate for representing longlerm bindings
benveen variables and their instantiations. We may probably memorize millions of
bindings in long-temr memory, yet on nobody's account can the brain keep distinct
millions of phases;

One possible altemative is to combine frequency coding and phase coding. The
problem is that the distance between two neighbor frequencies must be very small to
rcpresent millions of bindings, and that would increase the 'decodification' or 'reading'

eÎrofs.

l0 Temporal Synchrony and Our Results

In the same vein our grcup did find evidence in favor of the relevance of phase
synchrony for the represenûation of cognitive-affective states in distinct areas of the
brain (Isabel Barahona da Fonseca et al, 2001). On the other hand we proposed a further
more comprehensive model based on Quantum Chemical Valence Theory interpreting
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representations of events by periodic oscillatory phenomena in dendritic trees (José
Barahona da Fonseca, 2003).

Beyond the simple enunciation of the possible meaning of frequency and phase
synchrony it was proposed that the mathematical apparatus of Quantum Chemisûy,
involving eigen values and functions may be used to represent classes of equivalence
which define concepts in Brain processing.

The model that was used took as a referent the theory of isolobal organo-metallic
components of Hoffinann This proposal relates phase synchrony with a complete field
of mathematical relationships which are useful to match psychological events, as for
instance the generation of qualitative attributes by lower level valence attributes.

ll Discussion

Connectionist models can tell us a great deal about cognitive architecture but only if
we carefully examine the differences between models. It is not enough to say that some
connectionist model will be able to handle the task. Instead, we must ask what
architectural properties are required. Marcus(2001) showed that models that include
machinery for operations over variables succeed and that models without such
machinery do not.

12 Conclusions

Sensory information processing, procedural implicit as well as verbal declarative
cognitive processes are discussed extensively to show the relevance of concepts and
hypotheses for Neuroscience research. An example of an alternative to current empirical
discussions is given using Marcus's results. It is mentioned our contribution to this type
of alternative approach to Neuroscience.
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