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There is a problem to anticipate organization of services performed by an enterprise to 
its customer distributed in an array. At one part, the enterprise is interested to employ 
the minimum workers for that task, while at the other part the customers should be 
served as soon as possible after they send a message to the enterprise. Simulation of the 
variants viewed as materially possible, and then choosing the optimal one of them, is a 
good technique. A system that uses simulation is an anticipatory one and that 
anticipating the possible variants is also an anticipatory one, thus we meet nesting 
anticipatory systems. The anticipation of possible variants can be efficiently supported 
by applying object-oriented programming. That anticipation may pass over the design 
of one enterprise. The paper describes this technique and some illustrative examples. 
Keywords: simulation, object-oriented programming, service enterprises, Simula, 
anticipatory systems 

1 Introduction 

When a team ( or - in rare cases - a person) has to propose how to organize an 
enterprise it uses a model for evaluating the proposals. One of the important evaluations 
concerns income and according that evaluation it is to compare the variants and to 
determine the best ( optimal or suboptimal) variant with the intention that this variant 
should be implemented in reality. The model could be intuitive (including a poor and 
simple imagining) or formal, having certain exact steps based on some rules forming a 
causal system. A team or a person that uses such a model during designing an enterprise 
is an anticipatory system according to popular definition by Rosen [1] or - in a more 
exact way - an anticipatory system in a week sense according to a more modem 
conception and definition by Dubois [2]. 

The formal models can be simple, suitable to be implemented "by paper and pencil" 
or by means of simple use of standard "office" computer software ( e.g. spreadsheet 
processors). Although those models were often applied in operations research during the 
second half of the last century, they lost their importance, being replaced by simulation 
models running at computers. The main difference between the mentioned sorts of the 
models is as follows: 

The causality among the steps performed by the simulation models reflects the 
causality among the events coming in the modeled (simulated) system, while the 
causality among the steps performed by the other exact models reflect another causality, 
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namely that obtained by human thinking using a projection of the view to the modeled 
system to a simplified human knowledge seizable by a human mind, and consequently 
by human computer-less analytical mathematical processing (this statement is not in a 
contradiction with the fact the results of such human-mind processing - like large sets 
oflinear equations - could demand to be elaborated at the computing technique). 

Because of the mentioned development, only computer simulation models will be 
taken in account further in the present paper. 

There are many sorts of enterprise. This paper is oriented to centers of services 
(namely repairs) that have a set E of employees who left a center C for visiting a set S of 
customers, in order to satisfy their demands. S can be static ( constant) or dynamic 
(customers may disappear and new customers can come), certain aspects of the moves 
of the employees can have a constant rhythm (called everyday one - e.g. their everyday 
gathering in C at the beginning of the shift) but the distribution of the demands of the 
clients (elements of S) surpasses any rhythm and causal relations, though some quasi­
periodic repeating of events that could be observable and statistically evaluated can lead 
to certain rules for the moves of the employees. Let the mentioned systems be called 
systems with itinerating employees, shortly IE-systems. The task of the proposal to 
organize a team is often related to a steady state of the employment rate and so the set E 
of the employees is viewed as constant. Nevertheless, IE-systems can have more centers 
like C. 

2 Everyday Problems in the Enterprise Systems 

When an enterprise is designed it is to take its everyday problems and decisions 
implied by them into account. That was not made even when simulation was applied, 
contrary to the fact that a more or less bad decision can more or less deteriorate the 
enterprise operation; in other words, when a regime with worse decisions will be 
interpreted in the formal models during the design the results of the optimization could 
demand more employees, therefore more wages and therefore less income of the 
enterprise. 

Evidently the service IE-systems offer a large spectrum of decision quality, 
especially because the problems of shortest paths combined with rather short of 
everyday rhythm period. It is known that such enterprises makes more or less exact 
argumentation in order to derive everyday scheduling of activities. One can observe that 
the enterprise (or a dispatcher of it) is an anticipatory system (in a week sense) that uses 
a model of the starting ( or of the following) day activities in order to find some suitable 
way of them. 

