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Abstract

The ability to anticipate future states is a key adaptive property of living syst€,ms
(Glenberg, 1997). Robert Roseq (1985) zuggested that an anticipatory system is characterized
by finality, and "is a system containing a predictive model of itself and/or of its environment,
which allows it to change state at an instant in accord with the model's predictions pertaining to
a later instant". Daniel Dubois (Dubois & Resconi, 1992; Dubois, 1998q 2000) defined the
concept of incursive and hyperincursive anticipatory systems, able to generate respectively one
or several anticipations influencing the computing of the next state of the system. In this article,
the concept ofautoincursion is proposed as the ability for a system to compute its successive
internal states as a function of its past, present and anticipated states, to select among several
anticipated states, and to autonomously change its own equaton parameters by leaming. Some
fundamental properties of a neural network architecture and dynamics are pro'posed to define
Autolncursive Memory Networks. AIM Networts can learn and activate multiple attractors
simultaneously, exhibiting synergic dynamics of attractors encoding external inputs. This
allows them (l) to compute their successive states as a function of past, present, and multiple
anticipated states, (2) to change the way they compute their successive states through
symmetric or asymmetric modification of the synaptic stmcture during autonomous leaming,
and (3) to select sequences ofanticipations oriented toward learned goals.

Keywords : anticipation, autoincursion, conditioning, goal direction, learning, neural networks.

1. Anticipations in Recursive, Incursive, Ilyperincursive, and Autoincursive
Systems

Anticipation of future internal states s6, by living systems at time t improves processing
of these states at time t+n, such as perception speed and accuacy and motor planning and
selection in human semantic processing (Glenberg, 1997; see Lavigne & Denis, 2001; Lavigne
& Lavigne, 2000). Anticipatory processes are adaptive in giving living systems the ability to
orient behavior away from negative states and toward positive goals. on the basis of stimuli
occurring in the environment and internal anticipations (Rolls, 1986, 1990, 1999). Recursive,
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incursive and hyperincursive systems have been formally defined to account for different types
of anticipations computed as a function of past, current, and anticipated states (Rosen, 1985,
1 991; Dubois , 1996, 1998a,b, 2000; Dubois & Resconi, 1992).

A recursive system is capable of simple anticipation by computing its successive states as a
function of its past and present states as:

(1.1)

where s, are the vector states at time t, R is the recursive function and p is a set of function
parameters. By knowing the function.rR, the values of the parametersp and the initial conditions
s(r2), s(t-l), s(0)attime t =0,the successive st*es s(t+1), s(t+2),... where the interval of time

At : I is a duration, can be rccursively computed.

An incursive system computes its successive states as a function of future states. Dubois
(2000) defines a strong incursive system as one that compute at time t its future successive
states s(t+l), s(t+2),... as a function of its states at past times ..., t-3, t-2, t-1, present time l,

and at future times r+,1, t+2, t+3, ...

(1.2)

where the variable s at future times t+1, t+2, ... is computed by using the equation itself. Such
an incursive system is self-referential because it computes its future states from itself and not
from a model-based prediction (see Dubois, 2000, for a presentation and examples)'

Living systems interacting with their environment are open systems which "cannot
normally have true knowledge of furure states", given that only a system "in a closed world and
having a perfect world model would be able to have true knowledge of future states"
(Davidsson, Astor & Ekdahl, 1994). Then the best an open living system can do is to compute
its next actual state at time t+I by usingpredictions of possiblefuture states at time t+2, ...
depending on stimuli processed in the environment. The actual state of the system can then be
an anticipated state if the new input is a predicted one or an unpredicæd state if another input is
processed. Such models may be related to Robert Rosen's (1985) definition : "An anticipatory

system is a system containing a predictive model of itself and/or of its environment, which
allows it to change state at an instant in accord with the model's predictions pertaining to a later
instant". Living systems in interaction with their environment would refer to weak anticipatory
systems, which compute actual internal states as a function of possible anticipated intemal
states:

(1.3 )

where the variables s at times ... t-2, t-|, t, are actual states of the system, and the variables s at

future times t+l , t+2,... are the predicted values of possible future states computed using a
predictive model of the system (Davidsson, Astor & Ekdahl, 1994; see Dubois, 2000, for a
discussion). Such a syst€m should then be able to compute past, current and anticipated future
states in parallel at a same time t.
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A hyperincursive anticipatory system is an incunive discrete anticipatory system generating

multiple ilerates at each time step (after Dubois & Resconi, 1992):

s*t =HI(..., s-.2, srt, st, s'I ,*L .-., sti,*1, s'l ,*2 -.- s'i''z -.. i P) Q.4)

where each iterate sr generates at each time step i different iterates s"'r*r of possible anticipated

states. Hyperincwsivity is a property of living cogrritive systems able to anticipate several
possible future states in parallel at a same time. Such systems are unpredictable in the sense that

they don't compute their next actual state as a function of the initial conditions alone. As the

system can only take one actual state at each tirne step, it is necessary to define a decision

function making a choice for the next actual state q11 among the set of anticipated possible

states s'/,*1, ..., s'iet. "The decision process could be explicitly related to objectives to be

reached by the state variable s of this system" (Dubois, 2CI0). Cognitive systems are

hyperincursive given that they can compute their next state st+t as a functio-T of their,past states

Er-2, sçrt cunent st€lt€ Jr, anà several anticipated states s'1r*1, ,.., s'i,*t, s'tr*z ... s1*z ". The

decision process can then be based on a comparison process between the anticipated possible

states s'1,*1, ..., s'i,*t and learned goals. Goals would be anticipated and allow decision among

anticipated states as a function of their ability to predict the goal, and as a function of the goal's

positive or negativc valence parameter s'*/io.

