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Abstract

An image restoration is a typically ill-posed problem. Generally, regularization
scheme is used to avoid this problem. As a regularization operator, classical methods
adopt one which may produce a too much smooth image. Parametric Projection
Filter which has an ability to deal with colored observation noise is one of them.

On the other hand, some methods based on a spatially adaptive regularization
are proposed and successful in obtaining not so smooth one. However, it is assumed
that observation noise is white, and the fidelity of images is not evaluated in the
space of original images in these methods.

In this paper, we propose a new restoration method by which we can evaluate
the fidelity of images in the space of original images and obtain not so smooth one.
We also verify the efficacy of the method by some numerical experiments.

Keywords : Restoration, Optimization, Multiscale Signal Processing, Adaptive

Processing, Regularization

1 Introduction

An image degradation is modeled as follows (Oja, et al., 1986)
g=Af+n, feR" gneR" AcR™", (1)

where f, g, A, and n denote an original image, a degraded image, a degradation
matrix, and observation noise (may be colored), respectively and R”, R™, and R™*”
denote an n-dimensional real vector space (we call it the space of original images,
hereafter), an m-dimensional real vector space (we call it the space of degraded
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images, hereafter), and the set consisting of all m x n real matrices. An aim of the
image restoration is to obtain the optimum image under some optimization criteria.

The image restoration is a typically ill-posed problem. Generally, regularization
scheme (Tikhonov, et al., 1977) is used to avoid this problem. As a regularization
operator, classical methods adopt one which may produce a too much smooth image.
Parametric Projection Filter (Oja, et al., 1986) which has an ability to effectively
deal with colored observation noise in the space of original images is one of them.

Oun the other hand, some methods based on a spatially adaptive regularization
are proposed (You, et al., 1996) and successful in obtaining not so smooth one.
However it is assumed that observation noise is white and the fidelity of images
is not evaluated in the space of original images in these methods as mentioned in
(Oja, et al., 1986).

In this paper, we propose a restoration method by which we are able to deal
with colored observation noise in the space of original images and obtain not so
smooth one by applying the multiscale spatially adaptive regularization scheme to
Parametric Projection Filter. We also verify the efficacy of the proposed method
by some numerical experiments.

2 Image Restoration by Parametric Projection Filter

Parametric Projection Filter (we call it PPF, hereafter) is defined as an operator
B € R"™ which minimizes the functional .J; for some real parameter v (> 0).

II(B) = T"{(In = B"l)([n - B-“l),} + “;En“Bn”’)~ (2)

where tr{-}. A'. I,,. En. and ||-|| denote the trace of a matrix, the transpose matrix
of 4, an n x n identity matrix, the expectation for n, and a norm of a vector,
respectively. Eq.2 is transformed as follows with the squared Schmidt norm.

Ju(B) = tr{(I, — BA)(I, — BA)} + vtr{BQB'}. (3)

where (Q denotes the covariance matrix of additive noise n.
As described in (Oja, et al.. 1986), the criterion eq.3 is minimized by an operator
B if and only if

B(AA' +5Q) = 4. (4)
An operator which satisfies the condition eq.4 is obtained as

Bppr(7) = A (A4 +45Q)*. , (5)
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where AT denotes the Moore-Penrose inverse of A.

Many restoration methods adopt the term ||g — Af||? as a part of criterion which
should he minimized. However this term means the cnergy of noise component in
the space of degraded images. Hence. it does not contribute to the fidelity of lmages
i the space of original images. while the energy of noise components in the space

of original images are controlled by an effect of the second term of .3 in PPF.
3 Image Restoration by Anisotropic Diffusion Scheme

As a regularization operator. classical methods usually adopt an operator which
may smooth a restored image too much. Constrained Least Squares Filter which
is one of them uses the Laplacian as the operator by which the noise component is
effectively suppressed but the edge information of images mayv be lost.