In case of the mentioned model, the situation is similar to that noted in the preceding 
section: from intuitive models based on imagining, analogies and simple budget, over 
application of scheduling computer programs until "short term simulation" In case of 
itinerant employees the situation is still more complicated; it is often necessary to deter­
mine the shortest path and to adjust it to the time demands and possibilities. Note that 
the computing of the shortest path can be based at special simulation models (see e.g. 
the last pages of [3]), while the adjusting to the real time possibilities could be a hard 
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problem (at our University, a problem was met, concerning scheduling tens of trucks 
that collect veterinary rests - namely from slaughterhouses placed in mutually distant 
places - and transport them into factories: it appeared to be a really hard problem [5]). 

3 Nesting Models 

Therefore, when one has to design a suitable IE-system and wants to use the best 
formal model for it, namely a simulation model, he tends to meeting nesting simulation 
(simulation of systems that contain simulating elements [6]). A simulation model M 
used in the design phase should contain an element D ( e.g. an image of the dispatcher or 
his computer) carrying another simulation model m that corresponds to that applied in 
"everyday". As it was mentioned in the preceding section, D could have use of some 
other simulation models, e.g. for computing the shortest path. Such a model exists in the 
same context and environment as m; let it be called µ. A scheme of the nesting is in Fig. 
1, where fl , ... , f5 illustrate 
some components of M ( e.g. 
images of objects that exist in 
the simulated system in the 
same manner as the dispatcher) 
and L represents a simulation 
study (iterating simulation 
experiments in order to get 
some special result like 
optimum configuration, 
average values, extreme values 
etc.). Note that the present 
paper neglects considering 
modelµ. 

In order to begin the works 
at the implementation, we used 
programming language 
SIMULA [7], [8], as it is 
extremely suitable for nesting 
simulation models, because of 
its object-orientation, process­
orientation, block-orientation 

00 

Figure 1: Scheme of nesting 

[9] and safe separation of the model, program and knowledge description from that 
concerning the simulating computer [10]. 

4 Anticipation of Future Simulation Programs 

A person ( or a team) that produces the simulation program 1l' can be considered as a 
system P, which interacts with its environment E that formulates the demands 
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concerning Jr, namely the properties of the designed system interpreted in the simulation 
model. P may behave in a more or less intelligent manner. In case of extremely low 
intelligence, P, working on Jr, directly follows the instructions coming by E. The greater 
intelligence exists during the works on Jr, the greater anticipating of possible future 
modifications formulated by E, is taken in account. The anticipation can even lead 
behind the frontiers E and takes into account possibilities that Jr would be applied in 
another occasion, i.e. in case its environment that formulates the demands will be quite 
different from E ( e.g. in case P anticipates to utilize Jr in designing another enterprise, 
that could be not yet known to the given time). 

Object-oriented programming offers instruments such an anticipation, i.e. offers 
instruments to tum P into a computing anticipatory system: P could formulate concepts 
common for all anticipated variants of dialogues with E and represent them at 
computing technique so that in case of any new variant of E comes it will be simply 
language transformed into the corresponding 7r(said in other words: P should anticipate 
all forms of the - natural but professional - language L and represents its vocabulary 
and grammar structures on computer so that any new demand expressed in L could be 
simply written on the computer input and then automatically taken as the simulation 
program Jr corresponding to the new demand formulated in L ). By means of correspond­
ing language processor (usually a compiler or an interpreting program), which processes 
more or less immediately the formulations of the concepts-classes, a good object­
oriented programming language (like SIMULA or SmallTalk) discovers any contradict­
ion and incompleteness during representing L on the computing technique. 

Thus we come to the third level of anticipatory systems. A start base of the language 
L corresponding to the enterprises treated in the present paper is outlined in the next two 
sections. 

5 Level of Simulation Study 

As it was already mentioned, simulation study is an iteration of simulation 
experiments. While a simulation experiment can be viewed as a computer model of a 
part of a certain (real or virtual) world, in which Newtonian time flows, simulation 
study can be viewed as a model of some entity that is eternal (in sense used by ancient 
philosophers), i.e. in which no time from exists but various "worlds" with their own 
time flows can arise and disappear. An experienced simulationist thinks about the 
possibilities whether the hierarchy "simulation study - simulation experiments" can be 
applied for making the human and/or computer work more effective. In applying object­
oriented programming, the first idea concerns the "eternal" concepts of the future 
simulation studies, i.e. the concepts that are independent of alternating simulation 
experiments. 

In case of subjects to that this paper is oriented, the "eternal" concepts are those 
concerning drawing at the computer display and generators of pseudorandom numbers 
(said in "user friendly" terms: the display does not disappear with the end of simulation 
experiment and ignorance of causes (which is in general the base viewing something as 
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randomness) is also an aspect that does not disappear or change with the end of a 
simulation experiment). 