An autoincursive system is a hlperincursive system able to modifu by learning (l) the way it

computes its goal' parameter allowing the decision process, (2) the way it computes its

anticipated possible states s*/,*1, ..., s*i,*1, s't ,*z '.' 8'i ,*2..., and (3) the way it computes its own

equation p parameters. An autoincursive system is then an hyperincursive system which

computes its next state at time l*1, as a function of its states at past times ..., t-3, t-2, t-| ,
pres€nt time l, and of its anticipated possible states at future times t+l , t+2, t+3,...

stt =HI('.., sç2, st--t, s, s'lr*/, ..-, sti,*b s'l ,*z ... s'it*z ... I Pt) ( r.4)

In an autoincunive system the anticipatory equation parameters p depend on the past, present,

and anticipated internal states ofthe system (autoincursion):

s*t:AI(..., sr2, sçt, st, s'l ,*t, ..-, s'itt, s'l ,*2 ..' s'i*z ... iP,) l) (r.s)

where equation paftrmeters p are computed at time t+ I as a function of the past, present, and

anticipated internal states of the systenl and of parameters p at time t. The Autolncursive

firnction accounts for learning in the system according to a set / oflearning parameters.

2. AIM Networks (Autolncursive Memory Networks)

Autoincursive systems compute their next state at time r+/ as a function of their past,
present and anticipated states, according to an equation for which parameters themselves vary

as a function of the states of the system. Autonomous anticipations and modifications of the

anticipatory equations by leaming both require cognitive abilities such as neural
activatiorlinhibition and long term potentiation/depression exhibited in neural networks.
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2.1 Network States and Anticipations

Neural network models have been proposed to account for anticipatory properties of

cognitive systemsn defined as automatic spreading of activation from a neuron or neuron

poiulation to associated neurons (Andenon, 1983; Becker, Moscovitch, Behrmann, &

ioârdent, 1997; Collins & Loftus, 1975; Gillund & Shiffrin, 1984; Hinton & Shallice' l99l;

Kintsh, il88; tavigne & Denis,2001,2002; Masson, 1991, 1995; Plaut, 1995; Sharkey &

Sharkey, 1992; Wang, 1996, 2000). To account for semantic activations between stimuli'

neuro[s activated by a given input, after stimulus perception, can activate associated neurons

encoding different stimuli, through the learned synaptic matrix.

Attractor networks dissociate fast dynamics of neurons (about 10-100 ms) and slower

dynamics of inputs, of more cognitively realistic durations (about 1000 ms). Inputs correspond

tô activations received by neurons ftom stimulus perception or from other brain areas. They are

encoded by attractors, which are populations of neurons encoding a same input (Amit, 1989;

Amit & Érunel, 1997;'Hebb, 1949; Hopfiel{ 1982; Hopfield & Tank, 1986). Attractor

networks can account for dynamics of anticipations (Grossberg, Levine, & Schmajuk, 1992;

Grossberg & stone, 1986; Masson, 1991, 1995; Plaut, 1995; Sharkey & Sharkey, 1992) and

gro." ,pàifi"ally for sequence processing (Howard & Kahana, 2001; Jones & Pollq 2001;

Gross, Heinze, Seiler & Stephan, 1999).
Models of the corticai column have been developed (Amit & Brunel, 1997; Anrit, Brunel

& Tsodyks, 1994; Brunel, 20@; Brunel, camso & Fusi, 1998), which can account for the

simultaneous activation of several athactors at a time. These rate models give a good

understanding of the sustained reverberating activity of attractors through excitatory feedback

in terms of mean spike rate of neuronal populations (short term memory) (Amit, 1996; Hebb,

1949; Miyashit4 1-988), as well as of the dynamics of activations between two simultaneous

attractors-(Mongillo, e*it A Brunel, 2003). They can account for a ramping-up prospective

activity of prefràntal neurons, specific to a not presented (then anticipated) stimulus, following

tne presenàtion of a cue stimulus, when both stimuli have previously been learned as

*ro"iut"d (see Miller, Erikson & Desimorte, 1998 for neurophysilogical evidences in

monkeys). Iioth populations of neurons encoding the actually presented cue stimulus and the

anticipâted targei stimulus can be simultaneously activated in prefrontal cortex, allowing the

activation of sequences of stimuli.
In addition, anticipations have to be goal oriented (Cnn, 1992; Levine, Leuven, &

Prueitt, 1992; see Asensiô, Montiel, & Montano, 1999; Milan, 1995; Tani & Kukumura" 1994)'

To do this, a connectionist model has been proposed to account for goal driven selection of

possible actions (PoilL Simen, Lewis & Freedman, 2002). This model accounts for sequential

selection of actions as a function of a current state and a given goal, encoded in the network as

attractors. Goals, however, are encoded in a specific subpart ofthe network' Then, their status

as goals is given by the ad hocarchitecture of the netrvorh and not by learned associations with

otf", 
"o"od"d 

representations in the network. Neurophysiological data, however, assess for the

existence of rewid-specific neurons in rat medial prefrontal cortex (Pratt & Mizumori, 2001).

