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Abstract In graph-based systems there are many methods to compose (possibly dif-
ferent) graphs. However, none of these usual compositions are adequate to naturally
express semantics of systems with dynamic topology, i.e., systems whose topology
admits successive transformations through its computation. We constructed a cat-
egorical semantic domain for graph based systems with dynamic topology using a
new way to compose edges of (possible different) graphs. In this context, sequences
of different graphs represent successive transformations of system topology during
its computation and the edges composition between those graphs, the semantics of
the corresponding dynamic system. Then we show how the proposed approach can
be used to give semantics to concurrent anticipatory systems.

Keywords : Graphs, Category Theory, Composition, Anticipatory Systems, Dy-
namical Topology.

1 Introduction

In graph-based systems there are many methods to compose (possibly different)
graphs. Some examples are the parallel and nondeterministic compositions usu-
ally reflected by the categorical constructions of product and coproduct ([12], 19].
[11]), respectively. Also, there are some non-traditional ways to compose systems
such as the graph-grammar using double-pushout (total morphisms) ([5], [10]) or
single-pushout (partial morphisms) ([7], [9], [6]) approaches. However, none of these
compositions are adequate to naturally express semantics of systems with dynamic
topology, i.e., systems whose topology admits successives transformations through
its computation.

For example, consider the graph-based system in figure 1 (left). Suppose that,
after the computation of the transition ‘a’, the system changes its topology, replacing
the arc b by the arcs p, ¢,  and s as in figure 1 (right). For instance, this kind of
dynamical topological change can be done using graph grammar approaches as in
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[9). Suppose that, after the graph transformation, the transition ‘p’ occurs followed
by the transition ‘r’ (so, between these last transitions, the topology of the system
didn’t change). This behavior can be visualized in figure 2. In figure 3 we can see
the semantics of this process; in the left, the semantics after the first two possible
steps and, in the right, the semantics of all possible three steps.

Fig. 2: Example of a System Computation
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Fig. 3: Semantics of the System

This kind of non-traditional way of composing graphs is similar to the mathe-
matical composition of a special type of relation: the partial maps. Indeed, we show
that extending the composition of partial maps (Set Theory) to a categorical con-
text, the expected semantics domain for graph-based system with dynamic topology
is reached.

The proposed solution satisfies several important properties with relevant compu-
tational interpretations specially in the context of concurrent, anticipatory systems
([4], [18]). For instance: (i) it satisfies the vertical and the horizontal composition-
ality requirements , i.e, every dynamic system has a semantics and the semantics of
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concurrent dynamic systems is the parallel composition of semantics of component
dynamic systems, respectively; (ii) it is able to give semantics of dynamic steps
in any order (even backwards); (iii) it has some basic characteristics of dynamical
systems such as the attractor and “no operation” notions.

For simplicity, in this paper, we suppose that the changes of topology of a graph-
based system doesn’t affect the set of states (nodes).

2 Composition of Edges of Dynamic Systems

Considering that the basic idea is to generalize the composition of partial maps in
a categorical context in order to give semantics to systems that evolve (modify-
ing topologies) during their computations, the following approach starts with the
categorical notions of partial maps and composition.

Consider the figure 4 (left). A partial map F : A — B, in Category Theory, can
be seen as a span ([3], [2]) (DF, fa, f) with f4 : DF — A and fp : DF — B, where
fa4 is monic. The object DF of the span together with the mono f,4 represents the
subobject of A where the partial map F is defined. Now consider the figure 5 (left).
In this way, the mathematical binary composition G o F' : A — C' of partial maps
F:A— Band G: B — C is defined categorically using a pullback of fg and gg.
Here, being py and p; morphisms of the resulting pullback, the composed partial
map H = Go Fis (DH,ha. hc) where hy = f40po and he = ge o p1.

In this context, we can see a graph as a generalized partial map without the
restriction of one arrow be monic (T : V — V, where T and V are the sets of
arcs and nodes respectively and 8y, 6, : T — V are the source and target functions,
respectively) as in figure 4 (right), and the composition of graphs as the generalized
composition of partial maps as in figure 5 (right).

Definition 1 (Graph) Let V be a set of nodes, i.c., an object in Set. A graph in
V is a span (T,00,01) with o : T — V and &, : T — V, as in figure 4 (right),
where T is a set of edges and 8y and &, represent the source and target functions,
respectively.

