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Abstract In graph-based systems there are ma"ny methods to compose (possibly dif-

ferent) graphs. Ho#ever, none of these usual compositions are adequate to naturally

express semantics of systems with dynamic topology, i.e., systems whose topology

admits successive transformations through its computation. We constructed a cat-

egorical semantic domain for graph based systems with dynamic topology using a

new way ro compose edges of (possible different) graphs. ln this context, sequences

of different graphs represent successive transformations of system topology during

its computation and the edges composition between those graphs, the semantics of

the corresponding dynamic system. Then we show how the proposed approach can

be used to give semantics to concurrent anticipatory systems.

Keywords : Graphs, category Theory, composition, Anticipatory systems, Dy-

namical Topology.

1. Introduction

In graph-ba.sed systems there are many methods to compose (possibly different)

graphs. Some examples are the parallel and nondeterministic composibions usu-

ally reflected by the categorical constructions of product and coproduct ([t2]' [9].

[11]), respectively. Also, there are some non-traditional ways to compose systems

Àu"tt * ihe graph-grammûr using double-pushout (total morphisms) ([5J, [i0]) or

single.pushout (partial morphisms) ([4, [9], [6]) approaches. However, none of these

compositions a.re adequate to naturally express semantics of systems with dynamic

topologg i.e., systems whose topology admits successives transformations through

its computation.
For example, consider the graph-based system in figure 1 (left). Suppose that,

after the computation of the transition '4', the system changes its topology, replacing

the a.rc ô by the arcs p, q, r and s as in figure 1 (right). For instance, this kind of

dynamical topological change can be done using graph grammar âpproaches as in

CNPq(ProjectsHoVer-CAM,cRAPHIT,E-Àutomaton)
and FINEPICNPq(Project Hyper-Seed) in Brazil.
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[9]. Suppose that, after the graph transformation, the transition 'p' occurs followed
by the transition 'r' (so, between these last transitions, the topology of the system
didn't change). This behavior can be visualized in fi.gure 2. In figure 3 we can see
the semantics of this process; in the left, the semantics after the first two possible
steps and, in the right, the semantics of all possible three steps.

Fig. t: A Graph Tbarsformation

Fig. 2: Example of a System Computation

Fig. 3: Semantics of the System

This kind of non-traditional way of composing graphs is similar to the mathe-
matical composition of a special type of relation: the partial maps. Indeed, we show
that extending the composition of partial maps (Set Theory) to a categorical con-
text, the expected semantics domain for graph-based system with dynamic topology
is reached.

The proposed solution satisfies several important properties with relevant compu-
tational interpretations specially in the context of concurrent, anticipatory systems
([4], [13]). For instance: (i) it satisfi.es the vertical and the horizontal composition-
ality requirements , i.e, every dynamic system has a semantics and the semantics of
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concullent dynanric syslenrs is the parallel conrpositiort of semantics of cornponerit

dynamic systems, respectively; (ii) it is able to give sernantics of dynamic s|eps

in any order (even backwards); (iii) it has some basic characteristics of dynamical

systems such as the attractor ând "no operation" notions.
For simplicity, in this paper, $/e suppose that the changes of topology of a graph-

based system doesn't affect the set of states (nodes).

2 Composition of Edges of Dynamic Systems

Considering that the basic idea is to genelalize the composition of partial uraps in

a categorical context in order to give semantics to systems that evolve (modify-

ing topologies) during their computations, the follorving approach starts with the

categorical notions of partial maps and composition.
Consider the frgure   (left). A partial map .F : A - B, in Category Theory, can

beseenasâspan ( [3] ,  I2 ] )  (DF, f  o, /6)  wi th fn:  DF *  Aand fp:  DF + B,  where

/a is monic. The object DF oL the span together with the mono /a represents the

subobject of A where the partial map F is de{ined. Now consider the figure 5 (left).

Irr this rvay', the mathematical binarl' cotnposition G o F : A - C' of partial maps

F'. A * B and G : B u C is defined categorically using a pullback of /s and gs.

Here, being ps and pl morphisms of the resulting pullback, the composed partial

nrap H = G o F is (Dd. he.hcl rvhere àa = faope and hç : gç op1.

In this context, we can see a graph as a generalized partial map without the

restriction of one arrow be monic (? '. V + V, where I and / are the sets of

arcs and nodes respectively and ôe, ô1 : ? - V are the source and target functions,

respectively) as in fi.gure 4 (right), and the composition of graphs as the generalized

composition of partial maps as in figure 5 (right).

