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Abstract 

The year of 2007 was a jubilee year, namely the anniversary of 40 years of the object­
oriented programming (OOP). Nevertheless, when the first tool allowing application of 
the OOP paradigm was presented to the world professional community in 1967, it 
offered much more than the mentioned paradigm. The whole system of the offered tools 
was later called Super-Object-Oriented programming tools (SOOP). Its origin and its 
abilities have several intimate relations to computer simulation and to computing 
anticipatory systems. The properties of the OOP and of SOOP and their differing are 
presented in the paper and the relation to the computing anticipatory systems as well. 
Keywords: object-oriented programming, anticipatory systems, SIMULA, simulation, 
super-object-oriented programming 

1 Simulation and Computing Anticipatory Systems 

When a human thinks on something that will operate in future, he/she is an 
anticipatory system. In such a situation, human often imagines the consequences of a 
present doing, which could appear in future. Human imagining is limited by its 
fuzziness and by a low capacity of abilities that check against possible inconsistencies 
made during the process of imagining. Computer simulation is an efficient tool for 
amplifying the imagining abilities of humans, because the computer storage ability 
allows evidence of many values figuring in the "imagined" process, the operation speed 
of computer allows taking millions of events into "imaginings", and the rational 
checking of consistency can be programmed by simple algorithmic techniques. When a 
human or a team applies computer simulation for getting information on the possible 
future consequences of the instantaneous decisions he/she/it is a real computing 
anticipatory system. Let us speak on anticipatory system of type S or shortly on S­
system in such a case (S causes an association with simulation). 

Note that the consequences can concern a large spectrum of the future, from that very 
near (e.g. those of pressing a certain button at a power plant) up to a very distant (e.g. 
those of releasing a given machine into production and then into operation). And note 
that computer simulation is not limited to inform on future, as it is applied e.g. to help 
determining parameters of some bygone processes (in medical or industrial diagnostics), 
but such applications are not interesting for the present paper. 

Simulation enables to take many details into account and therefore the computer 
models used for it are often complicated, demanding a hard programming work. 
Application of conventional algorithmic technique of programming leads often to bad 
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events: an unexpected need of a rather small change of the simulated system comes, but 
its reflecting in the algorithm appears as its total rewriting. 

The communities of simulation specialists solved those obstacles by inventing so 
called simulation languages. The substance of their behold consists in the offer to their 
users: they do not need to algorithmize the simulation model, as they only need to 
described the simulated system itself and such a description is automatically either 
interpreted at running computer as real simulation model, or automatically translated 
into an algorithmic form, usually expressed very near to the proper machine language of 
the given computer. In the first case an interpreter and in the other case a compiler 
should be programmed; they are rather complicated and sophisticated program products, 
demanding more programming effort than a single simulation model without help of a 
simulation language, but they need to be programmed only once for a simulation 
language and that is their advantage. 

Naturally, a simulation language can be applied only for description of a certain 
limited class I'of systems (it is difficult to define a language in that one could describe 
e.g. systems of biological cells and production systems in machine industry, or a system 
of maritime transport). The conventional task of a component Hof human civilization, 
which decides defining and implementing a simulation language 'A has to anticipate the 
spectrum of possible applications and, according to it, to set bounds for Fin a suitable 
manner: if 'A were too particular some systems on that one expects to belong to I'could 
not be described by 'A in a suitable way, while in case 'A were too general the description 
of all systems belonging to G would be obliged contain some components repeated for 
all of them. Therefore H appears an anticipatory system. Nevertheless, to propose a -
may be excellent - simulation language without implementing it at computing technique 
(i.e. realization of its interpreter or its compiler) has no effect. H must be able to imple­
ment 'A, and so H becomes a computing anticipatory system; let us call it anticipatory 
system of type Lor shortly L-system (L like language). 

