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For important fatigue-sensitive structures of aircraft whose breakdowns cause serious 
accidents, it is required to keep their reliability extremely high. In this paper, we discuss 
inspection strategies for such important structures against fatigue failure. The focus is 
on the case when there are fatigue-cracks unexpectedly detected in a fleet of aircraft 
within a warranty period (prior to the first inspection). The paper examines this case and 
proposes stochastic models for prediction of fatigue-crack growth to determine 
appropriate inspections intervals. We also do not assume known parameters of the 
underlying distributions, and the estimation of that is incorporated into the analysis and 
decision-making. Numerical example is provided to illustrate the procedure. 
Keywords: Aircraft, Fatigue crack, Inspection interval. 

1 Introduction 

Fatigue is one of the most important problems of aircraft arising from their nature as 
multiple-component structures, subjected to random dynamic loads. The analysis of 
fatigue crack growth is one of the most important tasks in the design and life prediction 
of aircraft fatigue-sensitive structures (for instance, wing, fuselage) and their 
components (for instance, aileron or balancing flap as part of the wing panel, stringer, 
etc.). An example of in-service cracking from B727 aircraft (year of manufacture 1981; 
flight hours not available; flight cycles 39,523) [1] is given on Figure 1. 

Several probabilistic or stochastic models have been employed to fit the data from 
various fatigue crack growth experiments. Among them, the Markov chain model [2], 
the second-order approximation model [3], and the modified second-order polynomial 
model [ 4]. Each of the models may be the most appropriate one to depict a particular set 
of fatigue growth data but not necessarily the others. All models can be improved to 
depict very accurately the growth data but, of course, it has to be at the cost of 
increasing computational complexity. Yang's model [3] and the polynomial model [4] 
are considered more appropriate than the Markov chain model [2] by some researchers 
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through the introduction of a differential equation which indicates that fatigue crack 
growth rate is a function of crack size and other parameters. The parameters, however, 
can only be determined through the observation and measurement of many crack growth 
samples. If fatigue crack growth samples are observed and measured, descriptive 
statistics can then be applied directly to the data to find the distributions of the desired 
random quantities. Thus, these models still lack prediction algorithms. Moreover, they 
are mathematically too complicated for fatigue researchers as well as design engineers. 
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Figure 1: Example of in-service cracking from B 72 7 aircraft. 

A large gap still needs to be bridged between the fatigue experimentalists and 
researchers who use probabilistic methods to study the fatigue crack growth problems. 

2 Problem Description 

Let us assume that a fatigue-sensitive component has been found cracked on n 
aircraft within a warranty period. The cracking had not yet caused an accident, but the 
safety experts have told the manager that had this item failed, an accident was possible. 
It is clear that the part would have to be redesigned and replaced. The manager's 
dilemma is that redesigning the part, manufacturing the new design, and installing it in 
the fleet would take, say, at least two years. The manager must decide how to manage 
risk for the next two years. The alternatives include doing nothing and accepting the risk 
of continued cracking and the possibility of an accident. An inspection program is 
usually instigated, which should reduce the risk of failure, but due to uncertainties in 
aircraft loading histories, provides no direct measurement of the criticality of the 
detected cracks. Generally, such a program would lead to some aircraft being grounded, 
eliminating risk for those aircraft and reducing overall risk, but reducing operational 
capability. This would leave precious few aircraft to spare before the service's ability to 
accomplish its mission became impaired. In such a scenario, the decision process 
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involves a complex probability problem concerning the likelihood of additional failures 
and acceptable risk. To compound the difficulty little guidance is provided in aircraft 
design specifications for this situation. The situation presented is not uncommon. 

The purpose of this paper is to present a more accurate stochastic crack growth 
analysis method, while maintaining the simplicity of the proposed stochastic fatigue 
models, for the above problem. We discuss the optimal relationship between the 
inspection time and the prespecified minimum level of reliability. To illustrate the 
proposed technique, a numerical example is given. 

3 Paris-Erdogan Law as a Starting Point 

The basis of most of the fatigue models is the Paris-Erdogan law [5] relating the rate 
of growth of crack size a to N cycles: 

da(N) = q[a(N)]b 
dN 

(1) 

in which q and b are parameters depending on loading spectra, structural/material 
properties, etc. We fit da/dN vs a(N) with a function that we can integrate between 
limits (initial crack size, a

0
, and any given crack size, a) to get a life prediction. 

