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Abstract

In this paper, the problem of determining the optimal control law for discrete-time
stochastic linear systems with respect to a quadratic performance criterion is considered.
It is assumed that the system is subject to additive system noise and that the state
variables are measured with additive measurement noise, without speciffing the specific
characteristics of random variables. It is shown that the problem of stochastic optimal
control can be reduced to two independent problems, one of equivalent deterministic
optimal control and the other of stochastic estimation of underlying uncertainties. This
holds even if the system noise, the measurement noise and/or the initial state of the
system are non-Gaussian, mutually and time-wise dependent. The aim of the present
paper is to show how the invariant embedding technique and fiducial approach may be
used to solve the problem of adaptive cautious controlling a discrete-time stochastic
linear system in which the state transition matrix and the control driven matrix are
unknown. This is the case when the certainty equivalence principle does not yield the
admissible adaptive control laws for the present problem. The proposed approach does
not require the arbitrary selection of priors as in the Bayesian approach. It makes it
possible to simplifi the problem of adaptive optimization of stochastic systems and, if
the system noise and/or the measurement noise are Gaussian, to carry out the algorithm
in closed form. The examples are given to illustate the suggested methodology.
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I Introduction

This paper is conôemed with the optimization problem of discrete-time stochastic linear
systems with respect to a quadratic performance criterion. It is assumed that the system
is Subject to additive system noise and that the state variables are measured with
additive measurement noise. It is known (see, for example, Aoki, 1967; Yakowitz,
l9tl9: A,ctrôm, 1970; futrOm and Eykhoff, 1971; Bertsekas , 1976; Nechval, 1984) that
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the aforementioned problem belongs to the class of problems for which the certainty
equivalence principle holds. This principle holds if it is possible to first solve the
deterministic problem with known paxameters and then obtain the optimal controller for
unknown parameters by substituting the true parameter values with the estimated values.
It is shown that in the case considered the certainty equivalence principle holds even if
the system noise, the measurement noise and/or the initial state of the system are non-
Gaussian, mutually and time-wise dependent.

In adaptive control there are very few cases where the certainty equivalence principle is
applicable. One exception is when the unknown parameters are stochastic variables that
are independent between different sampling intervals. However, eertarnty equivalence
principle has been successfully used as an ad hoc design principle. It is important to
consider the information, of, which is transformed from the estimator to the controller.

The information,4 might be the estimates of the unknown par:rmeters,{0}, or the

estimates and the uncertainties of the estimates, 10, P; , etc. The controllers obtained by

enforcing the certainty equivalence principle, i.e. eh{6!, are called certainty
equivalence contollers. These controllers do not take into consideration the fact that the
estimated parameters are not equal to the true ones but are inaccurate. Ifthe above fact
is taken into consideration, i.e. that the information pattern is changed ta ah 16,n1 and
the separation principle is applied, then the controller will be called cautous. In this
case the controller is aware of the errors in the estimates and takes a more cautious
control action.

If the performance index only takes into account the previous measurements and does
not assume that further information will be available then the resulting controller in
Feldbaum's terminology (Feldbaum, 1965) will be called nondual. On the other hand,
the performance index can also be dependent on the future observations and this will
result in a dual contoller. The conûoller must, ofcourse, be causal and the dependence
of the future observations will be given as the probability distributions of the future
observations given information up to the actual time. In a dual controller there is
interaction between the identification and the control in the sense that the controller
must compromise between a control action and a probing action. The interaction is
obtained by considering that the future uncertainties of the parameters are functions of
the control signals applied to the system. The loss function, which has to be minimized
with respect to the control signal, thus contains some information of the future
observations through the statistics of the observations given the present information.
According to the above discussion the minimization of a loss function one step ahead
will give a non-dual côntroller, while a minimization several steps atread will give a
dual controller. ln the first case it is useless for the controller to take a control action in
order to increase the accuracy ofthe unkno\À,n pararneters. ln the second case it might be
worthwhile for the controller to take some control actions in order to improve the
estimates of the unknown pararneters. The dual contoller must thus ensure good control
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and good estimation. However, these two tasks are, in general, contradictory, since good
estimation might require large control signals while good control might require that the
control signals are small. A dual controller thus must compromise between these two
tasks. The formal solution of the dual control problem has been known for a long time
(see for instance Feldbaum, 1965; Aoki, 1967; Nechval, 1982,1984, 1999; Nechval et
a1., 1997). The solution leads, however, to a functional equation, which in most cases is
difficult to solve.