This suggest to definè goals as neurons populations encoding rewards, which are associated to

(by hebilan learning), *d ttt"o activated by neurons encoding the positive valence of rewards.

ihe neural basis of the encoding of inputs valence involve the amygdala (Cardinal, Parkinson,

Hall & Everitt,2002; Rolls, 1986, 1990' 1999).
An account for anticipatory processes toward learned goals requires an analysis of the

synergic interactions betrvein (lj prefrontal cortical prospective activity of sequances, nd (2)
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amygdala activation ofcortical reward-specific neurons encoding goals. This article proposes a
model of a cortical network in which atfactors' activity can be modulated by amygdala neurons
external activity. The cortical network itself is a rate model in which neurons transfer function
converts input intensity into firing rate. This network exhibits synergic dynamics of multiple
simultaneous attractors encoding input, anticipated associates, and goals. To account for goals
encoded by reward-specifïc neurons in a biologically realistic neural network model, excitatory
neurons ofa prefrontal cortical network are connected to external excitatory neurons encoding
the positive or negative valence of inputs (rewards, punishers, or none of them).

Within the model presented network states correspond to combinations of attractors,
encoding actual and anticipated inputs (including goals), activated simultaneously and at
different levels. When a new input is presented to the network (previously anticipated or not),
and according to the interactions betrveen multiple attractors, network dynamics correspond to
state shifts, which are changes in the levels of activations of attractors encoding actual and
anticipated inputs.

To summarize, the AIM Network presented is a biologically realistic neural architecture
able (l) to compute its successive states as a function of past, presenl and multiple anticipated
states, (2) to change the way it computes its successive states through modification of the
synaptic structure during autonomous learning, and (3) to select sequences of anticipations
oriented toward positive goals and away of negative goals, the learned goals influencing in turn
the way the network anticipate future states.

2.2. Network Architecture

The model is a fully connected cortical column network of Nr excitatory lE) neurons and
N7 inhibitory {,, neurons (Figure l), with probabilities of having a hetero-synapse on any other
neuron: Prr from-excitatory to excitatory neuron, Prc: Pu from excitatory to inhibitory and
from inhibitory to excitatory synapses, and Pn from inhibitory to inhibitory synapses. All
neurons have auto-synapses set as the same values than their efferent hetero-synapses.

Within the network, neruons are connected through four types of pre-synaptic (;) to post-
synaptic (;) synapses: SrEexcitatory to excitatory synapses, Srr = ,Saexcitatory to inhibitory and
inhibitory to excitatory synapses, and Sz inhibitory to inhibitory synapses. Synaptic efficacies
conespond to excitatory (Jà 0) or inhibitory (J S 0) post-synaptic potentials (mV) provoked by
a spike. They are defrned as J66 and "[s (respectively excitatory to excitatory and excitatory to
inhibitory), and Jet and Jn (respectively inhibitory to excitatory and inhibitory to inhibitory).

A low fraction ;f of excitatory newons encode Nu inputs p prôcessed by the network
(sparse coding), defrning attractors in which neurons encoding a given input have higher
synaptic efficacies than with other excitatory neurons. Inhibitory interneurons are activated by
excitatory neurons to prevent mnaway propagation of activation throughout all the excitatory
neurons and regulate dynamics of attractors in the network.
Excitatory and inhibitory neurons also receive noisy random activation from external excitatory
neurons, with Psn and P6, respectively. In addition, two tlTes of extemal excitatory neurons of
the amygdala, encoding the positive or negative valence of inputs, are connected to specific
excitatory attractor neurons, as a function of their valence, by excitatory synapses Jtp,, andJiiNv,
with Pspy, Sqpyand PspN, Sppy.
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Figure l: Structure of the AIM Network

2.3. Neurons Dynamics

All neurons in the network are leaky integrate-and-fire neurons converting input currents.I,
(mV) into firing rates v; (spikes.s-l ir Hz), according to a sigmoid transfer function
approximating cortical nèurons transfer function (Brunel, 1994, 1996):

,d ' : -  =-v,  + o(/ ,)  (2.1)
dt

with r the neurons time constant: îs aîd 11 for excitatory and inhibitory neurons respectively,
and QI it,t) the transfer function :

a 0, ) =--v^?^ (2.2)
I  +  e  

' o t t t - t v l

with, for all excitatory and inhibitory neurons, the same values of u.*,the maximum spike rate,
a the rate of activation, and I o the neurons spontaneous frring rate.

Ii61 is the total input intensity for neuron i (at time t) :

I , = I ,tnt + I ,rr, +lv,rJ,u +\v,,J,, +lv,rrJ,", +lv i*rJ,*,
t ' t  1 . 1
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Concerning a given neuron i, \zJæ is the internal input current received from other
excitatory neurons, and 8u1rly is the internal input current received from inhibitory o€urors, v7
the spike rate of neuron j, ard Jir à 0 and /r < 0 the synaptic efficacies from, excitatory neuron
ja,jpv, andjnv and inhibitory neuronsTi to neuron i. I,,is the external input current applied to
neuron i ifi encodes input pand when input p is presented to the network.