Paris Region II 
Stable Growth 

da(N) [ . ( V)t 
~ = q a , 

a - crack size (log scale) 

Figure 2: Crack growth rate versus crack size curve 
(I = near-threshold region; II = linear region; III == instability region). 
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In the linear region (see Figure 2) we use the Paris-Erdogan Equation (1) as follows. 
Integrating 

N a(N) da 

fdN = f 7' 
No ao q 

(2) 

we have 

(3) 

Thus, the crack growth equation representing the solution of the differential equation 
for the Paris-Erdogan law is given by 

3.1 Sensitivity Analysis 

N-N = l (-1__ 1 J 
0 q(b-1) ag-1 a(N)b-I · 

(4) 

Consider the solution of the differential equation for the Paris-Erdogan law written in 
the form of ( 4) as: 

1 ( 1 1 ) 
N(a) = q(b-1) ag-1 - ab-1 ' (5) 

where ao is the initial crack size at No=O. The derivatives of the number of load cycles 
with respect to the parameters q and b read: 

dN(a) N(a) 
--=---

dq q 
(6) 

and 

(7) 

From this one can see that the number of cycles to reach a certain crack size is very 
sensitive to changes of the parameter q. 

4 Statistical Variability of Fatigue-Crack Growth 

The traditional analytical method of engineering fracture mechanics (EFM) usually 
assumes that crack size, stress level, material property and crack growth rate, etc. are all 
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deterministic values which will lead to conservative or very conservative outcomes. 
However, according to many experimental results and field data, even in well-controlled 
laboratory conditions, crack growth results usually show a considerable statistical 
variability (as shown in Figure 3). 
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Figure 3: Constant amplitude loading fatigue test data curves. 

Yet more considerable statistical variability is the case under variable amplitude 
loading (as shown in Figure 4). 

The basis of most data analyses seems to be to take logarithms in ( 1) and estimate b 
and q by least squares in the equation 

ln(da(N) / dN) = lnq +blna(N). (8) 

Unfortunately to use this equation estimates of da(N)/dN are required. Estimates of 
derivatives are notoriously unreliable. If several repetitions of an experiment under the 
same conditions are made it is not always clear how to combine the results. Moreover, 
as a regression model the properties of the estimates of the coefficients in (8) are not the 
same as those of estimates of the coefficients in (4). Thus it is sensible to ask why the 
estimation does not proceed directly from the data on crack size and cycles through 
equation (4). 

It is interesting to note that if b were known q could be estimated from a straight line 

1 1 
---=(b-1\~(N-N) 

b-1 b-1 J<1 0 a0 a 
(9) 
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and indeed such a plot for a few values of q is indicative of the nature of the Paris­
Erdogan equation in a particular case. 
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Figure 4: Variable amplitude loading fatigue test data curves. 

During the service of the components being assessed, there may be uncertainties in 
the applied loading conditions, extrapolation of the material data to service conditions, 
component dimensions, and nature, size and location of detected (postulated) defects, 
etc. These uncertainties/ variations are critical inputs to the crack growth assessment 
and can be taken into account using probabilistic methodologies. There is now an 
extensive literature on the subject of the statistical nature of crack growth. Most of the 
literature is concerned with model building and the agreement between the general 
features of the model and the observed behaviour of the crack. However, little use has 
been made of the statistical nature of the models to analyze experimental results. 

While most industrial failures involve fatigue, the assessment of the fatigue 
reliability of industrial components subjected to various dynamic loading situations is 
one of the most difficult engineering problems that remains. Material degradation 
processes due to fatigue depend upon material characteristics, component geometry, 
loading history and environmental conditions. As a result, stochastic models for crack 
growth have been suggested by many investigators in the last 15 years. These include 
evolutionary probabilistic models, cumulative jump models and differential equation 
(DE) models. DE models are the most widely used models for predicting stochastic 
crack growth accumulation in the reliability and durability analyses of fatigue critical 
components. 