As a restoration method of preserving the edge information of images. anisotropic
diffusion (or regularization) scheme is proposed (You. et al.. 1996). As the criterion
for minimizing. You adopted

; Tosf s " :
Lif)= = /l",(.l‘.j/)l/.l‘llj/ + A / B(|V f(a.y)])dady. (6)

subject to some conditions. where

floe ) original image

fleoy) restored image

d(r.y) : blur operator (shift-invariant)

n(r.y) observation noise

glr.y) degraded image

gl y) = / d(s.t)f(r—s.y—t)dsdt + n(r.y) : degradation model

c(r.y) =g(r.y) — /(l( s.f)f'(,r — 5.y —t)dsdt : restoration residual.

Minimizing the criterion eq.6 is achieved by steepest descent method. The gradi-
ent of L( f) is described as follows

e |

: . i Vf
VL(f)=— /0( w, )d(u — v v — y)dude — \div (B'(|Vf|)—j') A (

- IV /]
for some real parameter A (> 0). The second term of eq.7 is decomposed to two
components. One is that of the direction of the gradient of f, the other is that of
the orthogonal direction of the gradient of f. Hence. an appropriate selection of the
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function B in eq.6 produces a restored image whose noise component is effectively
suppressed on flat region while it may preserves the edge information of the image.
However, the fidelity of images in the space of original images is not insured by

the criterion eq.6 as mentioned in a previous section.
4 The Proposed Method

In this paper, we propose a new restoration method which has the advantage of

previous two methods as described bellow

e We construct a basic restoration form (we call it Regularized Parametric Pro-
jection Filter (RPPF). Lereafter) by which we can consider observation noise

in the space of original images and some features of images.

e Based on RPPF. we propose a total restoration filter in which we obtain a

restored image and regularization operator step by step.
Hereafter. we describe details abont these two topies.

4.1 Regularized Parametric Projection Filter
As a criterion for minimizing. we adopt the functional .J,.
Jo(B) = tr{(I, — BA)(I, — BA)'} + - En||Bn||* + \||RBg||*. (8)

for some real parameters 5. A(> 0). where R denotes some regularization operator.

i
Eq.8 is described as follows with the squared Scehmidt norm in the same way as

PPF.
Jo(B) = tr{(I, — BA)(I, — BA)'} + ~tr{BQDB'} + \tr{RBgg'B'R'}. (9)
Theorem 1 The criterion Jy is minimized by an operator Beppp if and only if

Brrpp(AA" +5Q)+ \R'RByrpprgg’ = A'. (10)

Proof:
1) Eq.9 is transformed as follows

L(B) = {vec(l,)}'vec(l,) — 2{vec(D')}'vec(A)

+{vec(B)}'[I, ® (A4 +-Q) + N(R'R) ® (gg')|vec(') (11)
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by applying the relation (Magnus. et al., 1988)

tr{4'B} = {vecA}'vecD,
where vec and (- ® -) denote vec operator and IKronecker product (Magnus, et al..
1988) and are defined as follows respectively,

aynB -+ a,B
A®B = :
® : (12)
(’mlB i (’mnB
vec(4) =[a, a,)---a,'].
for

:‘\ = ((lij) == [(],1 a,-- .a"]~ a; = Rm,
B = (bij), a;j, bi; € R.

Assume that Brppp satisfies
{I, ® (AA' +7Q) + M(R'R) ® (g9')}vec(Byppr) = vec(A).

which is obtained by applying the relation (Magnus, et al.. 1988)
vec(ABC) = (C' ® A)vec(B)

to the transpose of eq.10. Therefore Jo(Bgppr) is described as follows
Jo(Brppr) = {vec(I,)} vec(l,) — {vec(Byppr)} vec(A).

Let G = [I, ® (A4 +vQ) + M(R'R) ® (gg')] for brevity and B be any matrix of the
same dimensionality as Brppp. It holds

J2(B) — Jo( BreprF)
= {vec(B')}'Gvec(B') + [vec(Byppr) — 2vec(B')]'vec(A)
= {vec(B')}'Gvec(B') + {vec(Byppr)} Gvec(Byppr)
—2{vec(B')}Gvec(Byppp)
= [vec(B') — vec(Byppr)' G[vec(B') — vec(Byppr)).

which is nonnegative since G is nonnegative definite. Hence, it is proved that
Jo(B) > Jo(Bgrppr) for all B with the assumption eq.10.