2 Process Oriented Simulation Languages 

To describe a system needs to present something that could be algorithmized ( even 
by a complicated manner when an interpreter or complier runs, making millions 
operations with the description D of the given system). Soon after the first Von 
Neumann's digital computers have appeared (namely at the beginning of the 60ies of 
the XX. century) one has discovered that there is a lot of discrete event dynamic 
systems that are formed by a constant network of permanent elements and by a variable 
set of transactions that enter the system, move along the network, interact with the 
permanent elements and - through that interaction - interact also mutually. An example 
is a department store with fixed investment and employees, among which 
customers/transactions move; when a customer enters to cash desk, he may interact with 
another customer who has the same intention bus has to wait in the corresponding queue 
for some time. Another example is a biological cell system, viewed as having several 
sets of cells that are in the same state; each of the cells moves from one state-set into 
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another, dwells there some time and in certain states dies or multiplies. Another 
example is a transport system (railway network, highways, harbor, airport etc.). 

A holistic description of such a system ( e.g. by a conventional algorithm describing 
the time flow of the event occurring in it) is difficult but it is possible to view the 
system as composed of transactions so that the set of all possible transactions can be 
decomposed to a small number of sets called classes, so that each of them contains 
transactions that are "similar". The similarity consists in the same formulation of life 
rules for every transaction of the given class, and in a certain list of data, the instance of 
which is handled by every transaction of the class. Thus, when any transaction of the 
class enters the described system it behaves according to the given life rules and handles 
its own instance of data. These data are called attributes of the transaction and 
respecting the life rules is metaphorically called life of the transaction. The life rules can 
be expressed by means of the components of conventional algorithmic languages (like 
assignments, branchings, cycles, ... ) completed by expressions with pseudorandom 
numbers and by so called scheduling statements that express that when the life of a 
transaction accesses such a statement it remains at it either some time, or until it gets 
some signal to continue, or until it recognizes that a certain condition is satisfied 
(according it, the scheduling statement are classified into several sorts). 

It is known that a computing process following the algorithm can proceed in different 
manner, e.g. in dependence on instantaneous values of its variables. Similarly the lives 
of the transactions of the same class can differ, also in dependence on the values of 
attributes of other transactions. 

The simulation languages that allow decomposing the description of a given system 
into transactions with attributes and life rules where both are grouped into classes are 
called process oriented (simulation) languages [I] and instead of term transaction one 
uses also process. The first language called GPSS introduced in 1961 [3] was so 
primitive that some authors do not recommend to class it into the process oriented, but 
soon the languages of that sort were improved, e.g. by accepting all algorithmic tools of 
ALGOL 60 (a programming language recommended in the sixties as an international 
standard of algorithmization [4]) among the life rules. The culmination is the simulation 
language called SIMULA [5], [6] in the first half of the sixties and then SIMULA I, in 
order to distinguish this language from the new, object-oriented, SIMULA (see further) . 
In the present paper, let that simulation language be called old SIMULA. For it the 
following important properties can be expresses: 

(P 1) a class has its name, its set of attributes and its life rules; 
(P2) a class itself cannot influence the computing, but is a pattern for an arbitrary 

number of its instances, i.e. elements, each of which has its own set of attributes and it 
own "life" according to life rules introduced in the class; 

(P3) each of the members of the attribute set has its name and its type; 
(P4) an instance can interact with other instances ( of any class) by sending signals on 

the scheduling and by so called connection statements of form inspect R do S where R 
points to a certain instance of ( an arbitrary) class and Sis a statement; it is interpreted as 
belonging to the life rules of R, i.e. handling with attributes of R. (because of its form, 
the connection statements are often called inspections). 
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3 Hoare's Record Handling 

In 1966 a NATO advanced summer school on programming languages were 
organized in France [2] and O.-J. Dahl, one of the authors of the old SIMULA, was 
invited there to take a lecture on discrete event simulation languages [l]. Another 
lecturer at that school was C. A. R. Hoare who spoke there on record handling and 
introduced concept of record according to the following principles [7]: 

(Hl) Class (of similar records) has its name and a list of its components; each of 
them has a name and a type; the types can be those of conventional languages 
(numerical, textual, ... ) or pointers to other records. Any pointer has its qualification, 
informing to which class the pointed record should belong. 

(H2) Class is open for generating arbitrary number of its instances. 
(H3) Class can be specialized by adding further components; so a new class arises, 

called subclass of the source class, which is called superclass or prefix of the subclass; 
if the prefix C2 of class CJ is also a subclass then the superclass C3 of C2 is also 
viewed as a superclass of Cl and Cl is viewed as a subclass of C3. The specialization 
can be iterated in an arbitrary number of steps and so a class CJ can has its prefix 
sequence of classes beginning by Cl and ending by a class C that has no prefix. 