Definit ion 1 (Graph) LetV be a set oJ nod,es, i.e-, a'n object in Set A graph in

V is a span (7,ôs,ùù withôo : Z - V andôr : I - V, as in f,g'ure I (right),

where T is a set of edges and 6s and 6r represent the source and target functi,ons,
respec.ti'uely.

A \ \  
- . o t

fo---< or.r1a

Y s \  y ' v
A)-'-- , --l0,

Fig. 4: Partial l{ap (left) and Graph (tight)

Deûni t ion2 (Part ia l  Map) t ref  A andB be sets.  Apart ' ia lm'ap F:  A-  B is

a span (DF, fe, f s) wi'th fs : DF - A and fs : DF - B, with the restrùction that

f a is monic, like in f,gure 4 \eft).
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Fig. 5: Composition of Partial NIaps (left) and Composition of Graphs (righl)

Note that each endouelation (R : A - A) is a special case of graphs where the
unique arrow R * A x A is monic.

Now we define the (binary) composition of edges of (possible different) graphs.

which we interpret as the edges composition of dynamic systems. Remember that,
for simpliciiy in this pa,per, the graphs have the same set of nodes. We denote the
composed graph G2 o G1 by Gr> Gz.

Definition 3 (Composition of Edges) .[et V be a set of nodes and G1 -

(%Tt,do,,6y) and G2: (V,Tz,6or,64) be graphs inV. The Binary Composition
of Edges of Graphs, Composition of Edges for short, of G1 and' G2 is the graph
GùGz : (V,T,6s,ô) where T is the resulting object of the pullback shown in figure
5 (right), ôo : ôio, o ps tnd. 61 : àç o P1.

Each edge in the resulting graph Gr> Gz represents a path of length 2 (between
nodes), which first half is some edge of graph Gl and rvhich second half is some edge
of graph Gz. For example. see figure 3 (left).

In a graph-based system. the conrposed edge of. G t> Gz can be seen as à cotttpu-
tation resulting of sequential composition of another tu'o: the first occurs in system
G1 and the second. in system Gz $n this order). Yet. it may be interpreted as a
computation over a system rvith context srvitch in the sense of [14], rvhere the first
computation occurs before and the second occurs after the srvitching. Note that the
context switch may be interpreted as a transfbrnration, a mutation, an evolution or
a reorganization of the topology of a system.

3 Properties of Composition of Edges

The composition of edges satisfies several important properties with relevant com-
putational interpretations specially in the context of anticipatory systems. The
follorving properties are proved:

r closure: satisfies the vertical compositionality requirement, i.e., every dynamic
system has semantics;

r associativity: the semantics of the dynamic steps of a system may be calculated
in any order, even backwards;
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. absorbent element: reflects an attractor notion;
o identity elemerrt: reflects the "no operation" notion if we see the arcs of the

identity graph as NOP transitions. This interpretation is very clear in a category of
reflexive graphs which is not the scope of this paper;

. non-commutativity: since systems are able to modify their topologies, the order
of transformaùions matters;

r non-idempotency, together with the associativity property, induces the n-ary
operation of composition of edges;

o properties for concurrent dynamic systems: while the composition of edges
doesn't distribute through parallel compositional (categorical product) it satisfres a
vèry important and non-usual requirement which is the horizontal compositional-
ity (interchange law in the sense of [8]), i.e., the semantics of concurrent dynamic
systems is the parallel composition of semantics of component dynanric systems.

Property 1 (Closure) Let V be a set of nodes and, Gt: (V,7|1,6s,,61,) and
G2: (V,Tz,6o",6y)  be graphs inV.  Sa the composi t ionGrbG2: (V,T,6s,6ù is
also a graph inV.

Proof. Since Set is complete, the composition Gt> Gz = (V,7,ô6.ô-1) alwal,s
exists. Additionally, it is obviously a graph in V, due both ôs and d'1 âre arrorvs
T-V .

Property 2 (Associativity) LetV be a set of nodes and, Gt : (V,T1,ô0,,ô-r,),
G2:  (V,72,60",6b)  and,G3- (V,Ts,ô0",ôr" )  be any graphs ' inV.  so (G1 >G2)>Ge
: Gr D (G2 > Gr).

