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Abstract

We show that projectors proposed in the framework of Quantum Signal Processing can
be implemented as Hamiltonian Neural Network based orthogonal filters. Moreover,
such filters can be used as Universal Signal Processors. The structures of such
processors rely on a family of Hurwitz-Radon matrices. To illustrate, we propose a
procedure of nonlinear mapping synthesis. The problem of anticipation is reformulated
as a problem of supervised learning.

Keywords: Quantum Signal Processing, Signal Processing via Neural Networks,
Hamiltonian Systems

1 Introduction
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| In the literature on signal processing, a new mathematical tool borrowed from
| quantum theory, named Quantum Signal Processing (QSP), has recently been proposed
| [1]. QSP can be seen as a complementary notion for Quantum Computing, Quantum
| Computers and Quantum Information Theory. The objective of QSP is the algorithmic
} implementation of signal processing using a von Neumann interpretation of quantum
| mechanics principles and, specifically, using Quantum Measurement Theory based on
| von Neumann projection operators. It is well known that in the standard Quantum
| Mechanics each subspace M of # (a Hilbert space) specifies a property of a quantum
| system. There is a one-to-one correspondence between properties and orthogonal
1 projection operators (E*=E), i.e., properties are identified with projectors. However, the
| projectors proposed by QSP are not fulfilling the general constraints imposed by
| Quantum Mechanics.

| We point out that, the projection operators can be alternatively implemented by
| Hamiltonian Neural Networks, i.e., lossless neural networks with weight matrices given
| by J-matrices (orthogonal and skew-symmetric). We show that Hamiltonian Neural
| Networks can create the architecture of universal projectors. Moreover. a family of
| projectors with different possible applications in signal processing can be conceived,
based on a family of Hurwitz-Radon matrices. We point out that these projectors can be
seen as Haar-Walsh spectrum analyzers, analog associative memories, classifiers and
different types of mappings. Finally, we tackle the notion of weak anticipation, showing
how to design anticipative systems by using supervised learning.
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2 On Family of Hurwitz-Radon Matrices

The algebraic problem of founding a set of orthogonal, skew-symmetric matrices A
with following properties:

AjAc+AA =0,A =-1forj=zk,k=1,....5s )

has been independently solved by Hurwitz and Radon [2]. These matrices are known as
Hurwitz-Radon matrices. The maximum number of matrices for a given N, where N is
matrix dimension, has been determined by Hurwitz and Radon. Let N = 2% b, where b is
an odd number and a=4¢c +d; 0 <d <4;¢c > 0.

Any family (1) of Hurwitz-Radon matrices (NxN) consists of sy« matrices, where

Smax = 8¢ +29—1 )

Number p(N) = 8c + 29 = spax + 1 is known as a Radon number. Hence sy = p(N) -1
and p(N) < N. Radon number fulfills p(N) = N for N = 2, 4, 8. Moreover, for any N the
maximum number Syax of family members exists for matrices with integer elements, i.e.,
{ -1, 0, 1}. For our purposes, the following statements on family of Hurwitz-Radon
matrices could be interesting:

1. The maximum number of continuous orthogonal tangent vector fields on sphere
SN = RV is p(N) -1.

2. Let Ay, ..., A5 be a set of orthogonal Hurwitz-Radon matrices (1) and A, = 1.
Let ay, ... , 0 be real numbers with:

S, =1 3)
i=0

Hence, matrix:
Al@)=) A,
i=0

is orthogonal. Since o= (g, Qs ... , a5 )& S° = R**, then eq. (3) can be seen as
a map of sphere S° into the orthogonal group O(N). Moreover, the eq. (1) can be
treated as a problem of finding the maximum number of orthogonal tangent
vector fields on SN, It is worth noting that Hurwitz-Radon matrices can be used
for creating the weight matrices of Hamiltonian Neural Networks.