(H4) A class is open for any number of specializations. 
(H5) Principles (H3) and (H4) cause possibility of trees of its classes ordered by 

means of prefix sequences. 
(H6) An instance is generated by expression new C where C is a class, called native 

class of the given instance; such an instance is also an instance (but not a native 
instance) of prefix of C. 

(H7) If X is a pointer qualified into class C and Y is a component introduced for class 
C, then X Y represents the component Y of the record pointed by X 

(H8) If component Y of (H7) is also a pointer and if it is qualified into class CC, for 
which component Z is introduced, then X Y.Z is a legal expression representing the 
component Z of the instance to that X Y points. 

(H9) If X is a pointer qualified (= with qualification) to C then X can point to any 
instance the native class is C or any subclass of C. 

(Hl 0) If D is a subclass of C, Z is a component of D that is not introduced for C, and 
X is a pointer qualified to C, than XZ is erroneous (as it is in contradiction with the 
qualification of pointer X - note that X can point also to other classes than D). 

The expression introduced in (H7) is called remote identifying and more popularly 
dot notation; according to (H8), it can be iterated. Note the records are passive elements 
according to Hoare's conception; they had to be elaborated by statements organized in a 
conventionally structured algorithm. Rule (Hl0) is often called type discipline 

The old SIMULA had attributes, i.e. something like components of the records 
according to Hoare, it had life rules that were not considered in Hoare's contribution, 
but it had not dot notation, pointers and subclasses introduced by Hoare. In this 
situation, Dahl's idea arose to accept all that Hoare had carried in his lecture and the old 
SIMULA was enriched according to the following principles: 
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(PHI) class has its name, attribute set and life rules and can serve for generating as a 
pattern for any number of instances; 

(PH2) the attributes of an instance are accessible for another instance in the same 
manner as it was introduced by Hoare and formulated in (H7) and (H8). The dot notat­
ion is not in contradiction with the connection statements (see (P4)) and can remain as 
another tool for expressing the interactions among the instances; 

(PH3) a class can be specialized to any number of subclasses by adding further attri­
butes and life rules; the terms subclass, superclass and prefix are used in the same 
manner as in (H3) and a subclass can serve as prefix for any further specialization. 

4 Procedures as Components of Classes 

Although Dahl often expressed his gratitude to Hoare and his ideas the synthesis just 
described in (PHI) and (PH2) is far from the OOP. The next step consists in that Dahl 
and his collaborator K. Nygaard included procedures into the class concept and allowed 
the dot notation for calling procedures. So (PHI) was enriched to 

(SOOP!) class has its name, attribute set, procedure set and life rules and can serve 
for generating as a pattern for any number of instances; 

while (PH2) was enriched to 
(SOOP2) the attributes and procedures of an instance are accessible for another 

instance by the dot notation. In the connection statements of form inspect R do S, the 
procedure calls occurring in S are in the first level interpreted according their possible 
declaration for class to that R is qualified. 

And the first part of (PH3) was enriched to 
(SOOP3) a class can be specialized to any number of subclasses by adding further 

attributes, procedures and life rules. 
The qualification and type discipline are generalized for procedures, too. For the next 

analysis, let us formulate other three principles, namely those arising from (SOOP1)­
(SOOP3) by omitting life rules from them: 

(OOPl) class has its name, attribute set, and procedure set and can serve for 
generating as a pattern for any number of instances; 

(OOP2) be equal to (SOOP2); 
(OOP3) a class can be specialized to any number of subclasses by adding further 

attributes and procedures. 
OOPi should recall term Object-oriented programming, while SOOP should recall 

term Super-object-oriented programming. Evidently, if a language offers (SOOP 1 )­
(SOOP3) it offers (OOP1)-(OOP3), too. 