2) Assume that Jy(B) is minimized at Brppr. Then Bgrppr is a stationary point
of the functional Jy(B) and it holds
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9.1x(B)
0B

This yields eq.10, which concludes the proof.

|=Brprr = 2[Brrpr(AA'+1Q) + AR'RBrpprgg’ — AT =0.

A candidate for Brppr is
Brppr(7.2) = unvec[{(AA' +7Q)® I, + M(gg') ® (R'R)}tvec(4')], (13)

where unvec denotes the inverse operator of vec.

4.2 Multiscale Adaptive Restoration

We treat the restoration problem in the wavelet domain (n stages MRA (Mallat,
1989)). Image signals are decomposed to a quad-tree structure by wavelet transform
as shown in Fig.1.

LLz| HLz

1L.H;| HH3| HL: HL
Wavelet Transform 1

LH:| HH:
Image =

LH: | HH:

oo}

Fig.1: The wavelet transform of an image.

In the wavelet dowmaiu, image signals have the features listed below.

e The low frequency components include large energy compared with the high
frequency components.

e There exists some correlation between two successive components. (For in-
stance, LH| and LH>.)

On the other hand, degradation operators are usually low-pass filters in the prac-
tical situation. Thus it is expected that the low frequency components are restored
more accurately than the high frequency components and that some information
about already estimated components contribute to getting others. We construct a

new restoration algorithm based on the issues mentioned above.
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4.2.1 Tmage Degradation in the Wavelet Domain

Let 11,1 be an orthogonal wavelet transform operator (n stages MRA (Mallat,
1989)). 117, is written as helow

1‘.n.‘.l = “Vn“.n—l " 'I]—l- (14)

where 115 (7 = 1..... n) denotes a wavelet trausform operator hy which we obtain
the /-th stage components from the (7 —1)-th stage components. Therefore we have

cq.1 as follows
(”.u,..lg) = (”vu.“lf”",l,_,‘l )(”'n...l.f) =+ (”'n...ln)- (1:))

i the wavelet domain. since 19, 1 is an orthogonal matrix. In this formmlation.

covariance matrix of additive noise 11, n is written as follows
® =
Qu =1, 0, .
and also the matrix expression of an original image 11, f is as follows
Ln HIl.n
Fy Fyy
FI__II.II Fll_ll.u S F”-I"l
1" 1"
Fb. = |
W : ]
L1 .|
F Fy

LLi ~LHi L. HH.i ;
where Fiy' Fyp ' Fy-o'and Fyy- ' denote LL. LH. HL. and H H-component of
i-th stage in the wavelet domain. And we define a vector expression of 10, | f as

follows

Wo..f = vec(F}}).

4.2.2 Tmage Restoration by Multiscale RPPF
We propose a restoration algorithi described below based on RPPF.
Step.1 Trausform the degradation model to the wavelet domain as eq.15.

Step.2 ODbtain a restored image by Bgrppp(5.0) which is equal to PPF in the

wavelet domain (n-th stage).
Step.3 Let k= n.

id ok iR
Step.4 Make a regularization operator R;._; from restored component Fj;~". (dis-
cussed in a later section)
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Step.5 Coustruct (A — 1)-th stage degradation model by premultiplying by 117 to
eq.15.

Step.6 Obtain a restored image by Brppp(5.\) in the wavelet domain ((A —1)-th
stage) and let kb «— k — 1.

| Step.7 If k > 0 then repeat Steps.d ~ 6.

Thus we obtain a final restored image. The outline of this algorithm is shown in

Fig.2.
B Bepp (W I W
Degraded . \ Restored —‘
st step Image | Image B -
‘ i (WaW, o) | / | (2nd stage RN AT
T L J ; I
‘ ,‘ — —| r :
| | ——
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] L B tm : 1 B )
Lo Deeraded _J\ Restored | i b i
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l W T | Ist .\lugw{ S| :
| | L
| e arzses | 2 o T
i : J
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Fig.2: Outline of the Multiscale RPPF.

4.2.3 Construction of Regularization Operator

Our objective to use a regularization operator is to reduce the influence of noise
on flat regions while preserving the edge information of images. In order to realize
this. we adopt one which consists of a weighted sum of the second differential of
L L-component.