3 Hamiltonian Neural Networks
Inspired by results known from classical and quantum mechanics we aim to show

that very large scale artificial neural networks should be implemented as passive or,
particularly, as lossless structures. These technical notions mean that from a
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mathematical point of view they should be Hamiltonian systems [3], [4]. It is worth
noting that:
1. passivity implies BIBO stability of the structure.
2. passivity of the structure can be attained by a compatible connection of
elementary passive building blocks, i.e., neurons.
A general form of an autonomous Hamiltonian system is given by the following
state-space equation:

).(z JH'(x) = v(x) 4)

where: v(x) — a nonlinear vector field
and -J =J" =J" (J - skew-symmetric matrix) 5)

There is such a basis in R*" where matrix J has a form:
J { ;) ;}; 0, 1, -1 are (n x n) diagonal matrices (6)
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| Function H(x) is a hamiltonian (energy) of the system. Since in Hamiltonian systems
| there is no dissipation of energy, their trajectories in the state space can be very
| complicated for t — * . Therefore, the basic method of the “movement” description is
| to find periodic solutions, using, for example, the Maupertuis principle. Equation (4) has
| constant solutions, i.e., every point Xg € R*" such that H'(x) = 0 is the equilibrium and
| x(t) = x¢ is the solution. It can be shown that the structure of the Hamiltonian neural
| network (HNN) can be obtained as a compatible connection of N lossless neuron pairs.
| An example of such a pair is shown in Fig.1.

Figure 1. Two compatibly connected neurons - a two neuron lossless network.

It can be seen that the state-space description of the network from Fig.1 is as follows:
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).(1 _ 0 -1} O(x)) d, ’ %).
LJ-L 0:”:@)(XZ)J+[d2:] where: p, < " <HU,, KM, €[0,00] 7)

The two neuron lossless network from Fig.1 can be treated as an elementary building
block to create very large scale neural networks. Note, however, that in addition to the
continuous time neurons (Fig.1), discrete time and PLL (Phase-Lock Loop) structures
can be designed as well. Generally, a lossless neural network composed of N neuron
pairs is described by the following state-space equation:

x=WOx)+d (8)
where: W-matrix of information flow connections (weight matrix) and W =-W'
(skew-symmetry), d represents an input signal (data)

Thus, a neural network composed of N elementary neuron pairs (from Fig. 1) with
orthogonal weight matrix W, i.e.,

WwWWwW' =1 9)
is a Hamiltonian system, with activation function ®(x) = H'(x), since

W =-lie. W' =W'=.w (10)

the Hamiltonian neural network can be seen as an involutional operator. The weight
matrix of HNN can be formulated as follows:

W= Yo o 1
pLE _Wg‘ __WZ"“ snN=1,4, ... ( )
where:
AN
W, =
-1 0
and We- W =1 (dim W¢ = dimW,,.,) (12)

Wye - We = We - Wy =0

Possible solutions of (12) are:

Wc=1 and Wc=W,,+1

It can be seen that rows and columns of matrix W, constitute a Haar-basis. Moreover,
the weight matrix W can be obtained by using a family of matrices (3).
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4 Hamiltonian Neural Network as a Spectrum Analyzer

Some basic properties of the HNN can be derived from (4). First, as mentioned
above, the structure of such a network creates a nonlinear vector field: WO(X)=v(x)
with a single equilibrium point for x = 0. Hence, HNN determines a type of orthogonal
transformation, namely:

Wox)+d=0 (13)
where: d — input vector (input data or signal)

It is worth noting that (13) gives the steady state solution of the network under constant
excitation. Hence, the output of the network, i.e.,

0(x)=Wd (14)

where the rows and columns of W constitute the orthogonal Haar basis can be seen as a
Haar spectrum of input vectors. Since, however, ©(x) is the output of a nonlinear,
dynamical Hamiltonian system, (14) is true only for such a bounded input where
|®(x)| < 1 (for saturated (£1) activation functions).
Since W2 = -1, it is clear that this Haar analysis sets up the following relationships:
a) (®,d)=0, where (., .) denotes scalar product in I,
b) The components of vector @(x) are Haar coefficients. Thus, the HNN performs a
decomposition of the input vector into the sum of orthogonal patterns (columns
or rows of weight matrix W). If the input vector consists of discrete samples of a
time function, then these patterns can be treated as Haar-like wavelets.
¢) If, for a given input data set, there are large Haar coefficients, then the spectrum
analysis fixes a number of principal components of the input data.