This paper deals with the non-dual adaptive controllers that can be divided into two
classes, certainty equivalence and cautious controllers. The first class includes methods
where enforced certainty equivalence has been used as an ad hoc design method. The
second class contains methods obtained by using the separation principle. It is shown
that the cautious controllers are better than the certainty equivalence controllers.

In the present paper we consider the problem of determining the optimal control law for
discrete-time linear systems, subject to additive system noise, measured under additive
measurement noise, with respect to a quadratic performance criterion. It is shown how
the invariant embedding technique and fiducial approach may be used to solve the
problem of cautious adaptive controlling a discrete-time stochastic linear system in
which the state transition matrix and the control driven matrix are unknown. In this case
the certainty equivalence principle does not yield the admissible adaptive control laws
for the present problem. The proposed approach does not require the arbitrary selection
of priors as in the Bayesian approach. It makes it possible to simpliÛ the problem of
adaptive optimization of stochastic systems and, if the system noise andl/or the
measurement noise are Gaussian, to carry out the algorithm in closed form. The
examples are given to illustrate the suggested methodology.

The outline of the paper is as follows. A formulation of the problem is presented in
Section 2. A technique for determination of control laws is found in Section 3. In order
to illustrate the proposed technique, examples are given in Section 4.

2 Problem Statement

We consider the discrete-time system with the dynamics described by the difference
equation

x,*r (o) = À,x, (ro) + B,u, (ro) + w, (ro)

and the measurement data generated according to

y, (ol) = C,x, (or) + vr (ro) ,

( t )
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where t is the discrete time integer, F0, l, ... ,T-l; o> is an element in the probability
space (Q, D, P) consisting of the sure event f), the o-field D of events, and the
probability P on D; x1(ro) is a k-dimensional state vector, the initial state x6(o) being a
random variable; ut(or) is an m-dimensional contol vector; y(o) is an n-dimensional
measurement vector; w{ol) is a k-dimensional random vector representing system noise,
v(ro) is an n-dimensional random vector representing measurement noise; A1 is a known
k x k state transition matrix; Bt is a known k x m contol driven matrix, and Ct is a
known n x k measurement matrix. For simplicity, the notation of the dependence of the
variables on o will be suppressed in the sequel. If d is a family of random variables,
o{d}c D denotes the smallest o-field of co-sets relative to which d is measurable. It is
assumed that the prior probability distributions of all random variables are known, and
that each of these has a finite covariance matrix.

The performance criterion for the system of equation (1) is chosen to be of quadratic
form:

(3)

where G1, F1,2, ...,T, is a symmetric non-negative definite matrix; Ht, F0,1,.... ,T-1, is
a symmetric positive definite matrix, the symbol E{.} denotes the expectation and prime
(') denotestranspose.

The control sequence {u1, F0,1, ... ,T-1} is to be chosen as a function of the information
available, in such a way as to minimize the value of the performance criterion (3). The
information available at time t is the set consisting of all the past and present
measurement data tyo, yr, ... ,yt), all the past controls {uo, ur, ... ,llt-r}, and all the prior
information. Let us denote the control sequence by U1={ue, ur, ... ,ur} and the sequence
of the measurement data when the past control sequence Ut-r has been applied to the
system by Yt(Ut-r)={yoJr(Uo), ... ,y(Ut-r)}. Then the control is of the form u1=$(Y,(Uur),
t). Here, 0(. , t) is a measurable mapping function from o{Yt(Uur)} to m-dimensional
Euclidian space. In the following, we shall denote o{Y(Ut-r)} by D(t).

3 Determining Control Laws

Theorem | (Optimal Control Law} For the above stochastic optimal control problem,
the optimal control law is given by

I = E{it.lc,x, + ui.,H,-,u,.,;},

ui = - [nin,.rBr + H. f 
r Bi [R,.,1,e{x, ;o1t)} + E{2, ;o(t)}}

where & satisfies the Riccati equation

(4)
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I
R,  =A iR,* ,4 ,  $G,  -Q, ,

Q, = A|R.*,B,[BiR,.,B, + H, ]-tBlR,*,4,

with
R ,  = G 1 ,

and a is a random variable defined by recunence relation

(s)

(6)

(7)

(8)

with

where

z, =R,*rw, *M,*rz,*,

zr_, = Rrwl_1 ,

M, = Al - AIR,.,B,[BlR,*,B, + H,ftBl.