("o ) [, )

Fig. 4: Partial Map (left) and Graph (right)

Definition 2 (Partial Map) Let A and B be sets. A partial map F : A — B is
a span (DF, fa, fg) with fa: DF — A and fg : DF — B, with the restriction that
fa is monic, like in figure 4 (left).

261




A B C 1 1 \%
D . DG T, T,

/5 p.b

p.b. 2
N A S
DH T

Fig. 5: Composition of Partial Maps (left) and Composition of Graphs (right)

Note that each endorrelation (R : A — A) is a special case of graphs where the
unique arrow R — A x A is monic.

Now we define the (binary) composition of edges of (possible different) graphs,
which we interpret as the edges composition of dynamic systems. Remember that,
for simplicity in this paper, the graphs have the same set of nodes. We denote the
composed graph G, o Gy by G > Gs.

Definition 3 (Composition of Edges) Let V be a set of nodes and G; =
(V,Th,8,,01,) and G = (V,T3,0d,,01,) be graphs in V. The Binary Composition
of Edges of Graphs, Composition of Edges for short, of G1 and G2 is the graph
G0 Ga = (V,T,00,8,) where T is the resulting object of the pullback shown in figure
5 (right), 8o = do, o po and &, = dy, o p1.

Each edge in the resulting graph G, > G, represents a path of length 2 (between
nodes), which first half is some edge of graph G; and which second half is some edge
of graph G,. For example, see figure 3 (left).

In a graph-based system, the composed edge of G >G5 can be seen as a compu-
tation resulting of sequential composition of another two: the first occurs in system
G, and the second, in system G, (in this order). Yet, it may be interpreted as a
computation over a system with context switch in the sense of [14], where the first
computation occurs before and the second occurs after the switching. Note that the
context switch may be interpreted as a transformation, a mutation, an evolution or
a reorganization of the topology of a system.

3 Properties of Composition of Edges

The composition of edges satisfies several important properties with relevant com-
putational interpretations specially in the context of anticipatory systems. The
following properties are proved:

e closure: satisfies the vertical compositionality requirement, i.e., every dynamic
system has semantics;

e associativity: the semantics of the dynamic steps of a system may be calculated
in any order, even backwards;
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e absorbent element: reflects an attractor notion;

o identity element: reflects the “no operation” notion if we see the arcs of the
identity graph as NOP transitions. This interpretation is very clear in a category of
reflexive graphs which is not the scope of this paper;

e non-commutativity: since systems are able to modify their topologies, the order
of transformations matters;

e non-idempotency, together with the associativity property, induces the n-ary
operation of composition of edges;

e properties for concurrent dynamic systems: while the composition of edges
doesn’t distribute through parallel compositional (categorical product) it satisfies a
very important and non-usual requirement which is the horizontal compositional-
ity (interchange law in the sense of [8]), i.e., the semantics of concurrent dynamic
systems is the parallel composition of semantics of component dynamic systems.

Property 1 (Closure) Let V be a set of nodes and Gy = (V,T1,d,,01,) and
Gy = (V, T, 80,,01,) be graphs in V. So the composition G1> Gy = (V, T, 8, 81) is
also a graph in V.

Proof. Since Set is complete, the composition G; > Gy = (V, T.dy, d;) always
exists. Additionally, it is obviously a graph in V', due both §; and §, are arrows
T—V.

Property 2 (Associativity) Let V be a set of nodes and G; = (V,T1,00,.61,),
Gy = (V, T, 0,,01,) and Gs = (V, T3, do,, 015) be any graphs in V', so (G1>G3) > Gs
= G1 > (G2 7 Gg)

Proof. Figure 6 shows both (G1 > G5) > G5 (top) and Gy > (G3 > G3) (bottom).
To construct (G, > G2) > G3, one calculates the pullback of d;, and &, which is
(Pr2, faw,, fBy,) and so the pullback of 43,0 f,, and 8y, which is (P(12)3, Fuagsos Tagin)-
To construct G; b (G2 b G3), one calculates the pullback of d;, and do, which is
(P23, fas, fBas) and so the pullback of dp, 0 f4,, and 81, which is (P (23), Pz fglm)).

To show Pg)3 and Py3) are isomorphic, we need first to find two morphism,
one F(19)3 — Py(23) and other Pj(a3) — FP12)3, and then we show they are iso. Since
(P23, fass, fBas) is the pullback of 81, and dg,, then (Pg)a, fp,, © faga FBuas) 18
a pre-pullback of 8;, and q;, so there is an unique arrow 1 : Pjg)3 — Pas that
commutes, as shown in figure 7 (left). Since (P)(93), f. T fBl(23)> is the pullback of
61, and 8o, © fass, then (Pug)s, fa,; © fas, 1) i 2 pre-pullback of 61, and dg, 0 fa,,,
so there is an unique arrow 2 : Py23 — Pj(23) that commutes, as shown in figure 7
(center). Analogously, we can find a unique arrow 4 : Py23y — P12)3 that commutes.