5 Up to the Object-Oriented Anticipation 

In the middle of the 60ies of XX century the first symptoms of a so called software 
crisis appeared. One of the aspects of that crisis was a need of many new programming 
languages and their implementations, i.e. compilers and interpreters. That situation be­
came especially evident in computer simulation where new domains of application ori-
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ginated, i.e. new sets of similar systems demanded their proper simulation languages 
and their implementation. The desire arose to implement the new languages without 
dreadful programming of compilers or interpreters. The OOP appeared to be a good 
technique for it. The full definition of it is presented in the next section, but already 
now, i.e. with the knowledge of (OOPl)-(OOP3), it is possible to explain its role in the 
mentioned situation. 

Let an expression like XF, where F is a procedure, occurs in the life rules ( or in a 
procedure declaration) in the declaration of class C and let Y be an instance of C; when 
Y meets this expression it models something like "X, be kind to perform a service for 
me, namely to perform the procedure X'. Because of that interpretation, XF is called a 
message addressed to X, while X is called addressee of this message. If instead of F a 
verb is applied for the given procedure, then the message may be interpreted as a 
command to the addressee. If the verb is especially well chosen, the contents of the 
procedure can be remembered and the procedure may be accepted as representing a new 
sort of statement, moreover - as a new sort of a statement, which can be accepted by the 
computer without programming a new compiler/interpreter. 

Such a procedure may be introduced to have one or more parameters and then the 
form of the message XF(Y,). In case of a suitable choice of name F, such a message can 
recall a command with verb F and object Y (e.g. Xaccept(Y,) or Xdraw(Y,)) or a real 
military command where Fis something like preposition or conjuction (e.g. Xinto(Y,)). 
If such a procedure is a function, i.e. if it has a result, the construction like XF(Y) may 
represent a mathematical operation (like Xplus(Y,) where X and Y may be vectors, 
matrices, texts etc.) or a grammar clause that can figure as object or subject in the 
command mentioned above (e.g. Xplus(Y,).assignJor(equationl .lefl_hand_side)). 

If one has a programming tool for disposal, which satisfies (OOP1)-(00P3), a 
possibility offers to him to analyze a certain domain of interest ( a - may be infinite - set 
D of systems) and to anticipate the statements that will be useful for exact description of 
such systems. He usually starts by analyzing the language common among the specialist 
in the domain for exchange the information about the systems belonging to D , and 
analyzes what of its language structures will be suitable as tools for computer models of 
the systems occurring in D . Some authors call that activity domain analysis [8]. In fast, 
he anticipates what (simulation) programming language will be necessary in the future, 
and so he becomes an anticipatory system. And when he formulates declarations of 
considered classes, debugs them at a computer and tests them at some possible future 
models, he really becomes a computing anticipatory system that we will call 
anticipatory system of type OOP or simply OOP-system (that should be an association 
with the object-oriented programming). He makes the same work as if he anticipates on 
one or more anticipatory systems of type L. Naturally, in place of the mentioned 
individual person a team can exist. 

6 With Virtuality up to the Object-Oriented Programming 

More classes can contain procedures with the same name, i.e. such procedures are 
homonymous. Procedures with the same names can be introduced even for more 
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members of a prefix sequence. When an instance A sends a message B.F to addressee B 
(no matter whether with or without parameters) and F belongs among homonymous 
one, then - according to the type discipline - A determines unambiguously what F 
represents (in fact, the meaning of F is determined by the qualification of B). When 
Dahl and Nygaard thought over the block orientation, they came to the following 
conclusion. 

Suppose C is a class and Cl, .. . , Cn classes of the tree of subclasses of C. It is 
possible to declare a procedure F introduced in C as virtual so that its contents can be 
re-declared (in different ways) in arbitrary classes of Cl, .. . , Cn. It may be re-declared 
by different ways for two classes even in case one of them is a subclass of the other one. 
When the name of the virtual procedure occurs in a message like B.F then the contents 
of Fis not chosen according to the qualification of B (as that would be in case Fis not 
specified as virtual) but according to the native class of B (see principle (H6) in section 
3). A difference between calling virtual and non-virtual procedures is illustrated in Fig. 
1, where the circles represent classes and arrows specialization. Assume a circle with 
digit k represents class with name Ck. The circles in full line represent classes with 
declaration of procedure called F, the circles in dashed line represent the classes without 
a declaration of F. Suppose that B points to instance K, is qualified into Cl and used in 
the message B.F; if F is not specified as virtual this message is always performed 
according to the declaration formulated for Cl, independently of the native class of K 
Let N be the native class of K and F be specified as virtual in class Cl . Then the 
message B.F is performed according to the declaration occurring in Cl if N is Cl, C2 or 
C3, according to the declaration occurring in C4 if N is C4 or C5, according to 
declaration occurring in C6 if N is C6 and according to the declaration occurring in C7 
if N is C7 or C8. 

