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Abstract

The paper deals with examining of synchronized chaotic signals in canonical state
models of piecewise-linear (PWL) systems [1]. The Pecora-Carroll drive-response
concept and the inverse approach are considered [2]. The theory of the Pecora-Carroll
drive-response concept is expanded in the way that the third-order canonical state
models make up synchronizing subsystems and the second-order canonical state
models make up synchronized subsystems.
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1 Introduction

In this paper we focus on the analysis of the first form synchronizing - (x,,x,)

synchronized chaotic system of elementary canonical state models (ECSM) of PWL
systems [1]. Have a look at the synchronizing subsystem (1.1) and the synchronized
subsystem (1.2) where h() is a piecewise-linear function. Let us compare state matrices
(1.1) and (1.2). Eigenvalues or equivalent eigenvalue parameters of the synchronizing
and synchronized subsystems depend on each other. The synchronized subsystem
cannot be designed itself because it is always a part of the synchronizing one.

Although we are limited by the above condition we can design a new extended
synchronizing subsystem so that eigenvalues of both subsystems are independent. Let
us consider the synchronizing subsystem in the form

X g -1 a;||x P —4i
% =g, 0 ayllx |+ P-4 | Hw"x) (1.1)
X3 ay Ay Ay || X by
and the synchronized subsystem in the form
[x'] - {q" - 1“):;] +[p" —4i }h(x,’) . 1.2)
HBile 0llxm] lkm-a

If the vector w is given by w” = [1 0 w, ] , the synchronized subsystem will be
a part of the synchronizing subsystem.
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2 Synthesis of synchronized chaotic systems

Let p,p,,p; and ¢, q,, g, be equivalent eigenvalue parameters of the
synchronizing subsystem and p;, p; , ¢/, g5 be equivalent eigenvalue parameters of
the synchronized subsystem. Then evaluating characteristic polynomials of

determinants ‘sI- A0| and |sI- A| for the synchronizing part we can get equations for
circuit parameters as follows

a;; =4, -4y,
b,.w; =(p, - pi) (0, - 4}), 1)
a13.05 +0y3.05 =q].a3; +\q, “‘12),
| Ay;.Q3 + .05, .05 — q;.05,.0,3 = q,.03, — G5,
| a;.b; +\p —q{).a31.w3 +\p; —q;)ay,.w, = (p{ —ql’).a33 +q..b;.w, +
‘ +(pi - )+ (9, ~43),
; (P{-qz' "Pz'-q{)-asz-ws —ay3.b; "(P;;_ _‘]5)~031'W3 "'(Pz' “12')-‘132-“13 ¥
| _(P{ ‘q{)'asz-aza = (P; “qz)_(Pg _qé)-aaa —4q;.b;.w,,
|
|

where a,;, a,;, a;,, as,, as3, by and w, are unknown. To solve these equations we
may introduce simplifying conditions

G =94, =9::0, = p; Py = Py, 22
then a;; =0, b,.w; =0 and we get equations reduced by
| a,;.a; +a,,.a,, =0,
\ Qy.a3 +4,.05,.0y; —4,.05, .03 = —(q,,
b,.ay, +(p1 -q, ) Wy.ay, +(p2 —qz).w3.a32 =0, 2.3)
(pl.q2 —pz.ql)w3.a32 -b;.a,, +(p2 —qz).w3.a3l +(p2 —qz).an.a|3 +
+(q, —p,).a23.a32 =p,—~4q;.

If w, =0, we can obtain a solution. Then parameters a ,, a ,, a, , and a, are

given by
a,=0
by.q,
= D3 —q; 2.4)
_49:—-Dps
23 T b]
a;, =0
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Furthermore if b, =0, we will obtain rather complicated solution. Parameters
a;, a,, 4y, and a,, are given by

_((pi-a.XP3 + Pip2ts - g7 - Pias ~2020 + Praas + 42)asw,)

o ((p22 ~ PP+ gy + P, =209, - P94, +q22)(" 2 +q3))
o ((p: - 0. )= P} - 224, + 2207 + DP0 + 29,0 - P01 02 Ja, )
P ((#2-ppagi + pagl + 070, 2900, - Pgrs + 42 Py - 4))
ot (Pz"qz)("Pa‘Hh)
a =

(- 22 - Pip2d, + P02 + DY, +2P205 - PG, — 4 Y,
(-p,+a.)Xp, -4:)
P+ DDy — P} — Pids — 204, + Piaid; + 42 )W,

2.5)

a32=(

The method that is proposed in this paper is the very common method how to
design any synchronizing and synchronized subsystems. Studying the synchronized
chaotic PWL systems, we can establish new elementary linear forms of synchronized
second-order parts [8].

2\
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Fig. 1: State portrait of the synchronizing subsystem
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Fig. 2: Synchronization of x, < x/

3 Attractors and synchronization state portrait for the synchronized
chaotic system of the first form of ECSM
The system has been modeled by MATLAB. In the table (3.1) there are chosen
equivalent eigenvalue parameters and their eigenvalues. In the table (3.2) there are

computed Lyapunov and conditional Lyapunov exponents as a condition for
synchronizing.

Table 3.1: Equivalent eigenvalue parameters and their eigenvalues

Equivalent eigem_/alue Eigenvalues of the Eigenvalues of the ( X ,xz)
parameters: synchronizing subsystem: synchronized subsystem:
p, =009 q, =-1168 H, =-0319+£0892; M, =0.045+0.656457 j
p, =0432961 q, = 0846341 | 1, =0.728 v, =~-0584+0.710834

p; = 0653325 ¢, =-12948 |y, =0061%;
v, =-129




Table 3.2: Computed Lyapunov exponents and conditional Lyapunov exponents

Initial conditions: Lyapunov Exponents of the | Conditional Lyapunov
synchronizing subsystem: Exponents of the (x,x,)
synchronized subsystem:
05 A, =0.103803 A} =-0403484
§ -05
x,=| 0 x5={ : } A,=0 A5 =-0414631
A, =-0.942795

4 Conclusion

In this paper the synthesis of synchronized chaotic systems of ECSM is proposed.
We have also shown the synchronization state portrait. Qur results are completed with
Lyapunov and conditional Lyapunov exponents. The next research points to design a
CNN structure having third-order cells of ECSM and synchronization behavior is going
to be studied. This new CNN paradigm can also be exploited in many engineering
applications (signal, image and information processing, etc.) as well as in modeling
many biological systems.
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