Finally, since (Py(3), fayasy» [Buasy) 15 the pullback of 61, and do, © fa,,, then
(Pr23), fayasy ©204, fB, 45 ©204) is a pre-pullback of d;, and do, © fa,,, SO there
is an unique arrow P23y — Pj(23) that commutes, as shown in figure 7 (right). It
is obvious that this arrow is idp,,, and 204 = idp ,, . In the same way, we show
402 = idp,,,.
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So, Pl12)3 and Py(23) are isomorphic and the associativity of > holds. We can now
freely write G; > Gy > G3, omitting the parenthesis without any loss of preciseness.
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Fig. 7: Commutative Diagrams to Associativity

Each edge in the resulting graph G; > G2 > G3 represents a path of length 3
(between nodes), whose first third is some edge of graph G, whose second third
is some edge of graph G, and whose last third is some edge of graph Gs. In fact,
to any n graphs Gi, Gy, ..., G, in a set V of nodes, each edge in G1 > Gy > ...> Gy
represents a path of length n whose ith nth-part belongs to G;, where 1 < i < n.
This can easily be proved by induction.

As a consequence of associativity, the computations through compositions in
graph-based systems can be calculated in any order, even backwards. Therefore,
this property allow us to optimize the calculus of an n-ary composition in a parallel
way.

264




Property 3 (Absorbent Element) To any set V of nodes, there is a graph Zy
(V, 2,9, 0) which is the absorbent element for the composition > of graphs in V.

Proof. To see that Zy is a left absorbent, let V be a set of nodes and T}
(V, T3, b0,, 61,) be any graph in V. Seeing figure 8 (right), becomes obvious that
is @. Idem to f4 and fp. The resulting graph is Zy 6T = (V, 3,3 0 @, 61, 0 &)
(V,@,@,@) = Zy. The proof that Zy is also a right absorbent is analogous.

In semantics of systems, an absorbent element works as an attractor.

I~

Property 4 (Identity Element) To any set V of nodes, there is a graph Iy =
(V,Viidy,idv) which is the identity element for composition > of graphs in V.

Proof. To see that Iy is a left identity, let V be a set of nodes and T, =
(V. T3,00,,61,) be any graph in V. As we can see in figure 8 (left), fp is iso by
preserving the pullback opposite arrow properties, so P and fp may be respectively
T, and idg,. Now, fi becomes dg,. The resulting graph is Iy > Ty = (V, Ty, idy o
00, 01, © idy,) = (V, T3, 80,,01,) = T5. The proof that Iy is also a right identity is
analogous.
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Fig. 8: Left Identity Element (left) and Left Absorbent Element (right)

Property 5 (Non-commutativity) Let V  be a set of nodes and G; =
(V.T1.00,,01,) and Gy = (V,T3,0,,061,) be graphs in V. So, generally, G, > Gs
-“,é GQD Gl-

Proof. For instance, let G; and G; be the graphs 1 and 2 in figure 9, respectively.
It’s easy to see that G1 > Gy # Ga b Gy

CRONCE=ONEER0

Graph 1 Graph 2 Graph 3

Fig. 9: Example graphs
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Property 6 (Non-idempotency) Let V be a set of nodes and G = (V,T,b¢,01)
be a graph in V. So, generally, G>G # G.

Proof. For instance, let G be the graph 2 in figure 9. It’s easy to see that
GG #G.

The fact this operator does not satisfy idempotency carry us to the study of
successive compositions of the same graph, i.e., G>G, G>G> G, and so on, denoted
by G". First note that G = G and G° = Iy: (i) to see that G' = G consider the
diagram inside the doted lines in figure 10 (left) given by the graph G = (V, T, 8, 61)
and the corresponding limit, which is G; (ii) to see that G° = Iy consider the
diagram inside the doted lines in figure 10 (right) given by no graphs in V' and the
corresponding limit, which is Iy.

Fig. 10: Limit to a single graph (left) and to “no graphs” (right)

Since this operation is associative, we can make use of induction to define the
general case, as follows.