Figure 1: Arrows lead from classes to their subclasses 

Dahl and Nygaard came to the importance of virtual procedures after profound 
analyzing the consequences of the block structure (see section 8). Nevertheless, the 
behavior of virtual procedures is very impressive for the users, because it is a model of a 
certain initiative behavior: in case a message contains a virtual procedure F, then its 
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addressee does not interpret F according to the qualification of its own, but- initiatively 
and independently of the sender of the message - it determines itself the rules for the 
answer to the message (according to its own native class). The popularity of virtual 
procedures became so high that the authors of some later OOP tools ( e.g. SmallTalk, 
Eifel) stated that every procedure has to be taken as virtual. On the other side, saving 
non-virtual procedures and letting the user to be free in determining what procedures he 
wants to have as virtual, has value and so not only the new SIMULA but also e.g. C++ 
allow the choice. 

Nowadays, a possibility to use virtuality of procedures is understood as an integral 
part of OOP. Virtuality without subclasses and procedures as components of class 
instances is meaningless. futeresting is that the life rules (including scheduling 
statements) were not accepted as constituent part of OOP - such popular OOP tools as 
C++, SmallTalk 80 and later versions of Pascal do not support it. fu other words, the 
OOP can be characterized by principles (OOP1)-(OOP3) formulated in section 4, and 
the following principle ofvirtuality: 

(OOP4) procedures can be virtual. 
The lack of life rules makes the related languages detrimental for making simulation 

models in a similar way like by using process oriented languages. 
By assuming life rules and scheduling statements, the development of SIMULA 

exceeded the OOP many years before the world professional community accepted it as 
the best paradigm of programming. The influence of simulation to attend that matter is 
evident. But the life rules were not all that the development of SIMULA carried in 
1967. The other contributions are explained in the next three sections. 

7 Life Rule Sequencing by Virtuality and by Sequencing Statements 

What was presented under title SIMULA as its new version was soon called 
SIMULA 67 in order to distinguish it from the old SIMULA. All essential ideas of 
SIMULA 67 [9] were presented at the IFIP Working Conference on Simulation 
Programming languages held is Oslo in May 1967. fu the next months, the proposal was 
refined in certain details (e.g. in manipulation with files) and published as [10]. That 
definition remained constant until 1986 when the language was declared as an 
international standard under ISO. At this occasion the language title was returned to 
SIMULA (without affix 67, because the old SIMULA was completely forgotten and its 
former users went over to SIMULA 67) and the language itself was completed by 
standard procedures corresponding to the use of personal computers and workstations 
[11]. 

The life rules offered two complements to SIMULA 67, which would be meaningless 
for OOP tools that have no life rules: 

Already the old SIMULA took from ALGOL 60 possibility to transfer the life inside 
the sequence of life rules. The new version of SIMULA offered a possibility to 
introduce virtual labels, according to the following principle: 

(SOOP5) among the life rules introduced for a class, a transfer to a virtual target can 
occur; when an instance of a subclass of the class performs the mentioned life rules it 
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looks for the target among the life rules of the subclass; so the virtual labels enable 
transfer of the life among life rules of different classes. 

A general scheme of the realization of a scheduling statement is, that the process P 
that interprets the own life as a phase of the model run (i.e. is performing its own life 
rules) interrupts it at the scheduling statement, switches the computing run to the life of 
another process and into its own evidence saves the place that immediately follows the 
scheduling statement; the place is called reactivation point; later, when the computing 
should return to perform the life of P, it starts from the reactivation point. 

