
Application of Computer Simulation in Service Systems

Abstract

Peter Vojtas
Eugene Kindler

Department of Software Engineering, Charles University
Malostranske nam. 25, CZ-118 00 Praha 1, Czech Republic

Peter.Vojtas@mff.cuni.cz
ekindler@centrum.cz

There is a problem to anticipate organization of services performed by an enterprise to
its customer distributed in an array. At one part, the enterprise is interested to employ
the minimum workers for that task, while at the other part the customers should be
served as soon as possible after they send a message to the enterprise. Simulation of the
variants viewed as materially possible, and then choosing the optimal one of them, is a
good technique. A system that uses simulation is an anticipatory one and that
anticipating the possible variants is also an anticipatory one, thus we meet nesting
anticipatory systems. The anticipation of possible variants can be efficiently supported
by applying object-oriented programming. That anticipation may pass over the design
of one enterprise. The paper describes this technique and some illustrative examples.
Keywords: simulation, object-oriented programming, service enterprises, Simula,
anticipatory systems

1 Introduction

When a team (or - in rare cases - a person) has to propose how to organize an
enterprise it uses a model for evaluating the proposals. One of the important evaluations
concerns income and according that evaluation it is to compare the variants and to
determine the best (optimal or suboptimal) variant with the intention that this variant
should be implemented in reality. The model could be intuitive (including a poor and
simple imagining) or formal, having certain exact steps based on some rules forming a
causal system. A team or a person that uses such a model during designing an enterprise
is an anticipatory system according to popular definition by Rosen [1] or - in a more
exact way - an anticipatory system in a week sense according to a more modem
conception and definition by Dubois [2].

The formal models can be simple, suitable to be implemented "by paper and pencil"
or by means of simple use of standard "office" computer software (e.g. spreadsheet
processors). Although those models were often applied in operations research during the
second half of the last century, they lost their importance, being replaced by simulation
models running at computers. The main difference between the mentioned sorts of the
models is as follows:

The causality among the steps performed by the simulation models reflects the
causality among the events coming in the modeled (simulated) system, while the
causality among the steps performed by the other exact models reflect another causality,

International Journal of Computing Anticipatory Systems, Volume 20, 2008
Edited by D. M. Dubois, CHAOS, Liege, Belgium, ISSN 1373-5411 ISBN 2-930396-07-5

namely that obtained by human thinking using a projection of the view to the modeled
system to a simplified human knowledge seizable by a human mind, and consequently
by human computer-less analytical mathematical processing (this statement is not in a
contradiction with the fact the results of such human-mind processing - like large sets
oflinear equations - could demand to be elaborated at the computing technique).

Because of the mentioned development, only computer simulation models will be
taken in account further in the present paper.

There are many sorts of enterprise. This paper is oriented to centers of services
(namely repairs) that have a set E of employees who left a center C for visiting a set S of
customers, in order to satisfy their demands. S can be static (constant) or dynamic
(customers may disappear and new customers can come), certain aspects of the moves
of the employees can have a constant rhythm (called everyday one - e.g. their everyday
gathering in C at the beginning of the shift) but the distribution of the demands of the
clients (elements of S) surpasses any rhythm and causal relations, though some quasi­
periodic repeating of events that could be observable and statistically evaluated can lead
to certain rules for the moves of the employees. Let the mentioned systems be called
systems with itinerating employees, shortly IE-systems. The task of the proposal to
organize a team is often related to a steady state of the employment rate and so the set E
of the employees is viewed as constant. Nevertheless, IE-systems can have more centers
like C.

2 Everyday Problems in the Enterprise Systems

When an enterprise is designed it is to take its everyday problems and decisions
implied by them into account. That was not made even when simulation was applied,
contrary to the fact that a more or less bad decision can more or less deteriorate the
enterprise operation; in other words, when a regime with worse decisions will be
interpreted in the formal models during the design the results of the optimization could
demand more employees, therefore more wages and therefore less income of the
enterprise.

Evidently the service IE-systems offer a large spectrum of decision quality,
especially because the problems of shortest paths combined with rather short of
everyday rhythm period. It is known that such enterprises makes more or less exact
argumentation in order to derive everyday scheduling of activities. One can observe that
the enterprise (or a dispatcher of it) is an anticipatory system (in a week sense) that uses
a model of the starting (or of the following) day activities in order to find some suitable
way of them.