Definition 4 (Inductive Definition to G") Let V be a set of nodes and G =

& 8 ; # 1\’. if n=0:
r / n __
(V,T,81,01) be a graph in V. So G" = { G Got ifn oD
In the following text, the graphs categorial product operator is denoted by X.
Remember that the graphs categorial product is defined to graphs with (possible)
different set of nodes.

Property 7 (Non-distributivity of x over o) Let V12 and V3 be sets of nodes,
Gl = <V12,T1,(501,611> and G2 = (Vlz,T2,602.612> be graphs n ‘/12 and Gg =
(Va, Ts, 8,5, 015) be a graph in V3. So, generally, (G1>G) x G3 # (G1xG3)b (G2 xG3)
(non-left-distributivity).

Proof. Let Gy, G, and G3 be, respectively, the graphs 1, 2 and 3 in figure 9.
It is easy to see that (G; > Ga) X G3 # (G x G3) > (Gy X G3). Note that, since
the x is commutative, left and right distributivity becomes isomorphic. Also the
distributivity of > over x is not in the scope of this paper because, generally, it
involves the operator > between graphs with different set of nodes.
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Property 8 (Interchange Law with Categorial Product of Graphs) Let V4p
and Vgp be sets of nodes, Ga = (Vap,Ta,00,,61,) and Gg = (Vap,Tg, b0z, 015) be
graphs in Vap and Gc = (Vep, Te, o, 61.) and Gp = (Vep, Tp, 0oy, 01,) be graphs
n Vep. SO, (GADGB) X (GchD) = (GA X Gc) > (GB x GD)

Proof. The proof of the above property is sketched in figure 11 followed by a
construction of an isomorphism between T(axcyw(Bxp) and TiasByx(coD)-

3o,

A

Fig. 11: Interchange Law Diagramn

Considering this properties the following important conclusions can be stated
(but aren’t discussed in this paper):

Corollary 1 (Gr(V) induces a monoid): Let V' be a set of nodes and Gr(V) =
{G | G is a graph in V'}. So, the algebra Mong,wv) = (Gr(V),>, Iy), is a monoid
induced by V, since the operator b is closed in Gr(V), is associative and satisfies
left and right identity. There is only one finite induced monoid which is Mongr ().

Corollary 2 (Mong,(v) is category): Let V' be a set of nodes. So, Mong.v) is a
category with a single object.

Corollary 3 (Mongys,, is subcategory of Mon): To any set V' of nodes, Mong,(v)
is an object of the Mon (category of monoids). Let Mongy,,, be the category of

all monoids induced by objects of the Set category. So, Mongys,, is a subcategory
of Mon.
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4 Composition of Transformations: Giving Semantics to
Anticipatory Systems

To illustrate how the composition of edges between (possible different) graphs can
give semantics to anticipatory systems, consider the previous work based on Petri
Nets (viewed as graphs) transformations [9] where “a specification grammar can be
viewed as a specification of a system and the induced subcategory as all possible
dynamic anticipations of the system (objects) and their relationship (morphism)”,
restricting Petri Nets to graphs.

In this context, the following definitions consider the category pGr (as in [1], i.e.,
the partial category of graphs and graphs homomorphisms) instead of pMPetri
(the partial category of Marked Petri Nets and its corresponding morphisms).

Definition 5 (Specification Grammar) A specification grammar or just gram-
mar is Gram = (R, I, N) where R, I are collections of pGr-morphisms representing
the rules and instantiations of the grammar and N is a pGr-object called initial
graph.

Definition 6 (Subcategory Induced by a Grammar) Let Gram = (R,I, N)
be a grammar. The subcategory Gram of pGr induced by the grammar Gram 1is
inductively defined as follows:

a) N is an Gram-object and [(idy,idn)] : N — N is a Gram-morphism;

b) for all Gram-object M, for all instantiation mqg : My — M and for all rule
r: Mo — Py, [{r,mq)] : M — P is a Gram-morphism and P is an Gram-object;

¢)for all Gram-morphisms ¢ : M — P, ¢ : P — Q, the morphism [($op,idp)] :
M — @ is a Gram-morphism.

Therefore, for an initial graph N and a grammar Gram = (R, I, N), the induced
subcategory corresponds to a tree with all possible anticipations as in figure 12.
Note that, for each branch in the tree (sequential steps of graph transformations)
the defined edge composition of component graphs gives the branch semantics. Thus,
calculating the compositions of all branches we have the semantics of all possible
dynamic anticipations of the given system.