This scheme can be generalized to so called sequencing statements so that the 
scheduling statements can be introduced as standard procedures defined with use of the 
sequencing statements. SIMULA 67 was equipped by the following three sorts of 
sequencing statements: 

(SOOP6) call(X): when the life of Y meet such a statement its performing is 
interrupted, the reactivation point is assigned by the place immediately following this 
statement and the computing process is switched to the reactivation point of X; X 
includes into its evidence Y as its "caller" and enters into attached state; 

(SOOP7) resume(X) : it behaves similarly as cal/(X) but nothing like a "caller" is put 
into evidence; X enters into resumed state and forgets what entity stimulated it to 
continue its life; 

(SOOP8) detach: when X performs its life and is in attached state, detach returns the 
control of computing of X to the caller of X; the life of the caller continues from the 
reactivation point, while the reactivation point of X is set immediately after the detach 
statement; explaining the effect of detach performed by an element that is in resumed 
state is behind the scope of this paper, as it needs to know much on the so called quasi­
parallel systems, i.e. systems of elements that switch their lives by iterating resume. 

When one makes some software that does not concern simulation, he does not need 
using the scheduling statements offered by SIMULA. So SIMULA left a position of a 
language determined only for simulation, and become general purpose programming 
language with excellent tools to define special purpose programming languages without 
exigence to implement their compilers or interpreters. The sequencing statements 
represent the last reason against any opinion that SIMULA might be limited to 
simulation. 

8 Block Nesting and its ·Consequences 

Already the old SIMULA perfectly followed the block structure designed for 
ALGOL 60 [ 4] and SIMULA 67 as well. The textual block is a part of program for 
which local entities are introduced; let JC be a computing run according to a program p 
in that a textual block b occurs. When JC enters into the place corresponding to the 
beginning of b, a block instance p corresponding to b arises so that the local entities 
introduced in b exist for p and can be used by it. When JC passes the place corresponding 
to the end of b over, the block instance P disappears and the local entities introduced in 
bas well. Any textual block bis in principle like any other statement (or life rule) and 
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contains statements that are performed when :,r is in the corresponding block instance /3. 
Among these statements (life mles), another textual block bb can occur and in such a 
case a block instance /3/3 corresponding b arises when /3 enters the place corresponding 
to the beginning of bb. So subblocks and nesting of blocks can occur, which causes a 
contemporary existing of more block instances. 

It is also possible that when :,r is in /3 (i.e. before leaving /3), a new entrance of p into 
the same textual block bis met; in such a case two (or, in general, more) instances of the 
same textual block exist at the same moment. The theoreticians of programming like to 
illustrate that possibility by recursive calling of procedures, but simulation ( or object­
oriented) programming languages that allow life mles and scheduling or sequencing 
statements offer more natural examples: assume a class Chas a textual block b in its life 
mles and that textual block contains a scheduling statement; such a statement can cause 
an interruption of the life of an instance A of C for a certain phase f, but during phase, 
another instance B if C can perform its life rules, can also enter b and be in phase like f 
In other words, each of the instances A and B can occur in its own instance /3 of the 
same textual block b. 

In case of ALGOL 60, the entities local in blocks can be namely variables and 
procedures. Suppose inside life rules of class C a textual block b occurs and variable x 
and procedure g are introduced as local in it; when the life of an instance A of C enters b 
it models a situation that A becomes be able to "know what means x and what should 
make g". When the lives of two instances A and B of C enter b then they are modeled 
like each of them has its own mentioned knowledge that may have different contents 
and meanings for A and for B, namely in case it depends on the attributes and (virtual 
and non-virtual) of the corresponding instance. 

The authors of SIMULA 67 formulated a very important decision that could be 
formulated as 

(LC) to introduce somewhere a class is like to introduce somewhere a procedure 
and, according it, they designated the standpoint that 
(SOOP9) a class can be introduced as local in a block. 
A class is a computer image of a concept (see [12]). Therefore, when the life of an 

instance A of a class C enters a block in that a class D is introduced as local, A is 
modeled as becoming an "expert" who understands the concept mapped by D . When the 
life of A leaves that block, A is modeled like forgetting what is D . In other words, when 
the life of the instance is being in that block it may model a "professional" phase of the 
instance. When the lives of two instances of class C are in the mentioned block they 
may be viewed as models of two experts that can communicate about the same abstract 
concept but each of the instance has its own image of the concept in his mind and -
relating to the other entities owned by the instances, the images of the minds may more 
or less differ. 