In case of the mentioned model, the situation is similar to that noted in the preceding
section: from intuitive models based on imagining, analogies and simple budget, over
application of scheduling computer programs until "short term simulation" In case of
itinerant employees the situation is still more complicated; it is often necessary to deter­
mine the shortest path and to adjust it to the time demands and possibilities. Note that
the computing of the shortest path can be based at special simulation models (see e.g.
the last pages of [3]), while the adjusting to the real time possibilities could be a hard

305

problem (at our University, a problem was met, concerning scheduling tens of trucks
that collect veterinary rests - namely from slaughterhouses placed in mutually distant
places - and transport them into factories: it appeared to be a really hard problem [5]).

3 Nesting Models

Therefore, when one has to design a suitable IE-system and wants to use the best
formal model for it, namely a simulation model, he tends to meeting nesting simulation
(simulation of systems that contain simulating elements [6]). A simulation model M
used in the design phase should contain an element D (e.g. an image of the dispatcher or
his computer) carrying another simulation model m that corresponds to that applied in
"everyday". As it was mentioned in the preceding section, D could have use of some
other simulation models, e.g. for computing the shortest path. Such a model exists in the
same context and environment as m; let it be called µ. A scheme of the nesting is in Fig.
1, where fl , ... , f5 illustrate
some components of M (e.g.
images of objects that exist in
the simulated system in the
same manner as the dispatcher)
and L represents a simulation
study (iterating simulation
experiments in order to get
some special result like
optimum configuration,
average values, extreme values
etc.). Note that the present
paper neglects considering
modelµ.

In order to begin the works
at the implementation, we used
programming language
SIMULA [7], [8], as it is
extremely suitable for nesting
simulation models, because of
its object-orientation, process­
orientation, block-orientation

00

Figure 1: Scheme of nesting

[9] and safe separation of the model, program and knowledge description from that
concerning the simulating computer [10].

4 Anticipation of Future Simulation Programs

A person (or a team) that produces the simulation program 1l' can be considered as a
system P, which interacts with its environment E that formulates the demands

306

concerning Jr, namely the properties of the designed system interpreted in the simulation
model. P may behave in a more or less intelligent manner. In case of extremely low
intelligence, P, working on Jr, directly follows the instructions coming by E. The greater
intelligence exists during the works on Jr, the greater anticipating of possible future
modifications formulated by E, is taken in account. The anticipation can even lead
behind the frontiers E and takes into account possibilities that Jr would be applied in
another occasion, i.e. in case its environment that formulates the demands will be quite
different from E (e.g. in case P anticipates to utilize Jr in designing another enterprise,
that could be not yet known to the given time).

Object-oriented programming offers instruments such an anticipation, i.e. offers
instruments to tum P into a computing anticipatory system: P could formulate concepts
common for all anticipated variants of dialogues with E and represent them at
computing technique so that in case of any new variant of E comes it will be simply
language transformed into the corresponding 7r(said in other words: P should anticipate
all forms of the - natural but professional - language L and represents its vocabulary
and grammar structures on computer so that any new demand expressed in L could be
simply written on the computer input and then automatically taken as the simulation
program Jr corresponding to the new demand formulated in L). By means of correspond­
ing language processor (usually a compiler or an interpreting program), which processes
more or less immediately the formulations of the concepts-classes, a good object­
oriented programming language (like SIMULA or SmallTalk) discovers any contradict­
ion and incompleteness during representing L on the computing technique.

Thus we come to the third level of anticipatory systems. A start base of the language
L corresponding to the enterprises treated in the present paper is outlined in the next two
sections.

5 Level of Simulation Study

As it was already mentioned, simulation study is an iteration of simulation
experiments. While a simulation experiment can be viewed as a computer model of a
part of a certain (real or virtual) world, in which Newtonian time flows, simulation
study can be viewed as a model of some entity that is eternal (in sense used by ancient
philosophers), i.e. in which no time from exists but various "worlds" with their own
time flows can arise and disappear. An experienced simulationist thinks about the
possibilities whether the hierarchy "simulation study - simulation experiments" can be
applied for making the human and/or computer work more effective. In applying object­
oriented programming, the first idea concerns the "eternal" concepts of the future
simulation studies, i.e. the concepts that are independent of alternating simulation
experiments.