In practical applications of the stochastic crack growth analysis, either one of the 
following two distribution functions is needed: the distribution of the crack size at any 
service time or the distribution of the service time to reach any given crack size. 
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Unfortunately, when the crack growth rate is modeled as a random process, these two 
distribution functions are not amenable to analytical solutions. As a result, numerical 
simulation procedures have been used to obtain accurate results. The simulation 
approach is a very powerful tool ; in particular, with modem high-speed computers. 
However, it is a very time consuming procedure and therefore simple approximate 
analytical solutions are very useful in engineering. 

The purpose of this paper is to present a more useful stochastic fatigue crack growth 
models by using the solution of the Paris-Erdogan law equation, which result in a 
simple analytical solution for either the distribution of the service time to reach any 
given crack size or the distribution of the crack size at any service time. 

The probability that crack size a(N) will exceed any given crack size a• in the service 

interval (N
0
,N), Pr{a(N)> a"}, is frequently referred to as crack exceedance probability 

and can be found based on the stochastic fatigue crack growth model. In addition to this 
probability distribution of crack size, the probability distribution of cycles (or time) for 
a crack to grow from size a

0 
to a•, Pr{N(a

0 )$ N"} , can also be found based on the above 

model. In fact, the probability that service time N(a") will be within the interval (N0, N") 

for crack size to reach a• is identical to Pr{a(N)> a"}. That is Pr{N(a") $ N°}= Pr{a(N) 
> a"}. To summarize the concept of the above derivation, the readers can refer to Figure 
5. 

a• 

ao Median Crack Growth Curve 

No N - Cycles or T - Time 

Figure 5: Schematic diagram of crack size distribution and random time distribution. 

5 Stochastic Fatigue-Crack Growth Parameter Variability Models 

These models allow one to describe the uncertainties in one or two parameters of the 
solution (4) of the differential equation (1) for the Paris-Erdogan law via parameters 
modelled as random variables in order to characterize the random properties, which 
seem to vary from specimen to specimen (see Figure 3). In other words, the stochastic 
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fatigue-crack growth parameter variability models (with respect to the parameters band 
q modelled as random variables) are given by 

(10) 

where (N-N
0
) is a joint random variable of B and Q. In fact, these models are suited to 

account for this type of variability. The ones however cannot explain the variability of 
the crack growth rate during the crack growth process. In particular, crack growth data 
(crack size versus service time and vice versa) may been analyzed using Eq. (10) by 
considering, for instance, two different approaches: 

(i) B is identical for each specimen and Q varies from specimen to specimen, referred 
to as Case 1; 

(ii) both B and Q vary from specimen to specimen, referred as Case 2. 
For Case 1, with B=l, the crack growth data for each specimen are best fitted by 

equation 

(11) 

to obtain a sample value of Q, where a(N) = a, a(No) = a0• For Case 2 equation (10) is 
used to best fit the crack growth data for each specimen to obtain a set of sample values 
of B and Q. From the statistical standpoint, B is considered to be a deterministic value 
and Q to be a statistical (random) variable in Case 1, while both B and Q are considered 
to be statistical variables in Case 2. It is found that the lognormal or Weibull 
distribution provides a reasonable fit for B and Q in both cases. 

5.1 Weibull Crack Growth Parameter Variability Model 

Consider Case l. The Weibull probability distribution function, F(q;rr,O) , of Q is 
expressed as 

F(q;a,o)={lo-, exp[- (q / a)" ], q '2:. 0, 
otherwise, 

(12) 

in which F(q;a,O) is the probability that Q is smaller than or equal to an arbitrary value 
q; a and t5 are distribution parameters representing the scale parameter and the shape 
parameter, respectively. 
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5.2 Crack Exceedance Probability 

For B=l, the probability that crack size a(N) will exceed any given (say, maximum 
allowable) crack size a• can be derived and expressed as 

P { (N) .} p {Q ln[a• /a(N0 )]} [ (ln[a• /a(N0 )])

0

] r a > a = r > = exp -
N-N0 <Y(N-N0 ) 

(13) 

For B=b:t=l the maximum allowable crack size exceedance probability for a single 
crack is given by 

• { [a(N )r(b-l) _[aT(b-1)} [ ([a(N )r(b-1) -[a•J-{b-1))/j] 
Pr{a(N)>a }=Pr Q> (~-l)(N-No) =exp - <Y(b-l)(N-No) . 