The representations of simulated elements at display are organized in three classes. 
The basic class JM (abbreviation of image) represents general image, that has its place 
given by coordinates X and Y, its form FORM, its color COL and Boolean function 
equals that enables in a simple way to express a test whether two images are at the same 
places (e.g. in test if A.equals(B)). In using SIMULA class TERMINAL, FORM is of 
type character and COL is of type integer, but the same class TERMINAL offers 
mnemonic names like white, red, blue, brigt white, light red etc. in place of integers by 
which the are the colors enumerated. 

Class JM is specialized to four classes, called IM_ST, IM_MV, IM_AU and IM_FT. 
JM_ ST represents concept of static image and has attributes JM_ LEFT, JM_ RIGHT, 
which point to instances of class JM_ AU. This class represents the concept of auxiliary 
images; note that it appeared to have two auxiliary images for any static image at 
disposal, one of which at its left side and the other at its right side. IM_FT is a fictitious 
image (applied in special sophisticated handling). IM_AU and IM_FT have no added 
attributes and procedures in relation to JM. IM_MV represents concept of moving 
images and has procedure for moving to a place with given coordinates. 

Class G_RANDOMSJ is the basic class of generators ofrandom numbers; it has one 
parameter MEAN and virtual function VAL that is expected to give the next 
pseudorandom value (for example, in case G is a generator, then G. VAL gives the next 
value and behaves like pressing button VAL at the vendor automaton G). Class 
GEN_EXPON is a subclass of G_RANDOM the VAL of which gives pseudorandom 
numbers with exponential distribution. G_RANDOMSJ is also specialized to class 
CONSTANT, the VAL of which gives constantly the result MEAN. 

Another subclass of G RANDOMSJ is G RANDOMS2 with added the second - -
parameter called SIGMA. RANDOMS2 is specialized to GENflORMAL the VAL of 
which gives pseudorandom numbers with normal distribution with mean MEAN and 
with standard deviation SIGMA. Similarly, G_RANDOMS2 is specialized to classes 
GEN_ UNJF and GEN _]NT the VAL gives pseudorandom numbers with uniform 
distribution on interval <MEAN- SIGMA, MEAN+ SIGMA > - in case of GEN_UNJF 
they are real numbers, while in case GEN_INTthey are integers. 

For a certain comfort of the future users, a procedure was added that automatically 
assigns one character names to the just generated instances of IM_ST. Also some 
procedures enabling prompt description of initial dialogue defining the system constants 
have been added to this level. 

6 Level of Simulation Experiment 

Description of a simulation experiment is equivalent to a description of the simulated 
system, completed by simulated data collection and conditions for finishing the 
experiment. In our case, the description of the simulated system is expected to be 
programmed by means of classes formulated in object-oriented programming paradigm. 
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Therefore such classes should follow sorts of elements existing m the described, 
simulated system. 

In our case, there are two main classes of that sort: client and server, where client 
represent a center demanding the enterprise to send a server to it in order to satisfy the 
demanded task (in general - repairing of something existing at the client). 

The "life rules" (algorithm of activity) of class server is formulated as a cycle the 
steps are composed of two phases: the passive phase during that the server does not 
interact with the clients but accepts and collects their demands, and the active phase 
during that the server serves one or more clients, moving from one to another. For 
collecting the clients' demands, every server has a list called demands where the 
demands sent by clients are stored in a form of cards, i.e. instances of an auxiliary class 
card formulated so that every card carries a reference to a client that sent the 
corresponding message of demand. 

Other attributes of server are those serving for accumulating the active and passive 
times, and position, which is a pointer to an IM_MV that represents the server's image 
position at the computer display and informs on its place (see the preceding section). 
Many procedures of server are specified as virtual, being prepared for a large spectrum 
of decision steps like ranging a card into demands, switching the passive phase to the 
active one, duration of the serving a client etc. 

The "life rules" (algorithm of activity) of class client is also a cycle of steps 
composed of active, passive and detached phases. Explained by means of a metaphor, 
client makes some work during the active phase, for which he needs a certain 
"hardware"; finishing the work, he reposes during some time during the passive phase 
and then he returns to the active phase; at this moment, he could discover a fault at his 
hardware and then he sends a message to a server, demanding him to come and repair 
the fault; waiting to the end of repair, client is in detached phase. 