In case of subjects to that this paper is oriented, the "eternal" concepts are those
concerning drawing at the computer display and generators of pseudorandom numbers
(said in "user friendly" terms: the display does not disappear with the end of simulation
experiment and ignorance of causes (which is in general the base viewing something as

307

randomness) is also an aspect that does not disappear or change with the end of a
simulation experiment).

The representations of simulated elements at display are organized in three classes.
The basic class JM (abbreviation of image) represents general image, that has its place
given by coordinates X and Y, its form FORM, its color COL and Boolean function
equals that enables in a simple way to express a test whether two images are at the same
places (e.g. in test if A.equals(B)). In using SIMULA class TERMINAL, FORM is of
type character and COL is of type integer, but the same class TERMINAL offers
mnemonic names like white, red, blue, brigt white, light red etc. in place of integers by
which the are the colors enumerated.

Class JM is specialized to four classes, called IM_ST, IM_MV, IM_AU and IM_FT.
JM_ ST represents concept of static image and has attributes JM_ LEFT, JM_ RIGHT,
which point to instances of class JM_ AU. This class represents the concept of auxiliary
images; note that it appeared to have two auxiliary images for any static image at
disposal, one of which at its left side and the other at its right side. IM_FT is a fictitious
image (applied in special sophisticated handling). IM_AU and IM_FT have no added
attributes and procedures in relation to JM. IM_MV represents concept of moving
images and has procedure for moving to a place with given coordinates.

Class G_RANDOMSJ is the basic class of generators ofrandom numbers; it has one
parameter MEAN and virtual function VAL that is expected to give the next
pseudorandom value (for example, in case G is a generator, then G. VAL gives the next
value and behaves like pressing button VAL at the vendor automaton G). Class
GEN_EXPON is a subclass of G_RANDOM the VAL of which gives pseudorandom
numbers with exponential distribution. G_RANDOMSJ is also specialized to class
CONSTANT, the VAL of which gives constantly the result MEAN.

Another subclass of G RANDOMSJ is G RANDOMS2 with added the second - -
parameter called SIGMA. RANDOMS2 is specialized to GENflORMAL the VAL of
which gives pseudorandom numbers with normal distribution with mean MEAN and
with standard deviation SIGMA. Similarly, G_RANDOMS2 is specialized to classes
GEN_ UNJF and GEN _]NT the VAL gives pseudorandom numbers with uniform
distribution on interval <MEAN- SIGMA, MEAN+ SIGMA > - in case of GEN_UNJF
they are real numbers, while in case GEN_INTthey are integers.

For a certain comfort of the future users, a procedure was added that automatically
assigns one character names to the just generated instances of IM_ST. Also some
procedures enabling prompt description of initial dialogue defining the system constants
have been added to this level.

6 Level of Simulation Experiment

Description of a simulation experiment is equivalent to a description of the simulated
system, completed by simulated data collection and conditions for finishing the
experiment. In our case, the description of the simulated system is expected to be
programmed by means of classes formulated in object-oriented programming paradigm.

308

Therefore such classes should follow sorts of elements existing m the described,
simulated system.

In our case, there are two main classes of that sort: client and server, where client
represent a center demanding the enterprise to send a server to it in order to satisfy the
demanded task (in general - repairing of something existing at the client).

The "life rules" (algorithm of activity) of class server is formulated as a cycle the
steps are composed of two phases: the passive phase during that the server does not
interact with the clients but accepts and collects their demands, and the active phase
during that the server serves one or more clients, moving from one to another. For
collecting the clients' demands, every server has a list called demands where the
demands sent by clients are stored in a form of cards, i.e. instances of an auxiliary class
card formulated so that every card carries a reference to a client that sent the
corresponding message of demand.