(e)

(10)

(1  l )

Proof. We will use the dynamic programming technique for the proof. Let us introduce
the optimal cost-to-go ûom time t to the final time

J' 1D1t1, t1 = 
u,rnfr -, t{,t'hjG, x, + ui-, H,-,o,-, } n(,)}'

By the principle of optimality, J'(D(t),t) satisfies the following functional equation:

J'(D(t),t)=minp{txiqGt*rxt*r +uiHtur +J-(D(t+l),t+r) l ;o(t)} 02)
llr

with the initial condition
J'(D(T),T)=$.

Thus the optimal control for the final time, ui., , minimizes

J(D(T-1),T-t)=E{xiG1x,+ui-,Hr-,ur-,}O1f-t1} (14)

(13)

subject to equation (1). The optimal control ul-, is found to be

ui.,=-[n;_,RrBr-r+Hr-rftBï-,[nrer-,e{rr-riD(T-t;}+E{21-,;D(T-l)i l , (15)
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where R1 and zr-r are given by equations (5)-(7) and (8)-(9), respectively. It is found
without diffrculty that the minimum cost côn be written as

J' (D(T - 1),T - 1) = min J(D(T - l),T - D

= E { [xî-r (Ai-r Rr Ar-r - Qr-r )xr-, + 2xi-rMr-rzr-r

+ trace (Rrwr-,wi-r - Br-r [Bi-rRrBr-, + Hr-, 1-r

. B:r-rfz r -rz, -r + (RrAr-rïra + Zr-r XRr Arrïr,r + Zr-, )'l)l ; D(T - I )),

where Q1-1 and M1-1 are given by equations (6) and (10), respectively; ïr_,and Er_,
defined respectively by

ï t  =xt  -E{x, ;D( t ) }

Vt=zt-E{2, ;D( t ) } .

Now we will show that Îr_,and 7,r_, are not affected by the conûol U1-2.
procedure follows Wonham (1968). Let us break x1 into two vectors

x ,  =x i  +x i ,

where xi and xi are defined respectively by

and

and

Since

(t7')

(18)

The

(le)

(16)

(20)

(21)

(22)

(23)

xi*1 =A,xi +w, xi =xo

xi*r =A,xi *81[1, xô =0.

xi is D(t)-measurable, it follows

Let us define
E{x, ; D(t)} = e{t; r n(tl}* ti.

y i  =y,  -C,xl=C,xi  +vr.

By the result in Wonham (1968), we have
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D(t1= P'1t,
where

o'(O: otyi, vi,...,yi l

In view of equations (19), (20) afi (22)to (24), we have

(24)

(2s)

(26)

(27)

x, -E{x,;D(t)}= *i - et*;;n't,i}

w, -  E{w, ;D( t ) } :wi  -E{w, ;D'1t ; f  fo ,  i  >  t .

It follows from equations (26) and (27) that the minimum variance estimation error of
the state, xrE{xt;D(t)}, and the minimum variance prediction error of the system noise,
w1-E{w1;D(t)}, for iàt, are independent of the control sequence U1-1. Thus, ï1_, and Zr_,
are not affected by the control Ur-2. Therefore, the third term in the right-hand side of
equation (16), trace (...), can be ignored in determining the control Ur-2. When this fact
is found, the remainder of the proof becomes obvious and hence will be omitted. I

Corollary I.1. The optimal control laws for the stochastic control problem of equations
(l)-(3) can be obtained by considering the optimal control laws for the related
deterministic systems where the random variables are replaced by their expected values,
i.e., the above problem is certainty equivalent.

Proof. When w1 is a known deterministic variable and the full information concernirlg
the state x1 is assumed available to the decision maker, it is easy to find that the optimal
control law of the deterministic equivalent problem can be written as

ui = - [nin,*,B, + H,]-tBi[R,*,4,x, +2,] (28)

where Rt and zl are given by equations (5)-(7) and (8)-(10), respectively. Comparing
equation (a) with (28), we see that the stochastic problem is certainty equivalent. n

Corollary I shows that the statistical characteristics of the initial state, the system noise
and the measurement noise have not any influence upon the basic form of the optimal
control law.