Proof. Figure 6 shows both (G1 >Gz)> Gg (top) and G1>(Gz>Gg) (bottom).
To construct (Gt>Gz) DG3, on€ calculates the pullback of ô1, and ôq, which is
(hz, lerr,.ferr) md so the pullback of ô1rol8,, and ôs, which is (Ptrzls, f A1,r1", f arr,").
To construct Gr> (Gz > G3), one calculates the pullback of d1, and dg3 which is
(Pzs, f .a"", "fer") and so the pullback of ôsro/j* and ô1, rvhich is (Pt<zg), .f Arp",,,/",,.",).

To show P(rz)s and Prlze; are isomorphic, we need fust to frnd two morphism,
one P(12)3 * Pr(ze) and other Pr(zs) * P(rz)e, and then we show they are iso. Since
(Pzu, f eu,"for") is the pullback of ô1, and ds' then (firz)s, 1Br" o f arrr,./",,r,.) it
a pre-pullback of ô1, a.nd ôs' so there is an unique arrow 1 : P6z)t - Pzs that
commutes, as shown in figure 7 (left). Since (P1123y, f Arp"1, f nrrr"r) is the pullback of
ô1, and 6oro fa", then (P1rzp, T,+r"o le<rrt",l) is a pr+pullback of ô1, and 6oro T,qr",
so there is an unique arrow 2 : P1rz1r * Pr(zs) that commutes, as shown in figure 7
(center). Analogously, we can find a unique arrow 4 : P\zs\ + POz)3 that commutes.

FinallS since (P1123y, fArp".,,f"rrr"r) is the pullback of ô1, and ôs, o f4"", then
(Prtzrl,.f.qr<to2o4, ler,r"ro2o4) is a pre-pullback of d1, and û"o ler", so there
is an unique arrow P1123; - Pres) that commutes, as shown in figure 7 (right). It
is obvious that this arrow is idpr,"", and 2 o 4: id,pr,r"r. In the same way, we show
4 o 2 : i d p , r r . , " .
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So, P(tr)r and P1123y are isomorphic and the associativity of > holds. We can now
freely write Gr> Gz> G3, omitting the parenthesis without any loss of preciseness.

,âÀ

Fig. 6: Associativity Diagram

î<'k>T
i's'- i, ra''y r*iPi1 ù*,rrf,," I

K;l /
Fig. 7: Commutative Diagrams to Associativity

Each edge in the resulting graph Gr> Gz > G3 represents a path of length 3
(between nodes), whose first third is some edge of graph Gr, ùhose second third
is some edge of graph G2 and whose last third is some edge of graph G3. In fact,
to any n graphs Gt,Gz,...,G, in a set V of nodes, each edge in G1 D Gz>...>Gn
represents a path of length n whose ith nth-part belongs to G;, where 1 1 i 1n.

This can easily be proved by induction.
As a consequence of associativity, the computations through compositions in

graph-based systems can be calculated in any order, even backwards. Therefore,
this property allow us to optimize the calculus of an n-ary composition in a parallel
way.
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Property 3 (Absorbent Element) To any setV of nodes, there i.s a graph Zy :
(V, a, o , o) which is Lhe absorbent element for the composi,ti,on > of graphs in V .

Proof. To see that Zy is a left absorbent,, lel V be a set of nodes and T2 :
(V,72,6sr,ô1r) be an1'graph in 7. Seeing figure 8 (right), becomes obvious that P
is O. Idem to /a and f a. The resulting graph is Zv >Tz : \V,@,A a g,6y o b) :

\V,a,ô,@) : Zv. The proof that Zy is also a right absorbent is analogous.
In semantics of systems, an absorbent element works as an attractor.

Property 4 (Identity Element) To any set V of nodes, there 'i,s a graph Iy :
(V,V,itly,idy) 'which is the,i,dentit'g element for composition> of graphs i.nV.

Proof. To see that 1v is a left identitl', Iet tu be a set of nodes and ?2 :
(V,72,6qr,ô1r) be any graph in I/. As we cân see in figure 8 (left), /s is iso by
preserving the pullback opposite alrow properties. so P and fs may be respectively
T2 and id7r. Norv. /.a becomes ôir. The resulting graph is Iv>Tz: (V,T2.idy o
ôo,dr, oit lrr) : \V,Tz,ôor,ôrr) : 12. The proof that Iv is also a right identity is
analogous.