N
~N N

it R4
\

NV

Fig. 12: Tree with all Possible Anticipations
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Briefly, if the three graphs in figure 2 represent a branch in a tree with two
steps of transformations, then the graph in figure 3 (right) gives the corresponding
semantics.

5 Conclusions and Future Works

We constructed a categorical semantic domain for graph based systems with dynamic
topology using a new way to compose edges of (possible different) graphs. In this
context. sequences of different graphs represent successive transformations of system
topology during its computation and the edges composition between those graphs,
the semantics of the corresponding dynamic system.

The composition of edges between graphs is inspired in the mathematical com-
position of partial maps generalized for graphs using the categorical pullback con-
struction resulting in a semantic domain that is powerful but simple and precisely
defined.

The proposed mechanism satisfies several important properties with relevant
computational interpretations specially in the context of concurrent anticipatory
systems such as the diagonal compositionality requirement. i.e.. every dynamic sys-
tem has a semantics (horizontal) and the semantics of concurrent dynamic systems
is the parallel composition of semantics of component dynamic systems (vertical). In
fact, we show that the composition of edges is able to give semantics to anticipatory
systems.

Exploiting the categorical constructions over the proposed composition of edges,
a full calculus of dynamic systems should arise. Moreover. following an approach
similar to [10], generalizations for several graph based systems, such as (dynamic)
transition systems and (dynamic) Petri Nets. can be reached. Also we are working
on a notion of equivalence of systems with dynamical topology.

Some other works are: an investigation of colimits properties. a framework for
reflexive graphs (possible giving a notion of computational closure) and an investi-
gation of conditions for fixed point.

References

[1] Asperti, Andrea; Longo, Giuseppe (1991). Categories, T ypes, and Structures -
An Introduction to Category Theory for the Working Computer Scientist. MIT
Press.

[2] Barbosa, Luis Soares (2003). A brief introduction to bicategories. Techn. Report
DI-PURe-03:12:01, Departamento de Informatica da Universidade do Minho.

[3] Bénabou, J. (1967) Introduction to bicategories. In Reports of the Midwest
Category Seminar, in Springer Lecture Notes in Mathematics, Springer-Verlag.
number 47, pages 1-77.

269




4]

[5]

[12]

3]
4

Dubois, D. M. (1998) Introduction to Computing Anticipatory Systems. In
International Journal of Computing Anticipatory Systems, CHAOS. volume 2,
pages 3-23.

Ehrig, Hartmut (1979). Introduction to the algebraic theory of graph grammars.
In V. Claus, H. Ehrig, and G. Rozenberg, editors, Graph-Grammars and Their
Application to Computer Science and Biology, volume 73 of Lecture Notes in
Computer Science, pages 1-69.

Kennaway, Richard (1991). Graph Rewriting in Some Categories of Partial
Morphisms. In Hartmut Ehrig, Hans-Jorg Kreowski, and Grzegorz Rozenberg,
editors, Proc. 4th. Int. Workshop on Graph Grammars and their Application to
Computer Science, Springer-Verlag. volume 532 of Lecture Notes in Computer
Science, pages 490-504.

Lowe, Michael (1993). Algebraic approach to single-pushout graph transforma-
tion. Theoretical Computer Science, 109(1-2):181-224.

Mac Lane, Saunders (1997). Categories for the Working Mathematician, vol-
ume 5 of Graduate Texts in Mathematics. Springer-Verlag, 2nd edition.
Menezes, Paulo Blauth (1999). A categorical framework for concurrent antici-
patory systems. In Proceedings of 2nd International Conference on Computing
Anticipatory Systems, American Institute of Physics. AIP Conference Proceed-
ings 465. pages 185-199.

Menezes, Paulo Blauth (2000). Duo-Internal Labeled Graphs with Distin-
guished Nodes: a categorial framework for graph based anticipatory systems.
International Journal Of Computing Anticipatory Systems, 6:75-93.

Menezes, Paulo Blauth; Costa, Simone A.; Machado, Jilio H. A. P.; Ramos,
J. (2002) Nautilus: a concurrent anticipatory programming language. In Pro-
ceedings of 5th International Conference on Computing Anticipatory Systems,
American Institute of Physics, AIP Conference Proceedings 627, pages 553-564.
Meseguer, José; Montanari, Ugo (1990). Petri nets are monoids. Information
and Computation, 88(2):105-155.

Rosen, R. (1985) Anticipatory Systems. Pergamon Press.

Tanenbaum, Andrew S (1992). Modern Operating Systems. Prentice Hall.

270




	Casus_v14_pp259-270_Hoff