(14) 

It will be noted that the crack exceedance probability can be used for assigning 
sequential in-service inspections [6]. 

6 Stochastic Fatigue-Crack Growth Lifetime Variability Models 

These models allow one to characterize the random properties, which seem to vary 
during crack growth (see Figure 4), via crack growth equation with a stochastic noise V 
dependent, in general, on the crack size a: 

(15) 

(16) 

(17) 

(18) 

and so on, where V-N(O,d(b,q,N)), a0 = a(Nc), a= a(N). They are suited to account for 
this type of variability. The ones however cannot explain the variability of the crack 
growth rate from specimen to specimen. 
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6.1 Crack Exceedance Probability 

If V~N(O,if) in (15), then the probability that crack size a(N) will exceed any given 
(say, maximum allowable) crack size a• can be derived and expressed as 

Pr{a(N)>a"}=<I> N-N0 -
0 rr, ([ 

[a rcb-l) -[a•rcb-1) ]/ ) 

(b-I)q 

where <I>(.) is the standard normal distribution function, 

I ,, 
<1>(17) = ~ fexp(-x 2 /2)dx. 

-v27r - co 

(19) 

(20) 

If V~N(0,[(b-1 )o(N-Not2]2) in (17), then the probability that crack size a(N) will 
exceed any given (say, maximum allowable) crack size a• can be derived and expressed 
as 

(21) 

In this case, the conditional probability density function of a is given by 

(22) 

6.2 Data Analysis for a Single Crack 

Consider the regression model corresponding to (17). Because the variance is non­
constant (17) is a non-standard model; however, on dividing by (N-N0)112 the model 
becomes 

1-b 1-b 

ao -a =(b-I)q(N-N )1 12+W 

(N-No)1'2 o ' 
(23) 

where W is normally distributed with mean zero and standard deviation (b-l)rr 
independent of N. Thus if bis known the estimator of (b-I)q is just the least-squares 
estimator of the coefficient in Equation (23) and the estimate of ( b- I) rr is just the 
estimate of the variance of the regression. It remains to determine what to do about b. 
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Given the data describing a single crack, say a sequence {(a; ,N;)}7=i • it is easy to 

construct a log-likelihood using the density given by (22) and estimate the parameters b, 
q and a by maximum likelihood. The log-likelihood is 

Inspection shows that this differs from the standard least-squares equation only in the 
term -bilna, where the subscript i has been dropped. The likelihood estimators are 
obtained by solving the equations 

dL/db =O; dL/dq =O; dL/da=O. (25) 

In this case the equations have no closed solution. However, it is easy to see that the 
estimators for q and a given b are the usual least-squares estimators for the coefficients 
in (23) conditioned on b, 

(26) 

(27) 

and on substituting these back in the log-likelihood gives a function of b alone, 

n 

L(b) = -b Llna; -nln[B-(b)]-n/2. (28) 
i=l 

Thus the technique is to search for the value of b that maximizes L(b) by estimating q 
and a as functions of b and substituting in L(b). In this study a simple golden-section 
search worked very effectively. 

6.3 Pooling Data 

When several experiments have been performed it is possible to combine the log­
likelihoods from each experiment to give estimators of the parameters of interest. 
Suppose that several experiments have been performed. Each experiment is labelled 
with j, j runs from 1 to m, and yields nj observations. The data are then a set of 
sequences {(ajk,N;,k)}, withj=l, .. . , m, k=l, ... , ni The log-likelihood for the whole set 
of experiments is simply the sum of the log-likelihoods for the individual cracks; 
writing Lj(bj,{Jj,0) for the log-likelihood for thejth crack gives 
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and 

n j 

L/bj,qj ,rrj ; {(ajk ,Njk )} ) = -bj ~)najk -nj lnrrj 
k=I 

m 

L = LL/bj,qj,rrj;{(ajk,Njk)}). 
j=I 

(29) 

(30) 

The global log-likelihood can be used to investigate explicit parametric models for the 
parameters, or simply as a way to pool data. Estimation by maximum likelihood 
proceeds exactly as above; the (JJ and 0 are obtained as ordinary least-squares 
estimators from equations like (26) and (27), one for each crack, and substituted back 
into the log-likelihood to yield 

(31) 

When the cracks are all assumed to be independent with distinct parameters the 
estimators from the joint log-likelihood are precisely those obtained by estimating from 
each separately as outlined above. 