The Haar analysis using HNN can be schematically shown as in Fig 2.

d O(x) Ox) d
> W — > W |—

Figure 2. Haar analysis using HNN
Note: The Haar analysis illustrated in Fig. 2 assumes a physical neural network (a signal

processor) with an orthogonal, skew-symmetric weight matrix W solving the following,
ill-conditioned, differential equations:

x=WO(x)+d
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Such a signal processor cannot be practically realized (in silicon) due to the pure
imaginary eigenvalues of matrix W. On the contrary, the Haar transformation given by
algebraic equation (14) is ready to use as an algorithm. In the following section we
show how to solve the problem of physical realizability.

5 HNN as an Orthogonal Filter

Orthogonal filtering is one of the basic operations in modern signal processing. For
example, in digital communication, transmitted messages are encoded in the form of
orthogonal symbols. Thus, a transmitted signal consists of such symbols corrupted by
additive noise. Hence, a primary function of any receiver is to perform such an
orthogonal filtering. The basic structure of an orthogonal filter, using the structure of
the HNN, is shown in-Fig.3.

Figure 3. Structure of an orthogonal filter.

It can be seen that such a filter performs the following decomposition:
d=u+ty; y=06(x) (15)
where: u and y are orthogonal, i.e., y = Wu and (u, y) = 0.

At the same time (15) sets up two types of orthogonal transformations:

y=051+W)d;(d,y)#0 (16)
and
u=0.51-w)d (17)

According to (16) the input signal d is decomposed into a Haar or Walsh basis (Walsh
functions take only the values 1 and —1), and the output signal y constitutes the Haar or
Walsh spectrum, respectively. Assuming, that the above symbols are encoded by
columns or rows of matrix (1 + W), the largest Haar coefficient of the spectrum at the
output of the orthogonal filter can be used as a measure of presence of information
hidden in noise. Indeed, one obtains
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d=w,+n=u+y (18)

where: w; - a symbol (a column or row of matrix (1 + W)),i e [1, ..., N],
n - additive noise, N=dim W

Hence, if there is such a minimal S/N ratio, that
®i=(wi+n,wi)>®k=(w|—+n,wk),Vk¢i (19)

where: ®; — the largest Haar coefficient of the output spectrum, then the orthogonal
filtering can be performed.

6 Realizability of HNN

As mentioned above the HNN described by (8) cannot be realized as a technical
object. On the contrary, the orthogonal filter shown in Fig. 3 could be implemented in
silicon, even if the weight matrix W is not exactly skew-symmetric. It is clear that this
implementation is guaranteed by the stabilizing action of negative feedback loops.
Moreover, by cascading two such orthogonal filters one obtains a Haar spectrum
analyzer equivalent to that shown in Fig. 2. In Fig. 4 such a cascade is schematically
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Figure 4. Haar spectrum analyzer by using two orthogonal filters.

Thus, without going into detail on the technological issues, one can state that very large
scale artificial neural networks can be realized as physical objects by the structure of
orthogonal filters.