Ip1 is the external noise received by excitatory an inhibitory neurons from external
excitatory neurons.

The fwo types of positive pv or negative ilz valence neurons transmit activation (IyrvJiev
and LviNvJiNù to attractors encoding inputs of positive or negative valence, respectively.

2.4. Attractors Dynamics

Each cycle in the network consists of a random updating of the spike rates of the neurons as
a function of the intensities they receive. Prior to learning, the network has no structured
attractor. After learning sequences of inputs, each learned attractor, encoding a given input,
correspond to shongly associated neruons activated by the input and activating each other.
When processing an input, excitatory neurons in the attractor encoding this input activate each
other, the reverberating sustained activafion progressively reach a stable level ofspike rate aftsr
removal of the input.

The anticipatory activation of an attractor depends on its synergic activation by other
attractors already activated in the network, by the presentation ofthe corresponding input, and
by the valence neurons encoding the input valence associated to the attractor neurons encoding
the input. To orient anticipations toward goals, the AIM Network has to code in memory
internal representations of dynamic sequences of asymmetrically associated inputs. A simple
way to perform a spatial asymmetric associative coding in memory of temporal sequences of
inputs is through an asymmelric learning rule (see Mongillo et al, 2003).

2.5. Synaptic Learning

Synapses connecting excitatory neurons (J6B) arc plastic and sensitive to hebbian
learning. Synaptic dynamics incorporate both associative long term potentiation (LTP) and
depression (LTD) defrning modifications of the synaptic effrcacies Jr- from neuronj to neuron j

(Amit & Brunel, 1997; Brunel, 1996; Lavigne & Denis, 2001,2002):

d"],,
T " - *= -J , ,+C , ,  +Jo , ,

Cil
(2.4)

Synaptic efficacy "I varies according to the time constant h. Jort takes the minimum or
maximum values when / crosses (getting respectively lower or upper) a threshold w, which
stochastically varies between Jo + 0 and J t - 4 with steps of e.

Potentiation or depression of the synapse is given by the values of C4g. The asymmetric
leaming rule was derived from the covariançe Hebb leaming rule used by Brunel (1996). This
asymmetric learning rule simulates spike timing dependent synaptic plasticity (STDP) (see
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Song, Miller, & Abbott, 2000) or temporally asymmetric Hebbian learning (TAH) (Abbott &
song, 1999), on the basis ofinput order:

C;1s = ^*vnt(ujo+ k) - L(qp + u7) Q.5)

The left term refers to LTP and the right term refers to LTD. v;61 and ui61 are the spike
rates of neurons i and j respectively, and A* and )"- are the potentiation and depression
parameters respectively. È is an asymmetry parameters inducing asymmetric synaptic
potentiation between pre- and post-synaptic neuronsT and i (asymmetric synaptic depression is
not presented in this study).

This implies that whsn inputs pr and p2 are presented to the network in a sequence,
encoded by neurons i andj respectively, neurons i andT are activated is this order and neuron i
begins to be deactivated (when input p1 is not presented to the excitatory neurons anymore)
when neuronT is fully activated (when input /"a is still presented).

Synaptic potentiation occurs between two (attractor) neurons when both are still
activated, with vqq <uig. Then, according to the learning eq. 2.5, Çi > C4, inducing greater LTP
from neuron i to j (Ji) than from neuron j to i (Ji1). This allows neurons i encoding input pl to
activate more neuronsT encoding input pz than the reciprocal.

'When 
an input is presented that has a given valence, associative learning can also occur

befween excitatory neurons ofthe attractor encoding the input and valence excitatory neurons.
This allows the nefwork to access the valence of anticipated inputs, and to spontaneously
activate atffactors associated with positive valence neurons (i.e., goals).

2.6. Autoincursion by learning of hyperincursive parameters

Depending on the different sources of activation of a given attractor, the multiple states
arising in the network at a given time can be (l) past states which where previously the most
activated states going toward decreasing activation, (2) the current output state being the most
activated atFactor, and (3) anticipated states encoding inputs not (yet) presented to the network
and that could become the next most activated ou@ut state of the network.

The computation of network states depends on (l) parameters of the neuron transduction
functions, which are defined prior to the simulation and do not evolve with learningt 16, e in

eq. 2.1, and u* , a , and Io in eq. 2.2; (2) the p parameters of the synaptic matrix at a given
time, which are modified online by learning as a function of network states. New values ofp
parameters are calculated at every cycle by the network itself: .Ia in eq. 2.4, and Cg in eq. 2'5;
and (3) the / parameters, defining learning of the p pârameters at each time step, are chosen
prior to the simulation: r. in eq. 2.4, ).+,2-, and t in eq.2.5.

2.7. Model parameters used for sirnulations

The cortcal column of the model was set to respects known physiological data on the
respective proportion of excitatory pyramidal neurons and inhibitory inûerneurons (see Brunel
& Wang, 2001). For computational reasons due to the limited memory capacity of t}te
computer, the number of neurons in the model is limited to 10%o of the number in an actual
cortical column, that is to 4400000 synapses (with dt:0.2 ms << t, the neurons time constant,
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a 300 ms mn corresponds to 1500 network cycles. On a 3 GHz PIV computer, a 300 ms run
was computed in around 45 mn at 7 ms per mn).