Other attributes of server are those serving for accumulating the active and passive
times, and position, which is a pointer to an IM_MV that represents the server's image
position at the computer display and informs on its place (see the preceding section).
Many procedures of server are specified as virtual, being prepared for a large spectrum
of decision steps like ranging a card into demands, switching the passive phase to the
active one, duration of the serving a client etc.

The "life rules" (algorithm of activity) of class client is also a cycle of steps
composed of active, passive and detached phases. Explained by means of a metaphor,
client makes some work during the active phase, for which he needs a certain
"hardware"; finishing the work, he reposes during some time during the passive phase
and then he returns to the active phase; at this moment, he could discover a fault at his
hardware and then he sends a message to a server, demanding him to come and repair
the fault; waiting to the end of repair, client is in detached phase.

Among the attributes of client are those serving for accumulating the detached time,
and position, which is a pointer to an IM_ST that represents the client's image position
at the computer display and informs on its place (see the preceding section). Another
attribute represents the color that is transferred to position, in order to visualize the
client's phase. Virtual procedures are specified for class client, serving to decide on the
rise of a fault, for the duration of active and passive phases etc.

7 Examples

7.1 Distributed System According File Information

Certain commercial problems of designing the enterprise internal control concern the
rules for the servers. So the first example was oriented to a system with one server and
with a configuration of clients, the positions of which are read from a file. The server's
passive phase is defined according to the number of demands: the phase ends when the
server has got a certain number N of demands - then he leaves his passive phases and
starts to the clients. He serves them in the same order in that he gets the demands. The
duration of the active and passive phases of the clients and that of the repairs are pseu-

309

dorandom values, similarly as the probability of faults. The parameters of the corre­
sponding distributions, the rate of the server's move and the value of N are given in the
initial dialogue with the operator, and the duration of a simulation experiment and of the
number of the experiments in a study as well. No special transport network is supposed.

In Fig. 2 there is a monochrome transformation of a snapshot taken from the display
with a pseudo graphic animation. The letters and digits represent clients, crosses
approximate the performed way of the server (usually only one cross is present and
moves, modeling the server's moves.

7.2 Dining Philosophers Around Full Table

The next example connects to the popular system of chinese philosophers sitting
around a round table and intending to eat. For starting to eat, each of them needs to
seize chopsticks into every hand; one chopstick is placed in the space between two
neighbouring philsophers so that any of them can seize it. When philosopher ends

1

2

++

H ++
+
+
+

++
+++

++
+++

+++ E+
+ 6 +++++++++++++++++++++++++++++++++
+ 9 + +++

++++,t@
+++++++++
+++
3 +++++

?

+
+

+

+
+

+
+

+
+

+
++
+

+
+

+
+++++

++++
++ +

+++

+++ +++
+++ +++

++++

5

++++
+++ +++

++
+++

++
A ++++

+++++++++F

+ +++ + +++++++ + +
+++++ + ++++++

++
8

++++
+D
+ +

++
+

++
++

+
+

++++++
+++++ + + + ++++

K

++++++ +
+++++

++++
L ++ G

+
+++

+

0
+

++
++

+
++++++

++++ I

+++

++ + ++++
+++ +

++ +
+++ ++

++ ++
++ +++++ ++

+++ +++ ++
++ ++++ +

++ +++ +
++ ++++

++ +++
++ ++
+++

B

+
+ ++

+ ++
+ +

+++
+
C

++
+

+

+++
+++

++++

J

+
++

H

11

Figure 2: Snapshot of animation with pseudographically saved trace of a worker,
starting from the place marked by the small circle, then visiting places denoted by D,
C, F, H, 8, E, 9, D, A, F, N, B, G and 3 and reaching the place at the small hexagon.

310

eating he returns the chopsticks at their original places but with a certain probability he
can drop a chopstick down. When a philosopher wishes eating and misses chopstics, the

B A I
I -

C

:D: I J : .
E .
. .