If a common value of b is used and the (JJ and 0 are assumed to absorb most of the 
experimental variability, the joint log- likelihood reduces to 

7 Stochastic Fatigue-Crack Growth Parameter and Lifetime 
Variability Models 

(32) 

These models allow one to describe the uncertainties in the fatigue-crack growth of 
the Paris-Erdogan law via crack growth equation with a stochastic noise dependent, in 
general, on the crack size, and parameters modelled as random variables in order to 
characterize the random properties, which seem to vary both from specimen to 
specimen and during crack growth (see Figure 4). In other words, the stochastic fatigue­
crack growth parameter and propagation lifetime variability model (with respect to the 
parameters B and Q, modelled as random variables, and the stochastic noise V 
dependent, in general, on the crack size a) may be given, for example, as 
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(33) 

7.1 Crack Exceedance Probability 

In this case, the probability that crack size a(N) will exceed any given (say, 
maximum allowable) crack size a• can be derived and expressed as 

Pr{a(N)>a}=Eexp- 0 
• 

• { [ ([a(N )r<b-IJ -[aT<b-iJ ]
5

]} 

a(b-l)(N-N0 + V) 
(34) 

8 Example 

Let us assume that a fatigue-sensitive component has been found cracked on n=l0 
aircraft within a warranty period. Here a fleet of ten aircraft have all been inspected. 

Table 1: Inspection results. 

Aircraft 
Flight hours Crack size (mm) 

(N;) (a;) 

1 3000 1 
2 2300 0.5 
3 2200 1 
4 2000 2 
5 1500 0.8 
6 1500 1.5 
7 1300 1 
8 1100 1 
9 1000 1 
10 800 1 

It is assumed that cracks start growing from the time the aircraft entered service. For 
typical aircraft metallic materials, an initial discontinuity size (ao) found through 
quantitative fractography is approximately between 0.02 and 0.05 mm. Choosing a 
typical value for initial discontinuity state (e.g., 0.02 mm) is more conservative than 
choosing an extreme value ( e.g., 0.05 mm). This implies that if the lead cracks can be 
attributed to unusually large initiating discontinuities then the available life increases. 

We test a goodness of fit of the data of Table 1 with the Weibull fatigue-crack 
growth parameter variability model (see Case 1), where 

(35) 
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with a common value of b, ao=0.02, and No=0. 

8.1 Goodness-of-Fit Testing 

We assess the statistical significance of departures from the Weibull model by 
performing empirical distribution function goodness-of-fit test. We use the S statistic 
[7]. For complete datasets, the S statistic is given by 

(36) 

where [n/2] is a largest integer :=; n/2, Q; is the ith order statistic, the values of M; are 

given in Table 13 [7]. The rejection region for the a level of significance is {S>Sn;i-a}. 
The percentage points for Sn;l- a were given in [7]. The value of b is one that minimizes 
S(b) . For this example, b = 0.87 and 

S=0.43 < Sn=IO; 1-a=0_95=0.69. (37) 

Thus, there is not evidence to rule out the Weibull model. Using the relationship (4), the 
inspection results can be extrapolated from the expected initial crack size, a0, to the time 
of the next inspection when the maximum allowable crack size is equal to a•=l0 mm as 
presented in Table 2. 

Table 2: Predicted next inspection results. 

Aircraft 
Maximum allowable Next inspection time 
crack size a• (mm) (flight hours) 

1 10 5626 
2 10 5503 
3 10 4126 
4 10 3033 
5 10 3030 
6 10 2477 
7 10 2438 
8 10 2063 
9 10 1875 
10 10 1500 
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9 Conclusion 

The authors hope that this work will stimulate further investigation using the 
approaches on specific applications to see whether obtained results with it are feasible 
for realistic applications. 
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