\ / \ /
'  D . . b .  l ,

\ /^ . \ / -
oq= re 

\ ,t 
ta - itt7,

p

V "/ \,, ô,,./
\ , / \ , /

6  p . b .

, \  Â = ,
P = 6

Fig. 8: Left Identity Element (ieft) and Left Absor.bent Element (right)

Property 5 (Non-commutativity) trel V be a set of nod,es and Gr :

\V,T1.6sr.6y) and G2 : \V,Tz,6or,6y| be graphs ' in V. So, generally, Gr> Gz
*  Gz>  G t '

Proof. For instance. let G1 and G2 be the graphs 1 and 2 in figure 9, respectivellr
It 's easy to see that Gt> Gz * Gz> Gt

Graph 1 Graph 3craph 2

Fig. 9: Example graphs
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Property 6 (Non-idempotency) LetV be a set of nodes and,G: \V,T,ôs,ô1)
be a graph in V. So, generallE, G > G + G.

Proof. For instance, Iet G be the graph 2 in figure 9. It's easy to see that

G>G +G.
The fact this operator does not sabisfy idempotency cârry us to the study of

successive compositions of the same graph, i'e., G>G, G>G>G, and so on, denoted

by G". First note that Gr : G and Go : Iv: (i) to see that Gl : G consider the

diagram inside the doted lines in figure 10 (left) given by the graph G : (V,?", ôe, ô1)

"nd 
th" corresponding limit, which is G; (ii) to see that G0 : Iv consider the

d.iagram inside the doted lines in frgule 10 (right) given by no graphs in v and the

corresponding limit, which is /rr.

y . ô ,  I  ô ,  > y

T

Fig. 10: Limit to a single graph (left) and to "no graphs" (right)

Since this operation is associative. 1\€ can make use of induction to defrne the

general case) as follows.

Definition 4 (Inductive Definition ,î 
?\ 

Let ll be a set of nodes and G :

( y . f , d l .  à )  b e  a  g r a p h i n | ' .  S o  G " =  {  1 -  
i f  n = 0 :

I  G > G " - 1 .  z f  n > 0 .

In the following text, the graphs categorial product operator is denoted b1' x.

Remember that the graphs categorial product is defined to gtaphs rvith (possible)

different set of nodes.

Property 7 (Non-distributivity of x over >) Let Ve and, V3 be sets of nodes,

G1 :  (Vp,?r ,ôor ,61r)  and Gz:  (Vn,Tz,6o" 'ô1r)  ôe graphs in  Vrz and Gs =

(Vs, Ts do,, dr.) be a graph àn Vs. S o, generall'g, (G r> G r) x G t * (G1 x G3 )> (Gz x Gs)

( n o n- I eft- di s trib utiuitfl .

Proof. Let Gt, Gz and Gg be, respectively, the graphs 1' 2 and 3 in figure 9.

It is easy to see that (Gt> Gz) x G3 * (G1 x G3) > (Gz x Gg). Note that', since

the x is commutatire, left and right distributivity becomes isornorphic. Also the

distributivity of > over x is not in the scope of this paper because, generally, it

involves the operator > between graphs with different set of nodes.
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Property 8 (Interchange Law with Categorial Product of Graphs) LetVas
and,Vçp be sets of  nodes,  Ge:  (Vnp,Ta,6o^, f i )  andGa: (V.cB,TB,6o",67u)  be
graphs inVas and, Gc : (Vco,Tc,6o.,$.) and, Go : lVcp,To,6oo,fi) be graphs
inVcp.  So,  (Ga>Ga) x (Gc>Ga) :  (Gn x Gc) > (GB x Gpt) .

Proof. The proof of the above property is sketched in figure 11 followed by a
construction of an isomorphism between Qerc)o{aap1 and T(erB)*crD\.

Fig. 11: Iutelcha.nge Law Diagraru

Considering this properties the following important conclusions can be stated
(but aren't discussed in this paper):

Coroflary L (Gr(V) induces a monoid): Let V be a set of nodes and Gr(V) :

{G I G is a graph in V}. So, the algebra Monc,(vJ: (Gr(V),>,-Iy), is a monoid
induced by V, since the operator > is closed in Gr(V), is associative and satisfies
left and right identity. There is only one finite induced monoid which is Monç,1s1.