Among the attributes of client are those serving for accumulating the detached time, 
and position, which is a pointer to an IM_ST that represents the client's image position 
at the computer display and informs on its place (see the preceding section). Another 
attribute represents the color that is transferred to position, in order to visualize the 
client's phase. Virtual procedures are specified for class client, serving to decide on the 
rise of a fault, for the duration of active and passive phases etc. 

7 Examples 

7.1 Distributed System According File Information 

Certain commercial problems of designing the enterprise internal control concern the 
rules for the servers. So the first example was oriented to a system with one server and 
with a configuration of clients, the positions of which are read from a file. The server's 
passive phase is defined according to the number of demands: the phase ends when the 
server has got a certain number N of demands - then he leaves his passive phases and 
starts to the clients. He serves them in the same order in that he gets the demands. The 
duration of the active and passive phases of the clients and that of the repairs are pseu-
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dorandom values, similarly as the probability of faults. The parameters of the corre­
sponding distributions, the rate of the server's move and the value of N are given in the 
initial dialogue with the operator, and the duration of a simulation experiment and of the 
number of the experiments in a study as well. No special transport network is supposed. 

In Fig. 2 there is a monochrome transformation of a snapshot taken from the display 
with a pseudo graphic animation. The letters and digits represent clients, crosses 
approximate the performed way of the server (usually only one cross is present and 
moves, modeling the server's moves. 

7.2 Dining Philosophers Around Full Table 

The next example connects to the popular system of chinese philosophers sitting 
around a round table and intending to eat. For starting to eat, each of them needs to 
seize chopsticks into every hand; one chopstick is placed in the space between two 
neighbouring philsophers so that any of them can seize it. When philosopher ends 
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Figure 2: Snapshot of animation with pseudographically saved trace of a worker, 
starting from the place marked by the small circle, then visiting places denoted by D, 
C, F, H, 8, E, 9, D, A, F, N, B, G and 3 and reaching the place at the small hexagon. 
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eating he returns the chopsticks at their original places but with a certain probability he 
can drop a chopstick down. When a philosopher wishes eating and misses chopstics, the 
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Figure 3: Snapshot of animation with pseudographically saved trace of the waiter, 
starting from the center of the circle, then visiting philosophers denoted by D, \, I, E, 
0, Q and]. Note that the waiter had sometimes to wait for a new task. 

reason of it may be either that his neighbour is eating or that the chopstick has been 
dropped down. Assume no philosopher consider difference between those two variants. 
When a philosopher p has not a chopstick for disposal, he immediately or sometimes 
later demands the "waiter" W to come and give him the chopstick. W realize it only 
when the demanded chopstick has been dropped - then he lefts it and gives top. When 
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the demanded chopstick is being handled by the neighbour, the W cannot help and 
considers the demand as a needless derangment by p. 

The input parameters are given by the operator during the start of the simulation 
study and the number of philosophers as well. It is supposed that W spends his passive 
phase at a place rather distant from the table, and when it decides to serve the 
philosopher he makes it walking around the table and during it trying to serve the 
demanding philosophers. He passes without delay the philosophers who expressed no 
demand. 

7.3 Dining Philosophers at Isolated Tables 

A similar model of dining philosophers was also implemented, differing from that of 
7.2 so that the philosophers are sitting at isolated small tables and, similarly, every 
chopstick is placed it another isolated table so that the chopstick is accessible by two 
neighboring philosophers. That configuration enables the waiter freely to move inside 
the circular configuration of the sitting philosophers and directly to move from one 
philosopher to another without touching the other philosophers. 

In Fig. 3 there is a monochrome transformation of a snapshot taken from the display 
with a pseudo graphic animation. Apostrophes approximate the performed way of the 
waiter (usually only one apostrophe is present and moves, modeling the waiter' s actual 
place). The chopstics are represented by small vertical incises I-When a chopstick is not 
occupied and lies at the table its representation is placed at the circumference of the 
circle. When the chopstick is being in a hand of a philosopher its representation is 
placed at the same line of the display as the symbol of the philosopher that takes it. 

7.4 Experience With PC 

Both the models mentioned in 7.2 and 7.3 were also modified so that e.g. the waiter 
in 7 .2 does not count the messages coming to him, but instead he waits during certain 
time followed the first message and then goes to serve. 