Theorem 2 (Adaptive Caatious Control law). Under conditions of Theorem 1, when
the k x k state transition matrix A (A=A1, Vt=0(l)T-l) and the k x m control driven
matrix B (B:Bt, VF0(1)T-1) are unknown, the adaptive cautious control law for the
above control problem is given by
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ui =-[E{BIR,.,B,;D(r)}+n,f'n{ni[n,*1A,x, +2,]o1r;], for t]r,

where & satisfies the Riccati equation

R, =E{AIR,*,A,}+ G, -Q,,

e, : E{AiR,.,n, [r{nin,,,B, }+ H, ]-'BlR*,A, }

with
R , : G ' ,

and a is a random variable defined by recurrence relation

z, = R,*,\il, + E{M,.,2,r, }

zr-, : Rrwr-,,

M, = Ai - AiR,.rB,[E{niR,.,n,}+ H,]- ' gi.

with

where

(2e)

(30)

(3 1)

(32)

(33)

(34)

(3 5)

Proof. The proof is similar to that of Theorem I and so it is omitted here. n

Here, the following corollaries clearly hold.

Corollary 2.1. Under conditions of Theorem 2, the certainty equivalence principle does
not yield the admissible adaptive conûol laws for the above problem.

Corollary 2.2. For the final value control problem (eT), the adaptive cautious control
law is optimal.

4 Examples

Example 4.1. Consider the scalæ linear stochastic system with state equation

X 1 + 1  = x , + b u ,  + w , ,

where b is an unknown constant, {q} is a sequence of independent Gaussian random
variables with zero mean and variance o2. Let the observation eqution be described by

(36)

316



Y t  = x t '

where yt is the observation.

The control sequence {ut, F0,1, ... ,T-l } is to be chosen as a function of the information
available, in such a \ilay as to minimize the value of the performance criterion

r(u,-,)=r{È*},
[ t= r  )

where U1-1={u1, t=0,1, ... ,T-l}. The information available at time t is the set consisting
of all the past and present measurement data {y6, yr, ... ,yt}, all the past controls {u0, ur,
... ,nt-l), and all the prior information.

The unknown pararneter b in (36) can be estimated, using the invariant embedding
technique (see Nechval, 1982,1984, 1988), as

lu,-1(x1-x;-,)
6 .=e  ,  ,  v t= l ( l )T - I .

Io?-'
j=l

(37)

(38)

(3e)

The invariant embedding technique allows one easily to find that the statistic
6,,vel1t1t-1, follows the normal distribution with a probability density function (pdfl

/ \

r(6,)=*4rr"*{ 
Hj,0,.(-*,oo), 

(40)

where
I t  l - r

G3, =o'l!"i,.J . (41)
. 

LFI

ln terrns of frducial approach (Fisher, 1948; Fraser, 196l; Nechval, 1982, 1984), it
follows from (40) that a fiducial pdf of b is given by

r(b)= (2,ôtr "''l ry ], u.r-*,-),

317

(42)



If b were known then the optimal expected loss is given as

J(ui,..., ui-, ) = 1T - 9o'.

The optimal control law is (see Theorem 1)

u i : -x , /b ,  V t=O( l )T- l .  (44)

If the estimated values,6,, are used in (44) instead of the true value we get

û l  = -x ,  /b t ,  V t  =1(1)T-1 . (4s)

i.e., we have assumed that the certainty equivalence principle can be used. In terms of a
fiducial approach, the expected loss when using (45) will be

r(û;, .,ûî.,) = ,,,5[.iJ'. ",[,r-,',.[,.f]'-"'],
where te { l, ... ,T-1}, T>2. If the adaptive cautious control law, given by Theorem 2,

.  ^ I ^ ^  ^ L l
û , : - * ,  b , [ b f  +ô ; , J  

' ,  
V t  =  l ( l )T -1 , (47)

is used then the expected loss (in terms of a fiducial approach) will be

,-{ ô3 )' I r 6? )'-'".]r(r1,,ûî.,) =.?È[.ËJ .",L,'-,-u.[r.4{l 
] 

(4s)

The loss in equation (a8) is less than in (a6) since ôfr,>0, VFI(I)T-I. The adaptive
control law (47) is cautious since it considers the inaccuracy of the estimates of b.