Corollary 2 (Monç,g'1 is category): Let V be a set of nodes. So, Mon6,qy1 is a
category with a single object.

Corollary 3 (Mon6,"", is subcategory of Mon): To any set V of nodes, Monc,(v)
is an object of the Mon (category of monoids). Lel Mqnc,"., be the category of
all monoids induced by objects of the Set category. So, Mon6,"", is a subcategory
of Mon.

*:r' f
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4 Composition of Transformations: Giving Semantics to
Anticipatory Systems

To illustrate how the composition of edges between (possible different) graphs can
give semantics to anticipatory systems, consider the previous work based on Petri
Nets (viewed as graphs) transformations [9] where "a specification grammar can be
viewed as a specification of a system and the induced subcategory as all possible
dynamic anticipations of the system (objects) and their relationship (morphism)",
restricting Petri Nets to graphs.

In this context, the following definitions consider the category û, (a in [1], i.e.,
the partial category of graphs and graphs homomorphisms) instead af. pMPetri
(the partial category of Marked Petri Nets and its corresponding morphisms).

Definition 5 (Speciffcation Grammar) A specification grarnnrar or ju,st gram-
mar is Gram : (.R, .f, N) where R, I are collecti,ons of fir-rnorphisms representing
the rules and, instantiations of the grammar and N is a pÇr-object called initial
graph.

Definition 6 (Subcategory Induced by a Grammar) Let Gram = (R, f , N)
be a gramrnar. The subcategory Çram of Nr induced by the grurnrnar Gram is
'induct'iuely defined, as follows:

a) N is anÇram-object andlçdN,idNll: N --+ lt/ is aÇram-morphàsm;
b) for all Çram-object M, for all i,nstant'i,ation ms : Mç --+ M and for all ru,Ie

r : fuIs - Po, [{t, msll: M --+ P is a Çram-rnorphism and, P is an Çram-object;
c)for all Çram-morphisrns g : M - P, r! : P + Q, the morphism l(rbo ç,i,d,y)l :

IUI - Q is aÇram-morphism.

Therefore, for an initial glaph N and a grammar Gram,: (Ë, /, N), the induced
subcategory corresponds to a tree with all possible anticipations as in Êgure 12.
Note that, for each branch in the tree (sequential steps of graph transformations)
the defined edge composition of component graphs gives the branch semantics. Thus,
calculating the compositions of all branches we have the semantics of all possible
dynamic anticipations of the given system.

Fig. 12: lree with all Possible Anticipatiors

// l\=-

N , ' ,

\
Nvn
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Briefly, if the three graphs in figure 2 represent a branch in a tree with two
steps of transformations, then the graph in figure 3 (right) gives the corresponding
semantics.

5 Conclusions and Future'Works

We constructed a categorical semantic domain for graph based systems with dynamic
topology using a new way to compose edges of (possible different) graphs. In this
coutext. sequetlces ol iliffelent grarphs l'epresclt successive trarrsfblruatious of systeru
topology during its computation and the edges composition between those graphs.
the semantics of the corresponding dynamic system.

The conposition of edges between graphs is inspired in the mathematical com-
position of partial maps generalized for graphs using the categorical pullback con-
struction resulting in a semantic domain that is powerful but simple and precisely
defirred.

The proposed nechanism satisfies several important properties with relevant
courputational interpletations specially ûr the context of conculreut anticipatory
sÏstettts suclt as the ditrgonal compositiontrlitl'requirenrent. i.e.. eler'1'd1'namic s1's-
teur hàs a semantics (holizorital) ald tlre selrantics of cotrcurleut dyrrauric s),steurs
is the parailel composition of semantics of component dy'namic systems (vertical). In
fact, n'e shorv that the composition of edges is able to give semantics to anticipatory
s)'stems.

Exploiting the categorical constructions over the proposed composition of ed.ges,
a full calculus of dynamic systems shouid arise. \,loreover. follorving an approach
similar to [10], generalizations for several graph based systems, such as (dynamic)
transition systems and (dynamic) Petri Nets. can be reached. Also we are working
on â irotion of equivalence of svstems rvith dvnamical topologrr

Sonre other rvorks are: au investigation of colirnits propertie$. tr fi'aureuork for.
leflexive glaphs (possible giving a llotion of courputtrtiouer.l closure) and au invest!
gation of conditions for fixed point.
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