Let C be a class and A its instance. It is possible that among the life rules of this class 
a block b occurs in that a local class with the same name C is introduced. Both the 
classes can be formulated in a more or less different way. If the difference is small then 
block b represents a phase that the A can be in a certain sense an image of an entity with 
reflection of its own or of several entities. If the difference is rather great then the class 
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introduced in block b is an image of a certain name conflict that causes no contradiction 
( e.g. weight in sense of physics and in sense of statistical computation). 

Note that the common understanding to the concept of OOP takes as sufficient if 
classes can be declared at only one level, namely as global entities for the whole 
program or program module (Pascal, C++, SmallTalk, Eifel, Modsim, . . . ). 

9 Main Classes and Class Nesting 

Already in ALGOL 60 and similarly in SIMULA 67, textual block was introduced as 
a part of the source code, bordered by certain parentheses and containing "declarations" 
of the local entities, followed by statements. The declaration of a class was introduced 
as a part of source code beginning by a certain heading containing the information on 
the name, prefix, virtual entities and parameters of the class, followed by class body, the 
general form of which was like that of textual block, only the interpretation was slightly 
different: 

(1) in class body, the declarations of attributes corresponds to the declarations of 
local variables in textual block, 

(2) class body can contain declarations of procedures similarly as textual block, 
(3) in class body, the life rules correspond to the statements in a textual block. 
And further analogies exist: textual block is a "pattern" for block instances similarly 

like class declaration is a "patter" for class instances, and a possibility of a greater 
number of contemporaneous instances of the same class exists analogously to more 
contemporaneous instances of the same block. The differences consist in the possibility 
of giving names to the class instances (for the blocks it is prohibited in SIMULA 67), 
and in generating the instances: a block instance can arise when the computing process 
enters in the corresponding, exactly given place, while an instance of class C can arise 
whenever the class generator (new C) is applied. 

A simple synthesis of the analogy expressed by (1)-(3) with the principle (LC) 
expressed in the preceding section leads to another offer of SIMULA 67: 

(SOOPl0) A declaration of a class C can contain a declaration of another class D. 
In such a situation, C is called main class and D nested class ( or class nested in C). C 

is a model of a certain formal theory ( or world viewing, formal language, ... ) while D is 
a model of a concept used in this formal theory ( or of in this world viewing, or a term in 
this formal language). In a main class C, classes D and E may be nested so that they are 
independent or one of them can be a subclass of the other; but none of them can be 
subclass of C. The main classes can be used similarly as other classes, among other they 
can be specialized. If D is nested in C and C is used for formulating its subclass E, then 
D is automatically available in E; therefore also subclasses of D can be introduced into 
E. If a declaration of a class with the same name D occurs is E it represents another 
concept that the declaration of D accessible in C. 

Of course, the main class usually contains more nested classes in practice. Principle 
(SOOPlO) offers a possibility to anticipate the whole theories (based upon more than 
one concept - may be results of analysis of realistically understood domains), i.e. the 
whole formal languages manipulating more than one words with different meaning. 
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They could be applied by using a simple prefix, concretely name of the suitable main 
class. It is allowed by the following principle of SIMULA 67: 

(SOOPll) If C is a class and B a block or a sequence of statements bordered by 
parentheses used for blocks, C may be put before and so called prefixed block arises 
that behaves like an instance of a fictitious subclass F of C, for which the statements of 
B represent the life rules and the possible declarations occurring in B represent those of 
attributes, procedures and classes. 

In practice, C is a main class representing a formal language L and a block prefixed 
by C can be programmed with use L (and - naturally - with use of all tools offered by 
SIMULA 67). It is possible that a prefixed block is nested in another block. 