Example 4.2. Consider the scalar linear stochastic system with state equation

X1a1 =âXj+bu,  +w, ,  (49)

where a and b are unknown constants, {q} is a sequence of independent Gaussian

(43)

(46)
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random variables with zero mean and variance ê.1-etthe observation equation be
described by

yt : Xt, (50)

where n is the observation. We want to select the control ur-r, based on all available
observed data Yr-t:{yo, yl, ... ,yr-r} and Ur-z={uo, ul, ... ,ur-2}, in order to minimize the
loss function (final value control problem)

llur-,; = r{xi }. (51)

The unknown parameters a and b in (a9) can be estimated, using the invariant
embedding technique (see Nechval,1982,1984, 1988 and Appendix), as

fT ,.,.,-, l[,ï "1, I -fT .,",-, lfT *,,u,-, I
Â__ _  \  t= l  / \  t= l  /  \  t= l  / \  t= l  /  /<^ \-r-r 

lrt \/r-r \ /r-r \2

IE,.L J[à "?_, ,j 
_ 
[à 

x,_ru,a 
J

(53)

/r-t \/r-l \ 1r-t \/r-t \

lI*i_, ll I*,u,_, l-l I*,_,' ',_, ll I*,*,_, I
b_ _\ t=r  / \ t=r  /  \ t= l  / \ t=r  /- r - r  

lu  \ / r - r  \  / r - l  \2

lI*'*' l l Iu?-, l-l I*,-,u,-, I
\ t=r ./\ t=r / \ t=t )

respectively. The invariant embedding technique allows one easily to find that the
statistic (âr-,,6r-, ) follows the bivariate normal distribution with a probability density
fturction (pdf)

f (â, 6; = ----r- *p[- ;+, . f a=r * 6--9)2 - zpo (a=)!6-ut ll,
zzraua5r/r-pft 

-"'[ 
20-ph)L c; ô; r @ ôaôs ))'

and

â,be(-æ,æ),

(s4)

where

319



T-t

Iut*,
(5s)c2,

6 2 ,

(E ,., )(ii'L ) - ( P:',-,'*, )
I *?-'

0 6 : (s6)

(s7)

[:,.r I: "r ) - [à' *,_,u*, )
and

T-l

Ix,-tu,-,
.  -  t = lPâb---61;--51;_

,lI*'*'JIul'
I r=t I t=t

In terms of fiducial approaeh (Fisher, 1948; Fraser, 196l; Nechval, 1982, 1984), it
follows from (54) that a fiducial pdf of (a,b) is given by

f . (a, b) = radffi .-,[- r+r[g. + -,r. q*r]]

a,be(-o,æ).

(s8)

If a and b were known then the optimal loss is given as (see Theorem 1)

I  . e l  l .  .  . r .  r l  ' ,  . - ^ -

firin J(ut-, ) = min E(ax1" + but-, + *t-, )' i= Sil (axt-t + but- i)' + o' 1= o' . (59)

To obtain this we have used that w1 is independent of a, b, X0, ... ,XT-I, u0, ... ,u1-2. The
optimal control law is

ui-, =-ax1-,/b. (60)

If the estimated values, â and 6 , are used in (60) instead of the true values we get



ûî-r=- tor-,/6, (61)

i.e., we have assumed that the certainty equivalence principle can be used. The loss
when using (61) will be

r , , io  . , - . f f ^ . -  Le . .  ) ' i  -  a '43-2p6â6ôuô6+62ô2
J(ûî- , )=Ej lor- , -bË*r- ,*wr-r  I  f  = u xf- ,+o2. 1oZ;

L\ 
- 
b-- '- '  t- '  

) J 6t

To get the last equality the formulae

Etu'l= â2 +ef;,

Etb' l= 62 +el,

and

E{ab} = â6+p5ôuô5

have been used. The loss has increased with the term

a2e3 - zpmaÊouo; + 6241 _,
Çxr-t

(63)

(64)

(65)

(68)

(66)

compared with the optimal loss when a and b were known. The control law (61) does
not minimize (51) (see Corollary 2.1) because

_( ,  .  \ "1-a243-zpoa6auas+62a3
ff3 J(rr-, ) = g;i E[ur-, +bur_, +wr_, f i = 

E 
xî_r + o'

(67)

and the minimum is assumed for the contol law (see Theorem 2)

The loss in eqn. (67) is less than in (62) since ôfr à 0. The first term in (67) is the loss
due to the uncertainty of the parameters and tlrc second term is due to the process noise
wt-r.
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The controller (68) is cautious since it considers the inaccuracy of the estimates of a and
b.It follows from (67) (see also Corollary 2.2)tïrrrtthis controller is optimal. If ôu +0

and ô6 + 0 then (61) and (68) v/ill be the same and the loss approaches the optimal

loss for known a and b, (59).