7 HNN as a Universal Signal Processor

It is not the main goal of this paper to present practical applications of signal
processing using HNN. Nevertheless, it seems to be clear that, by having such networks
implemented in the form of orthogonal filters, one could realize, in real-time, most of
the signal processing known from advanced wavelet analysis, for example:

- signal denoising

- coherent structure extraction-orthogonal filtering

- pattern recognition and classification
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- multiscale and multiresolution signal analysis

- image processing

- data compression
It is worth noting that the problem of orthogonal Hurwitz-Radon matrices, mentioned
above, and the solution given by Hurwitz-Radon theorem can be used to formulate two
essential issues in signal processing performed by HNN, namely:

- finding the best-adapted bases for a given class of signals

- decomposition of a given signal (pattern/image) into orthogonal components.

Indeed, let Wy, ..., W, be e set of orthogonal skew-symmetric Hurwitz-Radon matrices
1.€.

Wi W+ W W;=0forj=k;jk=1,...,s

Let o, ..., o, be real numbers with 20112 =1. Then:

W)=Y oW, ;W=1 (20)
=0

is orthogonal, where smy = p(n) —1; p(n) - Radon number of n. Hence the following
adaptation rule:

Find such a vector of parameters o that the weight matrix W(a) of HNN sets up the
best-adapted basis.

8 Design of HNN Based Associative Memories and Mappings

It is worth noting that, using the Hamiltonian Neural Network (HNN) based spectral
analyzers, the typical functions of neural networks can be implemented as well. This
means, for example, that one can implement content-addressable or associative
memories and, hence, different types of selectors, classifiers and nonlinear mappings.
The purpose of this note is to show how the mapping can be implemented in the form of
an associative memory.

A design of such a mapping is based on the following procedure:
Let a mapping y = F(u) be given by the following trainings points:

u >y, fork=1,...,n 1

where uy and yi belong to input and output vector spaces (generally with different
dimensions), respectively.

In the first step of the design procedure, let us create the following memory matrix M:
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M=[{my, m,,..,m,] (22)
where:
u, |
m, =(W-1) =(W-Dd, for k=1,..,n; d, - given input vector  (23)
k Y

It is easy to see that memory vectors my consist of a Haar spectrum of training points uy
and y, (Fig.5.)

Signal Spectrum Signal
" : Orthogonal Inverse
k ° filter . transformation °
d Bisssmmi] HNN with s Wy HNN with s d
Vi 4 weight matrix: weight matrix:
o2 {W-1 ) e (B-W-1) | _ o

Fig.5. Spectrum analysis of training points
The proposed structure of an associative memory (fulfilling the relation (21) ) is shown
in Fig.6
Selective orthogonal filter

The block denoted as W; in Fig.6. represents a symmetrical part of the weight matrix,
where

W, =M (M'M)'M" (pseudoinverse of M) (24)
and >0 (25
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This structure can be seen as a neural network with a weight matrix Wy, containing two
components: antisymmetric (orthogonal) W and symmetric:

—2+BW,
ie. Wy=W-2+B W, (26)

Hence, one obtains the following statements:
1. For B <1 the associative memory from Fig.6. constitutes a selective orthogonal
filter, i.e. ,

mg=(W-1)dy for k=1,2,...,n

2. The state space of this associative memory is a set of attractors with attraction
centers mg, k = 1, 2, ... , n. Due to such an attractor structure, this associative
memory (being passive) can reconstruct the input points belonging to the
neighborhood of trainings points.

Finally, the structure of mapping F(e) implementation by successive approximation is
given in Fig.7.

Step 1:
e ——oO0---0——— 0
- : Associative : ﬁ\k“ )
° memory- ° Inverse °
o— . A b ; ——0o
®
o—— selective e m transformation —C
0 o orthogonal filter s 2
¥k
o —o-- —o
A)
if |ju, —ux ||>¢€ go to the next step
Step 2:
o— s ——0---0——] ——o0
m e Associative Inverse s 0 ?
. memory - e A é transformation o
o—] A ——o
° 2
A~ 1 selective s m® n —o
M e orthogonal filter . ;I\ @
Yk k
° e O] [
. A
o if |lw, —ux ||>€ go to the next step
L)
Stepm: eee

Fig.7. The structure of a nonlinear mapping F(e) implementation.
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Example