Let VF"“.""'(:'..[) be the gradieut of F"“-I"k(i.j) which is described as follows
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VFLLL(.‘):[F‘LL}‘(I jn) FLLL(-.)]

Fp " (b 9 B, 1)

where ¢, = min(? + 1,7%), J, = min(j +1.¢;) for F“"L € R™*<% A vector field
consisting of the orthogonal vector of the gradient VF“ k1, J)is

OLLk( i OtLVLk( J)n =9 Je- 114“’L'k('in-) FLH( J)
2] OLLk( ). F‘,I{,“L.k(T-’jn) F‘LLk( r

and that of (k — 1)-th stage (OL it [ J)) is obtained by the linearly interpolating.
We define the weight matrices as follows

Wi, j) = {to““ DNOWATGDN = if IO )l > T

L 1/v2 : otherwise,
wioi o | IOEF IO« if 1OR*i il > T,
. 1/V2 : otherwise,

where T denotes some real number for the threshold. Finally, we construct the
operator Rj_; consisting of the weighted sum of the second differential based on
Wo(i.7) and Wy(i,j) as follows

unvec[R;_;vec( Fi1)](i. j)
Wi (i ) B )
—2F‘L“ "o, )+ Fgt g )L [ 10 S
={ FWEI(i,j)( PR 1<pj> o { 1< < e,
_QFLLk Y4, ) + FLL+-10 5y
0 : otherwise,
where i, = min(i + 1,74-1), jo = min(j + l.cey), 4 = max(i — 1,1), j, =

max(j — 1,1) for F\LL k=1 ¢ Rreoixero1),

5 Numerical Examples

In this section, we show some numerical examples to confirm the efficacy of the
proposed method.

5.1 Example 1

Figure 3 is an original image(16 x 16 pixels, 256 gray scale) and Fig.4 is the
degraded image which is obtained by averaging 7 pixels vertically and adding noise
which is horizontally white and whose vertical covariance matrix (16 x 16) is de-
scribed as follows
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[125 625 0 0 6.25]
6.25 125 6.25 0 0
Gt
‘. . . 0
0 6.25 125 6.25
1625 0 0 625 125

Figures 5. 6, and 7 are the restored images by Moore-Penrose inverse (MPI),
PPF, and the proposed method (MRPPF). The parameters for PPF and MRPPF
are those by which SNR of restored images are maximized. v(for PPF) is 0.0011.
7. A and T (for MRPPF) are 0.00041. 3.9 x 107®, and 1, respectively. We adopt
Haar wavelet for MRPPF. The number of stage in MRPPF is 2. We show SNR of
restored images in Table 1.

5.2 Example 2

Figure 8 is an original image (32 x 32 pixels. 256 gray scale) and Fig.9 is the
degraded image which is obtained by averaging 15 pixels vertically and the nature
of noise is same as Example 1, except the size of covariance matrix (32 x 32).

Figures 10. 11, and 12 are the restored images by MPI, PPF, and MRPPF. We
use same parameters in Example 1. We show SNR of restored images in Table 2.

Fig.3: An original image. Fig.4: A degraded image.
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Fig.5: A restored image by A*. Fig.6: A restored image by PPF.

Fig.7: A restored image by MRPPF. Fig.8: An original image.
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| Fig.9: A degraded image. Fig.10: A restored image by A*.

Fig.11: A restored image by PPF. Fig.12: A restored image by MRPPF.
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Table 1: SNR of restored im- Table 2: SNR of restored im-
ages(Example 1). ages(Example 2).
Method | SNR(dB) Method | SNR(dB)
MPI 13.6 MPI 6.4 :
PPF 16.1 PPF 12.1
MRPPF 16.6 MRPPF 13.0

6 Conclusion

In this paper, we constructed a new basic restoration form by which we can ef-
fectively deal with observation noise in the space of original images and use some
regularization scheme simultaneously by extending Parametric Projection Filter.
And based on it, we proposed a restoration filter in which we estimate an effective
regularization operator step by step with multiscale adaptive estimation approach
and we also verified that the proposed method is effective by some numerical ex-
periments.
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