Con4sctivit-v and neurons properties were set close to known properties of the cortical column:
Nd: 8000 excitatory neurons (80%) ; nf/ = 2000 inhibitory neurons Q0%).
Pre = Pn : Pu : Pz= 0.05. Pen= Pn- l, with mean noise intensity of l0 (4) and standard

deviation of 10 (4), for excitatory and inhibitory neurons, respectively.
A total of 5000000 s)mapses: Srr= 3200000 excitatory to excitatory synapses (4@ per neuron),

Srr = Srr= 800 000 excitatory to inhibitory and inhibitory to excitatory synapses, and Sz=
200000 inhibitory to inhibitory synapses.

Codinglevel:f=9.25.
Transfer function parameters: u.*: 80; a:0.20; Io:20.
Neurons time constants: TE= tr: I ms.
External noise: IB1n1: 8 pA and 1a,7 = 4 pA.

Synaptic stnrcture between excitatory and inhibitory neurons of the cortical column w:rs set to
obtain physiologically realistic values of mean neurons activity: 3 Hz for excitatory
newons and 9 Hz for inhibitory interneurons. 4r : 0.009 mV from excitatory to
inhibitory neurons; Jer: Ja: -0.0095 mV from inhibitory to excitatory neurons, and from
inhibitory to inhibitory neurons, respectively.

Within and between aftractor syrupses were set to ensure fundamental processes reported in
cognitive psychology: sustained activity (short term memory), priming (anticipatory
activation), and valence activation such as involved in goal activation. For a given
excitatory/inhibitory balance, too weak synaps€s allow neither sustained reverberation of
attractors nor anticipatory activation, and too strong synapses allow neither stable low
rates of activity in absence of input nor the possibility of inhibition of activated attractors
(See legends of Figures).

Auto-synaptic potentiation: Ja= J,t+t*= J*t-= Jc+ç+= "fc-c-= 0.02 mV.
Hetero-synaptic potentiatioî: J*r i Jnt* ) Je4 ; JLq- i J,t+e- i J*t+ ; J*ç+ ; J,t-c- are the studied

parameters which determine attractors dynamics (Figures & Insets), with the maximum
hetero-synaptic potentiation 4 : 0.0054 mV.

Auto-synaptic basic level: -/ar= 0.001 mV.
Hetero-syupticbasiclevel:Je*t:Jc,t+=Je-e :Jre-=Jc*t:Jtc*=Jec=Jrc-=0.001 mV.
Hetero-synaptic depression: Jc+r: Jrc+ = Jct: Jrc-: Ja*c- = Jc-.t* = Ja-ç* = Jc+,t-: Jo:

0.0004 mV.

The valence neurons were set with the same properties as excitatory neurons of the column.

Connectivity and neurons properties:
Npy= ltlrr= 500 positive and negative (excitatory) valence neurons.
Puy:  Pæx:0.08.
A total of 425000 synapses: Spwy = Sprypry = 12500 positive to positive and negative to negative

valence neurons, and Sepy = ,Sep,v : 200000 positive to excitatory and negative to
excitatory synapses.

Transfer fi.urction parameters: uw: 80; a= 0.20; Io :20.

Neurons time constants: rr: I ms for positive and negative valence neurons.
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Synaptic structure: Auto-synapses between neurons of a same valence group were set as within-
attractor auto-synapses : J p ypy = J ;y v: 0.02 mV.

Synapses between valence neurons and goal attractor nelrons were set to ensure enough goal
attractor activation to orient anticipations, and not too much goal attîactor activations so
that the network was not fixed in the goal attractor state. Between positive valence
nenrons and goal attractor neurons: Jnpv-- 0.0016 mV; between positive valence neurons
and non-goal attractor neurons, and between negative valence group and excitatory
neurons: Jruy: Jepv : 0 mY.

Simulations were mn on a quenched version of the network (frxed synaptic structure) for two
reasons: First, to analyze athactor dynamics in terms of a stable and well defined synaptic
structure; Second, to allocate a maximum of computer memory to the computing of attractor
dynamics, rather than to the computing of synaptic changes.

3. Autolncursive Memory Processes as Synergic Dynamics of Attractors

The autoincursive abilities of AIM Networks are given by (l) a biologically realistic
architecture of excitatory and inhibitory interneurons connections in a cortical column
connected to valence neurons, and (2) adequate functional parameters of neuron transfer
function and syraptic learning equations. An application of AIM Networks concerns cognitive
processes of living systems, such as learning and goal orienting of anticipations.

3.1. Anticipatory Recursive, Incursive, Hyperincursive Processes

Recursive processes refer to anticipations based on associations learned by classical
conditioning (association between a CS and an US) and pavlovian associative conditioning
(between two stimuli). In multiple simultaneous attractor networks, two successive inputs are
associated in memory when they are frequently co-occurrent in the environment (covariance
Hebb rule) (see Brunel, 1996, Mongillo et al., 2003). Here, the asymmetric rule allows
associative learning of temporally ordered sequences of attractor and guarantees that the
network activates attractors in the order the encoded inputs were learned (Mongillo et al, 2003;
Matsumoto & Okada; 2002). Within the AIM Network, recursive processes refer to the
anticipatory activatioq by an attractor encoding an actual input I (state sr,), of an associated
atfactor encoding an anticipated input A (si*r).
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Figure 2: Recursive and Incursive Dynamics.