Note a nested class can be a main class in that another nested class is nested. In other 
words, the class nesting can be iterated. As an example an instance Kofa class C that is 
nested in a main class Mand that contains a main class m; when K enters in its life to 
use m it behaves like an image of an element that models a certain situation using m. It 
is illustrated in Fig 2, where 

the "scene" in double-line represents a reflection of a world viewing by means of M, 
the circles in double-line correspond to objects identified in that world viewing, 
Krepresents one of such objects, namely K, 
the bow inside Kwith an arrow in the center represents the life of K, 
the "scene" in dashed line, which hangs down from the bow, represents a model µ of 

a certain part of the world, based on world viewing m handled by K during its life, and 
the circles in dashed line represent the components ofµ. 
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Figure 2: A model of a system in phase of reflection 

Such a multiple class nesting occurs namely in simulating anticipatory systems, i.e. 
in simulating systems that contain elements that simulate or imagine and according to 
that activities they decide of their own instantaneous steps (see e.g. [13]-[15]). 

273 



The active users of OOP paradigm that do not pass beyond to the SOOP often 
prepare several classes; use terms "class package", "class library" or "programming 
module composed of classes". Note that such terms are related more to the computers 
that to the possible reality that should be reflected in the corresponding computer 
modeling. A modeler (or a team of modelers) who formulates and implements a main 
class with a target to be applied for computer models 

(a) can be free from the "computing machines sociology and viscera" and complete­
ly concerned with the modeled reality, and 

(/3) can formulate the main class so that it contains more that nested classes - also a 
main class can have its procedures, attributes and life rules. 

For illustrating (/3), an almost copybook example cane be presented. The main class 
G reflecting plane geometry need not to be a mere collection of classes of points, lines, 
squares, circles and many other representations of geometrical concepts; the names of 
the co-ordinate system center and axes can be introduced as attributes of G and in the 
life rules of G these names can be "filled in" by an instance of point and by two instan­
ces of lines. In such a state, when a user of G wishes to apply it as a bases for a certain 
more special world viewing ( e.g. for viewing at a map of a given array), he can count 
with the existing co-ordinate system and enrich it to the static configuration of objects 
of the reflected array by further attributes and life rules. Similar praxis is admitted in 
case of procedures of G - e.g. one knows that a line q can be introduced as a join of two 
points a and b; that custom can be mapped in G as its procedure (namely function that 
gives a result), which can be called as e.g. join(a,new point(3,4)) in SIMULA can be 
then used e.g. in a condition ifjoint(a,new points(3,4)).contains(O), which uses a proce­
dure contains introduced for the class of the lines and which represents a test whether 
the given line comes through the co-ordinate center. 

So the concept of main class leads to the further stage of anticipatory systems: an 
author of a main class anticipates and formalizes not only isolated concepts but their 
logical systems that assembly the concepts to a given formal language and even to a 
given scene (or basic structure of such a scene). The authors of such main classes 
anticipate that one will use such a formal language not only for describing computer 
models but for defining more specialized formal languages, "tailored" to less fuzzy 
horizons (e.g. the tailoring the language on plane geometry, mentioned above, to 
languages of geographical maps, then further to a given sort of maps etc., but on the 
other side e.g. for the language of domestic architecture, of electronic circuits etc.). The 
authors of main classes could be called anticipatory systems of type SOOP or SOOP­
systems. 

10 Conclusion 

Although the principles (SOOPl)-(SOOPll) were formulated 40 years ago, only a 
small part of them, namely (OOP1)-(OOP4) were projected in the OOP paradigm and 
only a small number of programming languages followed more; e.g. MODSIM [16] 
took over life rules and scheduling statements, C-FLAVOURS ]17] took over life rules 
and sequencing statements. May be Java and especially BET A [ 18] allow life rules, 
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sequencing statements and class nesting - at the present time, the real possibilities of 
Java are profoundly tested at Ostrava University). Note that the next OOP languages 
that followed SIMULA 67 were implemented not sooner than in the eighties of the XX. 
century and the languages mentioned above, which more or less passed over OOP in 
direction to SOOP, arose even ten years later. 

The humans and human social communities are anticipatory systems that reflect 
themselves, i.e. that anticipate also their anticipation, their abilities of anticipation etc. 
The application of computer models has to include the mentioned abilities. The first 
experiments have been done and classified, the SOOP programming paradigm promises 
a good way to implement the computer models without essential obstacles, but there is a 
wide horizon for developing further works, to go beyond the four stages of S-systems, 
L-systems, OOP-systems and .SOOP-systems. 
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