F . . [. . . . ,
G z

" , .
H 'l

I

J

IK:

L u

t1 I

H s
0 R

p Q

Figure 3: Snapshot of animation with pseudographically saved trace of the waiter,
starting from the center of the circle, then visiting philosophers denoted by D, \, I, E,
0, Q and]. Note that the waiter had sometimes to wait for a new task.

reason of it may be either that his neighbour is eating or that the chopstick has been
dropped down. Assume no philosopher consider difference between those two variants.
When a philosopher p has not a chopstick for disposal, he immediately or sometimes
later demands the "waiter" W to come and give him the chopstick. W realize it only
when the demanded chopstick has been dropped - then he lefts it and gives top. When

311

the demanded chopstick is being handled by the neighbour, the W cannot help and
considers the demand as a needless derangment by p.

The input parameters are given by the operator during the start of the simulation
study and the number of philosophers as well. It is supposed that W spends his passive
phase at a place rather distant from the table, and when it decides to serve the
philosopher he makes it walking around the table and during it trying to serve the
demanding philosophers. He passes without delay the philosophers who expressed no
demand.

7.3 Dining Philosophers at Isolated Tables

A similar model of dining philosophers was also implemented, differing from that of
7.2 so that the philosophers are sitting at isolated small tables and, similarly, every
chopstick is placed it another isolated table so that the chopstick is accessible by two
neighboring philosophers. That configuration enables the waiter freely to move inside
the circular configuration of the sitting philosophers and directly to move from one
philosopher to another without touching the other philosophers.

In Fig. 3 there is a monochrome transformation of a snapshot taken from the display
with a pseudo graphic animation. Apostrophes approximate the performed way of the
waiter (usually only one apostrophe is present and moves, modeling the waiter' s actual
place). The chopstics are represented by small vertical incises I-When a chopstick is not
occupied and lies at the table its representation is placed at the circumference of the
circle. When the chopstick is being in a hand of a philosopher its representation is
placed at the same line of the display as the symbol of the philosopher that takes it.

7.4 Experience With PC

Both the models mentioned in 7.2 and 7.3 were also modified so that e.g. the waiter
in 7 .2 does not count the messages coming to him, but instead he waits during certain
time followed the first message and then goes to serve.

The simulation models realized in the described manner by using the implementation
of language SIMULA for IBM PC compatible computers [8] appeared to work suitably
quickly.

First consider the experiment with the model of dining philosophers.
Let M be the number of messages that the waiter accepts before he decides to serve

the philosophers.
As an example, we present information on a simulation study that should test the

optimal value of M = 0, ... , 5 in case of system with parameters mentioned in Table 1
(t.u. means a time unit common for any time data of the model, in practice one can
understand it as e.g. 10 second), and for evaluating by one financial unit both the time
unit spent by any philosopher by waiting and the time unit spent by the waiter during its
work.

The distributions of duration of the time consuming phases are exponential.

312

Table 1: Parameters of experimenting

number of philosophers 31 mean time of eating 30 t.u.
mean time ofresting 20 t.u. probability of dropping chopstick 0.9
waiter's move to the table 5 t.u. lifting a chopstick 1 t.u.
waiter's move from one 1 t.u. duration ofa simulation lOOOOO t.u.
philosopher to his neighbor experiment

10 simulation experiments were performed for computing average values for any
case of M, i.e. 60 simulation experiments of length 100000 simulated t.u. had to be
performed (relating to the minimum prize of the sum of waiter's proper work and the
philosophers' waiting times, the optimum appeared as M=4). At a cheap IBM PC
computer with Celeron 466 MHz processor), the whole study needed 202 seconds,
therefore only 3 minutes and 22 seconds.

We have also experimented with the model 7.1. For these experiments input
parameters can look like in Fig. 4,

configuration froffl file:basic_cnf.asc
seed:123456789
auerage working tiffle:30
auerage resting tiffle:20
probability of spoiling in the nachine:0.1
step-by-step? Put 'y' or 'V'
distance between euents, RI-seconds:0.2
distance between alarns:5
seruicenan's tine for one step:1
seruicenan' s tine for rising a fork:,

Figure 4: Parameters of experimenting with model 7 .1.

and particular results are shown in Fig 5.

16142.1289
16054.8332

2: 15908.963? this is the optimum
16256.8556
16164.8268 CPU tine in seconds:
16340.353? 2.51

Figure 5: Output of experiment with model 7.1

Both types of experiments show the possibility of a wider set of experiments. In
future we plan to provide a systematic set of experiments with stepwise change of
parameters in order to get an overal view of dependency between parameters and
results.