Network states (letter codes): Attractor spike rates (Hz) in stable networ-k states, as a function of the asyrnmetric
pair leaming parameter a between input (I) and anticipated (A) athactors. v6 = 0 is the minimum neuron activity,
v", around 3 Hz, is the level of spontaneous activity of excitatory neurons, and v., slightly below 80 Hz, is the
maximum neuron activity. Stable states conespond to different level of activity of attracûors. A stable network
s1âte is a dynamic of opposite effects of excitation and inhibition; some attractors close to their maximum
activatioq some at various level above spontaneous activity, and some at lower rates than spontaneous activity,
depending on their respective ratio of global excitation/inhibition (for better readability, the activities of valence
neurons, inhibitory neurons, and neurons encoding no input are not displayed). States are presented for the
synaptic structurc described in the 'Model parameters' section, and for the following within attractors synaptic
structure, with.{; synapses from neuronT to neuron i: "/0 

= 0.0004 mV; Jr= Jy= J1 = 0.0054 mV (r=0.93).
Network dynamics (insets): Attractor spike rates (Hz) in nenvork dynamics as a.function of time (ms). Two
selected representative examples of recursive and incursive athactor dynamics are prcsent€d in insets. They
correspond to the following protocol ofinpub processing according to cognitively realistic time courses: 0-l00ms:
Stable state of the network without any input; 100-200ms: Processing of the actual input; 200-300ms: Attractor
dynamics toward stable states.
For symmetric sets of synaptic parameters (a{)), input and anticipated attractors, I and A, are simultaneously
activated at the same level. Left inset (a<0) exhibits incursive processes in which the input attractor I (state at time
t) remains the most activated at time t+1, due to asymmetric association stronger from anticipated attractor A to
input attractor I. Right inset (a>0) exhibis recursive processes in which the anticipated atFactor A (state at time
t+l) replaces the input attractor I (state at time t), due to asynrnetric association stronger from input attractor I to
anticipated attractor A. In all cas€s, other excitatory neurons E, encoding atrôctors not anticipaæd m no leâmed
attractor, stay activated at sub-threshold activity; receiving more inhibition than activation.

v (Hz)

Jer Jre.

J-*til
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The next state st+t can then shift to the anticipated input (A) or to a combination of the
anticipated and actual inputs (A+I; as a function of the asymmetric synaptic strengths between
attractors (Figure 2: right hand side letter codes and inset).

Incursive processes are accounted for by the computing ofthe networks' next state s'1a1 as a
function of an anticipated input (attractor encoding anticipated input A), having feedback
effects on the activation ofthe attractor encoding the actual input I. The next state &*r can then
stay the same (actual input I) or shift to a combination of inputs I and A, at respective levels
depending on the asymmetric values of the synaptic weights (Figure 2: left hand side and inset).

Only for a : -l and a = *1, the network exhibits 'pure' incursion or 'pure' recursion,
respectively. For all other cases, both attractors I and A are associated in both directions (i. e.,
from I to A and from A to I), even through asymmetric synapses. Then, anticipations arise from
a mix of simultaneous recursive and incursive processes, being equivalent for a : 0 (symmetric
case). These simulation results replicate those from Mongillo et al (2003). They show that the
respective levels of activation, as stable end-states of the networks' dyramics, are influenced by
the asymmetry of synaptic potentiation between attractors encoding both inputs.

Hyperincursive processes are accounted for by the computing of the networks' next state s't,r
as a function of several anticipated inputs activated in parallel (attractors encoding anticipated
inputs A* & A-; + and - signs are chosen to ease comparison with goal directed anticipations,
but none ofthe anticipated inputs is associated to a goal). The anticipated inputs have feedback
effects on the activation of the attractor encoding the acfual input I. The next state st+I, as
respective levels of activations of inputs I, A+ and A-, then depends on hyperincursive processes
of activation between the anticipated inputs, depending on their mutual associations (Figure 3:
left hand side letter codes and inset).

3.2. Autolncursive Goal Direction as Selection of Anticipations toward Learned Goals

To account for goal direction as the selection ofan actual state among several anticipated
states, the network must be able to select anticipated states associated with positive goals.
According to Dubois (2000), a decision process is required for the selection ofone actual state
among several anticipated ones, and "the decision process could be explicitly related to
objectives to be reached by the state variable s of this system." This decision process can be
accomplished by goals which orient anticipations as a function of their positive or negative
valence (see Barnes & Thagard, 1996).

Some inputs in the environment are unlearned reinforcers which lead to affective states
genetically programmed to trigger automatic taxic behaviors. The input's affective valence
triggers behavioral responses orienting the system toward positive-appetitive events
(approaching behaviors) and away of negative-aversive events (avoiding behaviors) (Rolls,
1986, 1990, 1999). The positive or negative valence ofunlearned reinforcers (e.g., 'food' or
'pain') can be associated with leamed secondary reinforcers (e.g., 'places where there is food'
or 'dangers which cause pain'), by classical conditioning when the two events are frequently
temporally correlated. Experimental data show that anticipations in human memory are stronger
when both inputs (a 'prime' and a 'target') share the same valence (Bargh, Chaiken, Govender
& Pratto, 1992;De Houwer, Hermans & Spruyt, 2001; Fazio, 1995, 2000; Fazio, Sanbonmatsu,
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Figure 3: Hyperincursive and Goal directed Dynamics.