Let us design a nonlinear mapping given by the following 3 training points:

u, =

The Haar analysis using orthogonal filter (23) with weight matrix W given by:

[-0.031922]
-0.040369
-0.050288
0.011161
0.070934
-0.030971

| 0.088485 |

[-0.039411]
-0.033591
-0.086611
-0.078058

0.004112
0.017683
-0.022274 |

[-0.065599]
-0.017373
-0.079100
-0.055284
0.009708
-0.067576

-0.074152

—yr = 0.045005 ie. d, =

~y2= 0.081688 ie. d,=

> y;=-0.002495 ie. d,=
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[-0.031922
-0.040369
-0.050288
0.011161
0.070934
-0.030971
0.088485

| 0.045005 |

[-0.031922]
-0.040369
-0.050288
0.011161
0.070934
-0.030971
0.088485
0.081688 |

[-0.031922]
-0.040369
-0.050288
0.011161
0.070934
-0.030971
0.088485

| -0.002495 |




( o 1 1 1 1 1 1 1]
-1 0 -1 1 -1 1 -1 1
-1 1 0 -1 -1 1 1 -1
W=—1—— -1 -1 1 0 -1 -1 1 1
JI[-1 1 1 1 0 -1 -1 -1
-1 -1 -1 1 1 0 1 -1
-1 1 -1 -1 1 -1 0 1
- -4 1~ & 1 -} #
gives the following spectrum points my
[ 0.001777] [-0.041804] [-0.086846 |
-0.030004 0.014449 0.007132
-0.039876 -0.044535 -0.048127
0.027392 -0.034496 -0.030456
m, m, m, =
0.007130 -0.042489 0.015816
0.031364 0.005388 -0.025323
0.077770 0.033910 0.011519
| 0.015389 | L 0.061331 | | 0.012995 |

Symmetric matrix W, for these memory points my, is as follows:

[ 0.6462
-0.0571

-0.0571

03078 0.2180 -0.1748 0.2282 -0.0050 -0.0199 |

0.1505 0.0608 -0.1799 -0.1650 -0.0822 -0.2055 0.1107

0.3078 0.0608 0.3157
0.2180 0.1799 0.0382
*[-0.1748 -0.1650 -0.0422

0.0382 -0.0422 -0.0209 -0.3086 -0.1367
0.2598 0.1815 0.1204 0.1763 -0.1799
0.1815 0.4665 -0.1042 0.0211 -0.3809
0.2282 -0.0822 -0.0209 0.1204 -0.1042 0.1801 0.2303 0.1000
-0.0050 -0.2055 -0.3086 0.1763 0.0211 0.2303 0.5763 0.1488
[-0.0199 0.1107 -0.1367 -0.1799 -0.3809 0.1000 0.1488 0.4049 |

For example, the approximation process for point d;_ i.e., u; =y, using the structure
from Fig.7. with B = 1, is as follows:
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Step 1:

for input u, =

Step 2:

for input u, =

[-0.031922]
-0.040369
-0.050288
0.011161
0.070934
-0.030971
| 0.088485 |

[-0.031922]
-0.040369
-0.050288

0.011161

0.070934
-0.030971
| 0.088485 |

and y; = 0.0000000 — output " = 0.007630

and = 0.007630 — output p*' = 0.013954

Hence after 30 steps one has the following mapping:

for input u, =

[-0.031922]
-0.040369
-0.050288
0.011161
0.070934
-0.030971
| 0.088485 |

and ) = 0.044388 — output y** = 0.044421

y; = 0.045005 is the nominal value

Notes

1. Proposed above design is linear and well-posed (due to the passivity of
structures). Hence, it can be easily extended to high dimensionality. It is also
worth noting that, at the same time, the outputs y = ©(x) and x = ®"'(y) can be
exploited.