The simulation models realized in the described manner by using the implementation 
of language SIMULA for IBM PC compatible computers [8] appeared to work suitably 
quickly. 

First consider the experiment with the model of dining philosophers. 
Let M be the number of messages that the waiter accepts before he decides to serve 

the philosophers. 
As an example, we present information on a simulation study that should test the 

optimal value of M = 0, ... , 5 in case of system with parameters mentioned in Table 1 
(t.u. means a time unit common for any time data of the model, in practice one can 
understand it as e.g. 10 second), and for evaluating by one financial unit both the time 
unit spent by any philosopher by waiting and the time unit spent by the waiter during its 
work. 

The distributions of duration of the time consuming phases are exponential. 
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Table 1: Parameters of experimenting 

number of philosophers 31 mean time of eating 30 t.u. 
mean time ofresting 20 t.u. probability of dropping chopstick 0.9 
waiter's move to the table 5 t.u. lifting a chopstick 1 t.u. 
waiter's move from one 1 t.u. duration ofa simulation lOOOOO t.u. 
philosopher to his neighbor experiment 

10 simulation experiments were performed for computing average values for any 
case of M, i.e. 60 simulation experiments of length 100000 simulated t.u. had to be 
performed (relating to the minimum prize of the sum of waiter's proper work and the 
philosophers' waiting times, the optimum appeared as M=4). At a cheap IBM PC 
computer with Celeron 466 MHz processor), the whole study needed 202 seconds, 
therefore only 3 minutes and 22 seconds. 

We have also experimented with the model 7.1. For these experiments input 
parameters can look like in Fig. 4, 

configuration froffl file:basic_cnf.asc 
seed:123456789 
auerage working tiffle:30 
auerage resting tiffle:20 
probability of spoiling in the nachine:0.1 
step-by-step? Put 'y' or 'V' 
distance between euents, RI-seconds:0.2 
distance between alarns:5 
seruicenan's tine for one step:1 
seruicenan' s tine for rising a fork:, 

Figure 4: Parameters of experimenting with model 7 .1. 

and particular results are shown in Fig 5. 

16142.1289 
16054.8332 

2: 15908.963? this is the optimum 
16256.8556 
16164.8268 CPU tine in seconds: 
16340.353? 2.51 

Figure 5: Output of experiment with model 7.1 

Both types of experiments show the possibility of a wider set of experiments. In 
future we plan to provide a systematic set of experiments with stepwise change of 
parameters in order to get an overal view of dependency between parameters and 
results. 

8 Summary 

A service system is often viewed as anticipatory one (in a weak sense), because 
every day one has to anticipate its operation and accordingly formulate scheduling in it. 
Often the scheduling is made by primitive methods: the formal model figuring in the 
anticipatory characterization of the system is reduced to several simple formulas. 

313 



Simulation of the development that would be caused particular variants is a much better 
model, as it can reflect any details of the possible future influences and as it finally 
admits to determine the most efficient one of the variants. The configurations of the 
service systems for a large spectrum and the limits for scheduling given by physical 
properties of those system as well; so the object-oriented programming is a good 
technique for implementation of the simulation models respecting that large spectrums. 

A (human) system that designs the initial state of a service system (among other, the 
number of workers, machines and transport tools, and - in certain cases - their 
configuration in space) is also an anticipatory system, because it should anticipate the 
consequences of the design to last a longer time and according to it decide which should 
be the optimal initial configuration of the designed system. 

Simulation models are extremely suitable ones also for this purpose and the object­
oriented programming is of the same high quality paradigm as in the construction of the 
everyday anticipation models. Nevertheless, in that case of simulation, the (other) 
simulation in everyday anticipation has to be included in the model, because otherwise 
the model would give non-realistic data (a general proof of that statement is in [6] and 
[9]). Such "nesting" of a simulation model into another one is a difficult task. The 
authors were successful using programming language that offers a full synthesis of 
object orientation, process orientation and block orientation. They used SIMULA [7], 
[8], which is one of a few languages with these three orientations; moreover, its 
implementation for PC is free and efficient in computing time and memory space. 

Abstract idea of a community of eating Chinese philosophers is a good (and namely 
widely known) bench mark for testing the proposed run of the service systems. It was 
simulated by the same manner as the real service systems. 

In future, we plan to use several strategies, several fitness functions and preferences 
in group decision and apply inductive methods from [11]. 
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