8 Summary

A service system is often viewed as anticipatory one (in a weak sense), because
every day one has to anticipate its operation and accordingly formulate scheduling in it.
Often the scheduling is made by primitive methods: the formal model figuring in the
anticipatory characterization of the system is reduced to several simple formulas.

313

Simulation of the development that would be caused particular variants is a much better
model, as it can reflect any details of the possible future influences and as it finally
admits to determine the most efficient one of the variants. The configurations of the
service systems for a large spectrum and the limits for scheduling given by physical
properties of those system as well; so the object-oriented programming is a good
technique for implementation of the simulation models respecting that large spectrums.

A (human) system that designs the initial state of a service system (among other, the
number of workers, machines and transport tools, and - in certain cases - their
configuration in space) is also an anticipatory system, because it should anticipate the
consequences of the design to last a longer time and according to it decide which should
be the optimal initial configuration of the designed system.

Simulation models are extremely suitable ones also for this purpose and the object­
oriented programming is of the same high quality paradigm as in the construction of the
everyday anticipation models. Nevertheless, in that case of simulation, the (other)
simulation in everyday anticipation has to be included in the model, because otherwise
the model would give non-realistic data (a general proof of that statement is in [6] and
[9]). Such "nesting" of a simulation model into another one is a difficult task. The
authors were successful using programming language that offers a full synthesis of
object orientation, process orientation and block orientation. They used SIMULA [7],
[8], which is one of a few languages with these three orientations; moreover, its
implementation for PC is free and efficient in computing time and memory space.

Abstract idea of a community of eating Chinese philosophers is a good (and namely
widely known) bench mark for testing the proposed run of the service systems. It was
simulated by the same manner as the real service systems.

In future, we plan to use several strategies, several fitness functions and preferences
in group decision and apply inductive methods from [11].

References

1. Rosen Robert (1985). Anticipatory Systems. Pergamon Press.
2. Dubois Daniel M. (2000) Review of Incursive, Hyperincursive and Anticipatory

Systems - Foundation of Anticipation in Electromagnetism. Computing
Anticipatory Systems: CASYS'99 - Third International Conference. Edited by
Daniel M. Dubois, Published by The American Institute of Physics, AIP Conference
Proceedings 517, pp. 3-30.

3. Dahl Ole-Johan (1964). Discrete Event Simulation Languages. Norwegian Comput­
ing Center, Oslo. Reprinted in [4]

4. Genuys Femand, editor (1968). Programming Languages. Academic Press.
5. Chochol Stefan and Kindler Eugene (1983) Simulation of veterinary sanitation.

Simulation of Systems'83. Published by Czechoslovak Society for Science and
Technology, pp. 173-176.

6. Kindler Eugene (1999) Simulation of Systems That Contain Simulating Elements.
Atti della Conferenza Annuale della Italian Society for Computer Simulation, 15.
Giugno 1999. Published by Italian Society for Computer Simulation), pp. 103-108.

314

7. Dahl Ole-Johan, Myhrhaug Bjorn, and Nygaard Kristen (1968). Common Base
Language Norsk Regnesentralen, Oslo. 2nd edition 1972, 3rd edition 1982, 4th
edition 1984.

8. SIMULA Standard (1989). SIMULA a.s., Oslo.
9. Kindler Eugene (2000) Chance for SIMULA. ASU Newsletter, Vol. 26, no. 1, pp.

2-26
10. Kindler Eugene (2006): Object-Oriented Representations of Formal Theories as

Tools for Simulation of Anticipatory Systems. Computing Anticipatory Systems:
CASYS 2005 - Seventh International Conference. Edited by Daniel M. Dubois,
Published by The American Institute of Physics, AIP Conference Proceedings 839,
pp. 253-259.

11. Horvath, Tomas and Vojtas Petr (2006) Ordinal Classification with Monotonicity
Constraints. ICDM 2006 - 6th Industrial Conference on Data Mining. Edited by
Petra Pemer, Published by Springer, Lecture Notes of Artificial lnteligence 4065,
pp. 217-225.

315

	Casus_v20_pp304-318_Vojtas