2. The structures shown in Fig. 5 and Fig. 6 can be seen as an implementation of
different type projectors.
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3. From a topological point of view, the procedure of associative memory
realization can be interpreted as a ,,drilling of holes in the sphere”.

4. The method of association proposed in the above example seems to be very
humanlike, i.e., the results and quality of association depends on available time
(think about chess players) or the available number of procedure steps.

9 Anticipation by Learning

The voluminous literature deals with formal definitions and different notions of
anticipation. Without delving too much into philosophical matters, one can state that the
notion of anticipation should be related to the possibility of time reversal. Rosen’s
notions of anticipation and anticipatory systems deal with time reversal as a predictive
model of itself and/or its environment, which makes it possible for the system (also
biological) to compute its present state as a function of the model’s prediction [8], [9]. It
is worth noting that such a structure of an anticipatory, technical system can be found in
model reference adaptive control, especially as a fuzzy model reference-learning
controller (FMRLC). The above described implementation of a nonlinear mapping
y(or x) = F(u) can be treated as a model of supervised (by examples) learning. Indeed,
learning techniques are similar to implementation of the mapping F(e) relying on the
fitting of experimental pairs { wy, yx }. The key point is that the fitting should be
predictive and uncover the underlying physical law, which is then used in a predictive
way. Hence, one can easily see the relation between supervised learning and Rosen’s
anticipatory system. Thus, the structures of selective orthogonal filters can be seen as
implementations of anticipatory systems. Our comparative study on the quality and
features of these systems versus systems known as Support Vector Machines (SVM)
and Regularized Least Squares Classifiers (RLSC) is being prepared [5]. The problem
of real (not by model) time reversal can be considered only in framework of quantum
mechanics. Within an interpretation of quantum mechanics proposed by R. Omnes
[6[, [7] one can find an appropriate theoretical tool to approach the fundamental
question: Is it possible to change the direction of time? The bedrock of the Omnes
theory is the concept of a family of consistent histories: Any physical process, and
particularly an experiment, can be described by a family of histories, where a history is
a time-ordered sequence of physical properties, mathematically coded as a sequence of
projectors (projection operators in Hilbert space) E;(t), Ex(t), ... ,Es(t) reference times
being ordered according to t; < t; < ...<t,. Omnes answer to the above mentioned
fundamental question is as follows:

1. The time direction is determined by an irreversible, dynamical process of
decoherence i.e. E(t)=>E(ty), for tx < t; (a datum cannot be changed or
contradicted by a later external action or evolution).

2. The close relation between dissipation and decoherence implies that the only
possibility of avoiding decoherence is to work with nondissipative systems.

Omnes considers several examples of quantum object complementarity (e.g. EPR)

resulting in peculiarities which could be interpreted as anticipation i.e. E(tx) <= E(ts), for
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t, < t, but quantum logic makes us to choose the direction of decoherence.

Conclusion 1

Due to decoherence, the real time reversal is impossible (with probability
equal 1).

Conclusion 2

The von Neumann language of projectors and quasi-projectors is quite universal. Hence,
it could be used in the framework of families of histories for describing the very
complex dynamical systems alternatively to Zadeh's fuzzy logic systems and soft
computing [10].

As a byproduct of these considerations, we claim that hamiltonian neural network based
projectors can be physically implemented as near-lossless structures. Hence, they could
be considered as models of physically implementable quantum computers

10 Concluding Remarks

In this paper, we have presented how to find the most suitable architecture for very
largescale artificial neural networks. The structure of such neural networks is composed
of pairs of lossless neurons. Hence, they have the form of Hamiltonian Systems with
orthogonal weight matrices, W, particularly belonging to a family of Hurwitz-Radon
matrices. The unique feature of HNN seems to be the fact that HNN can exist as
algorithms or Hamiltonian physical devices performing the Haar-Walsh analysis in real-
time. The family of Hurwitz-Radon matrices generates a set of HNN based signal
processors or algorithms belonging to the notion of Quantum Signal Processing.
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