Network states (letter codes): Attractor spike rates (Hz) in stable network states, as a function of the asymmetric
pair leaming pafirmeter a between anticipated attractors A* and A-. vn = 0 is the minimum neuron activity, v'
around 3 Hz, is the level of spontaneous activity of excitatory neurons, and v., slightly below 80 Hz, is the
maximum neuron activity. Stable states correspond to different level of activity of atfiactors. A stable network
state is a dynamic of opposite effects of excitation and inhibition: some attractors close to their maximum
activation, some at various level above spontaneous activity, and some at lower rates than spontaneous activity,
depending on their respective ratio ofglobal excitation/inhibition (for better readability, the activities ofvalence
neurons, inhibitory neurons, and neurons encoding no input are not displayed). States are presented for the
synaptic stnrcture described in the 'Model parameters' section, and for the following within attractors synapses,
with .[ syrapses from neuron j to neuron i , and J,a*1 : Jt..t* = J.<t = Ju- = J,t,,r- = J111 = J1+6* = J.a-6- = J 1 =

0.0054 mV (.r0.93).
Network dynamics (insets): Attractor spike rates (Hz) in network dynamics as a function of time (ms). Two
selected representative examples of multiple attractor dynamics are presented in insets. They correspond to the
following protocol ofinputs processing according to cognitively realistic time courses: 0-l00ms: Stable state of
the network widr or without the extemal influence ofvalence neurons (activation or not ofthe goal attractor during
the whole protocol); 100-200ms: Processing ofthe actual Input; 200-300ms: Dynamics toward stable states.
For symmetric sets of synaptic parameûers between A+ and A- (a=0), and in absence of goal activation, both
anticipated attractors, A+ and A-, are simultaneously activated at the same level. Goal activation, however, leads
to the selection ofthe corresponding anticipated athâcûor. Left inset (a<0, no goal activation) exhibits anticipatory
processes in which the anticipated atractor A- is the most activated, due to asymmetric association stronger from
anticipated attractor A+ to at$actor A-. Right inset (a<0, goal activation of A+) exhibits selection processes of the
anticipated attractor A+; despite asymmetric associations stronger from A+ to A-. Goal activation, by valence
neurons, can then select anticipated attractors activated by an input, and lead to the activation of a sequence of
attractors independently of the asymmetric synaptic parameters (case of a=0). from In all câses, other excitatory
neurons E, encoding attrâctors not anticipated or no leamed attractor, and goal attractors not activated G-, stay
activated at sub-threshold activity; receiving more inhibition than activation.
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Powel & Kardes, 1986; Hermans, De Houwer & Eelen, 1994; see Fazio,200l for a review).
Furthermore, anticipations are rçported to be stronger when positive rather than negative inputs
are processed, semantic anticipations being sfronger in positive context than in neutral or
negative context (Hiinze & Hesse, 1993;Hânze & Meyer, 1998).

In the AIM Network, attractors encoding inputs are activated by valence neurons
encoding the positive or negative valence of the inpus. A way to account for the differential
activation of positive vs. negative inputs, positive valence nerrons present a higher activity
(vir"ry > 0 even if no input is processed) than negative valence neurons (viuvl - 0 if no input is
processed), these activities being influenced by mood states (Rolls, 1986, 1990, 1999). In
positive states, positive valence neurons receive an input activation 1o,, which assures that
atffactors encoding positive inputs are the most activated and lead to stronger anticipations.
Then positive goals can be spontaneously activated in the network and can (hyper)incursively
activate attractors associated to them (goal direction).

Goal direction is accounted for by the network by recursive activation, by an attractor
encoding an input 1 (state sl,), of several anticipated inplts (s'i,n1). They can be associated in
turn to either positive goals (s**,*o) or negative goals (s'i*n). Valence neurons bias activation
toward positive instead of negative goals. Through incursive processes, a positive goal can
activate other anticipated attractors associated to the goal. The selection of the next network
state is then biased ûoward attractors associated to the goal. A sequence, can then be activated in
which successive attractors increase and then decrease their spike rates, until the 'goal' attractor
becomes the next network state (Figure 3: right hand side letter codes and inset).

These simulation results exhibit a rich phenomenology of anticipatory processes.
Aqmrmetric synaptic associations, between two atffaçtors A+ and A- to be anticipated from an
input I, determine which one becomes the next network state in absence of goal activation.
However, tlte activation of a goal Gr selects the next network state A+ whatever the
asymmetric association between A+ and A-. Then, in a given range of the asymmetric pair
learning paramet€r a; the processing of a sequence of anticipated attractors does not require
asymmetric learning, givan the assumption that a goal attractor activates an anticipated
attractor.

As a function of the relative activations of the Input vs. Goal attractors, the model
exhibits a goal anticipation mode, where the goal is the more activated and can influence the
processing of new input, or an input anticipation mode, where the actually perceived input is
more activated than the goal and can influence the activation ofanticipated associates.