It will be noted that the above results can be also obtained by using a variational
approach (see Nechval et al., 1998, 1999), but the technique proposed here simplifies
the problem of adaptive optimization in stochastic systems.

5 Conclusion

The authors hope that this work will stimulate frtrther investigation using the approach
on specific applieations to see whether obtained results with it are feasible for realistic
applications and may be extended to provide existence results for nonlinear stochastic
control problems.

Appendix: Invariant Embedding Technique

Here we present an invariant embedding technique based on the constructive use of
invariance principle in mathematical statistics. This technique is a special case of more
general considerations applicable whenever the statistical problem is invariant under a
group of transformations, which acts tansitively on the parameter space. It allows one
to solve many problems of the theory of statistical inferences in a simple way.

Preliminaries

Our underlying structure consists of a class of probability models (g d, 7), a one-
one mapping ry taking 3 onto an index set @, a measurable space of actions (@, Qi),
and a real-valued loss fi.rnction r defined on @ x @ . We assume that a group G of one-
one d- measurable transformations acts on Uand that it leaves the class of models
(9, d,7\ invalirant. We further assume that homomorphic images G and G of G act
on @ and I , rcspectively. (G may be induced on @ through rp; ô may be induced on
@ tbrough r). We shall say that r is invariant if for every (0d) e @ x @

r([0,!d) = r(0,d), g€G. (l)

Given the structure described above there are aestlretic and sometimes admissibility
grounds for restricting attention to estimators (decision rules) <p: W -> @ which are
(G,ô) equivariant in the sense that
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q(gy) = Eq(y), y e $, geG. Q)

If C is trivial and (l), (2) hold, we say g is G-invariant, or simply invariant.

Invariant Embedding

V/e begin by noting that r is invariant in the sense of ( I ) if and only if r is a G'-invariant
function, where G' is defined on O x @ as follows: to each geG, with homomorphic
images E, E in G, G respectively, let g'(0,d)=(g0,!d), (O,d)e(@ x @).lt is assumed
that G is a homomorphic image of G.

Definition 1 (Transitivity). A transformation goup G acting on a set @ is called
(uniquely) transitive if for every 0, 9e@ there exists a (unique) g-eG such that [0=.9.
When G is transitive on€ we may index G Uy O: fix an arbitrary point 0e@ and define
Ee, to be the unique [eG satisfring 90=01. The identity of G clearly corresponds to 0.
An immediate consequence is lrmma 1.

Lemma | (Transformation). Let G be fiansitive on @. Fix 0e@ and define !r,as
above. Then !4r,= Q ge, for 0e @, QeG.

Proof,, The identity g-4s,0={0, =QE*O shows that gqe, and Qge,both take 0 into Ç0,,
and the lemma follows by unique transitivity. fl

Theorem t (Maximat Invariant). Let G be tansitive on O. Fix a reference point 06e@
and index G by @. A maximal invariant M with respect to G' acting on @ x @ is
defined by

M(o,d) = E;'d, (0,d) e @x@.

Proof, For each (O,d)e(@ x @) and QeG

MGe,Ed) = (gJ)gd = (ggr)-'Ed = g;'g-'Ed = E;'d = M(0,d) (4)

by Lemma I and the structue preserving properties of homomorphisms. Thus M is G'-
invariant. To see that M is maximal, let M(01d1)=M(0z,dz). Then !'r;td, = !r-,td, or

dr=Edz where S=Sr,Eqt. Since gr=Eer0o = Se,ee-je, =802, (0rdr)=g'(02,d2) for some

g'eG', and the proof is complete. !

Corollary t.l (Invariant Embedding\ An invariant loss function, r(0,d), can be
transformed as follows:

(3)
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r(0,d) = r@;'e,g;rd) = ï(v,n), (5)

where v:v(0,0 ) is a frrnction (it is called a pivotal quantity) such that the distribution of

v does not depend on 0; r1=r1(d,ô; it an ancillary factor; ô is the maximum likelihood
estimator of 0 (or the sufficient statistic for 0).

Corollary 1.2 (Best Invoriant Estimator). The best invariant estimator (decision rule)
is given by

where

g* (y )=d*=n - r (n * ,ô ) ,

t* = ârg inf En{i(v,q)}.