Autolncursion corresponds to the computing of goal oriented anticipations depending on
learned parameters (synaptic weights). Goal learning is the association between attractor
neurons of the Pre-Frontal Cortex, encoding the 'goal' input, and neurons of the Baso-Lateral
Amygdala, encoding the input's valence valence. Goal leaming in cognitive systems is assured
by synergistic classical (Pavlovian) and instrumental (Skinnerian) conditioning (see Cardinal et
al,20f2). This allows the systern to associate inputs to their valence, and to associate them
together as a function of their valence. Positive reinforcers, or rewards, as well as negative
reinforcers, or punishers, can elicit affective states influencing leaming (Millenson, i967;
Weiskrantz, 1968; Gray, 1975; Rolls, 1986, 1990, 1999). Neuronal learning allows the system
to vary the frequency ofa behavior in order to obtain a reward and avoid a punisher, according
to Thorndyke law of effects. To this aim, associations between fwo inputs are strengthened in
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positive feedback (the second input is positive) and not in negative feedback (the second input
is negative); by the way of increased neuronal activations in positive states compared to
negative ones (Hânze & Hesse, 1993; see Rolls, 1999 about the neural basis of leaming in
positive and negative states). The spontaneous activity ofpositive valence neurons assures that
positive inputs are more activated than negative inputs. This leads to stronger activations (eq.
2.1 & 2.2), and then to stronger associative learning (eq. 2.4 & 2.6), when a positive input
(reward) is presented to the network than when a punisher is presented. Thougb this valence
dçendent learning has to be more deeply investigated in AIM Networks, when an input is
presented, the network can activate more strongly attractorc encoding associates leading to (i.e.,
associated themselves to) positive goals than attractors encoding associates leading to negative
inputs.

4. Autolncursion and Adaptation

On the basis of biologically realistic neuron properties and network architechre, the AIM
Network presented can account for recursive, incursive, hyperincursive, and autoincunive
properties of cognitive processes. In addition, synergic activation of neurons of the cortical
module and of the amygdala can lead to goal direction of anticipations. Goal direction is an
asymmetric processing of sequences of attractors, from input I to anticipated A+ atûactors, that
can occur on the structural basis of a symmetric set of synaptic parameters between the
attractors. The AlM-Networt presents the fundamental prop€rty of activating sequences of
anticipations according to learned rules, such as reported in the prefrontal cortex (see Fuster,
2000). Interactions with the amygdala, encoding the valence of inputs, can account for goal
directed sequences of anticipations. Future extensions of the model will have to take into
account of several aspects out relative to the model itself and more generally to autoincursive
systems.

First, recursion and incursion are assimilated as, respectively, forward activation by the
input attractor of the anficipated atFactor, and feedback activation by the anticipated attractor
of the input attractor (Figure 2). Recursive and incursive processes have to be more deeply
investigated as combinations of forward and feedback activation and inhibition. On the one
han{ inhibition between attractors can be considered in a single column in the case of stong
activation (of multiple attractors) leading to global inhibition of all the athactors (resetting
mechanism) (Brunel & Wang, 2001). On the other hand, attractors are also embedded in
difilerent networlcs of different cortical areas (e.g., prefrontal and inferotemporal) involving
neurons of variable dynamics (different integration time constants ôf NMDA and AMPA
glutamatergic receptors). In addition to the data presented here with only fast neurons dynamics
(rl ms), firther investigation of the ratio of fast vs. slow neurons would be of importance to
account for more precise time courses of activatory and inhibitory effects between attractors
(Brunel,2002).

Secon( network's anticipated states are anticipated inputs which would change network
states if presented to the networ&. They are not a full prediction of the actual next state reached
when processing the anticipated input. The network do not anticipate future states of itself as a
whole but states as a combination of activities of attractors, encoding external inputs in subparts
of its neuron population. However, this property to "contain a predictive model [of itself
and/or] of its environment" (Rosen, l99l) is necessary to the network to compute its next state
autonomously and learn new anticipations. [n addition, autoincursive properties are accounted
for by the network as synaptic modifications leading to goal directed anticipations. Indeed, the
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computing of new anticipations varies with learning given that synaptic weights are modifiable
parameters of neuron transduction functions. However, not all the parameters of the
transduction function and learning equation vary with learning.

Third, because of limited computing power, only a limited number of anticipated states
can be computed in parallel at a fime by the system. This limits its anticipatory power, given
that the next state of the system is computed on the basis of a subset of all the possible
anticipated inputs.

Forth, an AIM Nctwork is an open system which internal states are not totally described
by its internal equations. Internal states also depend on online interactions between the system
and a deterministic but complex and then not fully predictable environment. Though this gives
the system its autoincursive properties of modification of anticipations by goal leaming, an
open system can not completely compute its next state as a function of perfectly well known
future states, and then do not fulfill the requirements for strong anticipatory systems (Dubois,
2000). Anticipated future states are predicted states with a variable probability to become actual
states (see Davidsson, Astor & Ekdahl, 1994). This defrnes AIM Networks as weak or strong
anticipatory systems, depending on their predictive power of future states, depending in turn on
previous learning. The more accurately the matrix of synaptic weights encodes the temporal
structure of inputs, the fittest are the anticipations in terms of adaptation to the environment.
Then adaptation of anticipations to complex and changing environments is a function of
learning of how and what to anticipate, that is of autoincursive properties of AIM Nefworks.
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