(6)

(7)

Corollary 1.3 (Àtsft). A risk function

R(0,q(y)) = E, {r(0,q(y))} = E* {r(v.,q.)} (8)

is constant on orbits when an invariant estimator (decision rule) g(y) is used, where
v. = v.(0,y) is a function (pivotal quantity) whose distribution does not depend on 0;
q. = q.(d,y) is an ancillary factor.

Consider, for instance, the problem of estimating the location-scale parameter of a
distribution belonging to a family generated by a continuous cdf F: ?={Ps: F((y-p)/o),
yeR, 0e@), @={(p,o): p,6€R, a>O\=rq. The group G of location and scale changes
leaves the class of models invariant. Since G induced on @ by Pe -+ 0 is uniquely
transitive, we may apply Theorem I and obtain invariant loss functions of the form

r(0,q(v)) = r[(qr(y) - p)/o' 9t(v)/o]

if 0=(p,o) and q(yF(qr(y), qz(y)). p1 $=1ô,,ôr), d=(d1,d2), then

r (O,d)=r [ (d , -p ) /o ,d2 lo ]=r (v ,+r1 ,v r , r l zvz)= i (v ,n ) ,  (10)

wherev:(v1,v2), v1=(ô1-p)lc,v2=62/o; q=(rlr,Iz), nr=(d, -ô,;lô, ,rlz=drl6r.

Characterization of Estimrtors

For any statistical decision problem, an estimator (a decision rule) dr is said to be
equivalent an estimator (a decision rule) d2 if R(OdlFR(Odz) for all 0e@, where R(.) is
a risk function, @ is a parameter space,. An estimator dr is said to be uniformly better

(e)
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than an estimator d2 if R(0,dr)<R(0,d2) for all 0e@. An estimator d1 is said to be as
good as an estimator dz if R(O,dr)< R(0,d2) for all0e@. However, it is also possible that
we may have "d1 and d2 are incomparable", that is, R(0,d1)<R(0,d2) for at least one
0e@, and R(0,dr>R(e,d2) for at least one 0e@. Therefore, this ordering gives a partial
ordering of the set of estimators.

An estimator d is said to be uniformly non-dominated if there is no estimator uniformly
better than d. The conditions that an estimator must satisfr in order that it be uniformly
non-dominated are given by the following theorem.

Theorem 2 (Uniformly non4ominated estimator). Let ((,; .c:1,2, ... ) be a sequence
of the prior distributions on the parameter space @. Suppose that (d"; 'c:1,2, ...) and
(Q(€",dJ; r=1,2, ... ) are the sequences of Bayes estimators and prior risks, respectively.
If there exists an estimator d* such that its risk function R(0,d*), 0e@, satisfies the
relationship

where
E [e{€,,a*) - e(8,,d")]= o,

Q(6,,d) : i R(0,d)€, (d0),
@

then d* is an uniformly non-dominated estimator.

Proof. Suppose d* is uniformly dominated. Then there exists an estimator d** such
that R(O,d**)< R(O,d*) for all 0e@. Let

" 
= i#â [n1e,a*; - R(e,d **)J> o.

Q(8.,d*) - Q(f,,d+*)à e.

Q(6,,d * *) - Q(6,,d") > 0,

lim [e(6",d * *) - e(€,,d,)]> o.

(1  1 )

(r2)

Then

Simultaneously,

r=1 ,2r . . . ,  and

On the other hand,

( l  3)

(14)

(l  s)

(16)

(17)
Q(€,, d * *) - Q(Ë,, d, ) = [Q(6", d*) - Q(€,, d, )] - [Q(€,, a*) - Q(6", d * *)]

< [e(6",4*) - e(Ç,d,)]- e
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and

lg [e(ë",4 * *) - e(€.,d,)J< o. (18)

This contradiction proves that d* is an uniformly non-dominated estimator. !

Comparisons of Estimators

In order to judge which estimator might be preferred for a given situation, a comparison
based on some "closeness to the true value" criteria should be made. The following
approach is commonly used (Nechval, 1982). Consider two estimators, say, dr and dz
having risk function R(O,dr) and R(0d2), respectively. Then the relative efficiency of d1
relative to dz is given by

rel.eff.*{d,,d2;0}= R(0,dr)/R(odr). (19)

When rel.eff.* {d, , d, ; Oo } < I for some 0o , we say that dz is more effrcient than d1 at 0s .

If rel.eff.*{d,,dr;0}<1 for all 0 with a strict inequality for some 00, then dr is

inadmissible relative to d2.
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