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Abstract 
In this paper , we propose a simple model that focuses on the adaptation process of 
an agent to an unknown system in an online manner . The agent is equipped with a 
recurrent neural network, and by controlling the dynamics of the interacting system, 
it should predict its state in one-step prediction. To quantitatively characterize the 
interaction modality between the agent and the interacting system, we used transfer 
entropy. As a result, by varying the nonlinear parameter of the interacting system 
and the coupling strength, we numerically show that the adaptation dynamics can 
be distinguished between an agent-driven and a non-agent-driven dynamics. 
Keywords : recurrent neural network, online learning, transfer entropy 

1 Introduction 

Anticipation, learning, and adaptation are inevitable features when we study bio­
logical systems [1][2]. Several studies attempted to show the diverse nature of these 
features by using recurrent neural network (RNN) learning. For example, J. Tani 
showed in his work that an RNN can learn a stochastic process by embedding chaotic 
dynamics [3]. In addition, T . Ikegami studied the diversity of our daily communi­
cation by coupling two RNNs and showed several cases where diversity originates 
due to the conflict between an autonomous anticipation and its impossibility [4]. 
In the context of online learning of an RNN , A. Saito has shown by analyzing the 
basin structures of an RNN that there exists some property of uncertainty that is 
qualitatively different from chaotic unpredictability, called "inaccessibility" [5) . 

In this paper , we study the adaptation process with RNN online learning, where 
the RNN performs the one-step prediction of a timeseries generated by its coupling 
system. The agent is equipped with an RNN and required to control the states 
of its coupling system. To characterize its interaction modality, we used transfer 
entropy [6] . Transfer entropy allows us to reveal the hidden causality between several 
dynamics which is usually difficult to extract only by looking at their dynamics. 
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This paper is organized as follows. In the next section, we explain our model in 
detail and show how our motivation is expressed in our model setting. In section 3, 
we observe some basic dynamic properties of our system and quantitatively show its 
interaction modality by using transfer entropy. And last, we summarize our results 
and discuss the possible line of work we can t ake in the future. 

2 Model Description 

By using an RNN , we deal with dynamical systems that adapt to the interacting 
systems in an online manner. The network is expressed as follows: 

hj = g(L; WijYi + 0j) , 

Oj = g(Li U;jhi + 0j) , 

g(x) = (1 + exp(-(3x )) - 1
, 

(1) 

(2) 

(3) 

where y;, h;, and O; represent the value of the input neurons, the hidden neurons, 
and the output neurons , respectively. In addition, 0i and 0J represent the bias of the 
hidden neurons and the output neurons , respectively. W;j ( U;j) represents the weight 
of connection from the i th input (hidden) neuron to the j th hidden (output) neuron. 
g(x) is the sigmoid function, and (3 is the nonlinearity coefficient . In this paper, we 
set (3 = 1.0. The number of the input neurons, the hidden neurons , and the output 
neurons is set to 2, 2, and 1, respectively. Hence, we have only six connection weights, 
and they are set as (woo , W10, W01, wn, uoo, u10) = (-0.8, 0.9, -0.4, -0.7, 0.4, -0.5). 
Accordingly, the biases are set as ( 00 , 01 , 0~) = (-0.9 , 0.9, - 1.0). oo is fed back to Yo 
as a recurrence, and y1 takes the value of its interacting system, explained later as 
an input. 

The RNN is required to perform one-step prediction by learning from the current 
state value of its interacting system. For an online learning algorithm, we use the 
gradient descent method based on the current output error as follows: 

L 1 2 E = -(o - t) 
j 2 J J ' 

<\ = oj(l - oi)(oi - tj) , 

()j = hj( l - hj) L ; Wj;O;, 

.6.u;j(t + 1) = -"(h;Oj + o:.6.u;j(t), 

.6.w;j(t + 1) = - "(y;o; + o:.6.w;j(t), 

(4) 

(5) 

(6) 

(7) 

(8) 

where tj, E , Oj , o; , 'Y, and o: represent the target value, the error function, the back 
propagated error to the output neurons, the back propagated error to the hidden 
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neurons, the learning rate, and the momentum rate , respectively. In this paper, 
('y, a) = (3.5 , 0.3) . For the target value, we use the well-known logistic map and 
define the input from the RNN to the map as follows: 

(9) 

(10) 

where a and c are the nonlinear parameter and the coupling strength, respectively. 
Note that this overall system is a closed dynamical system that has only two pa­
rameters, a and c. The initial states are set to (x0 , y0 , y1) = (0.5 , 0.5, 0.5). 

Although our model resembles to the one proposed in [5], there are two clear 
differences. First , in [5], they used a second-order RNN. Second, since their focus was 
not on the adaptation process but on the on-line prediction, they did not introduce 
a coupling from the RNN to the logistic map. On this point, if we set the coupling 
strength c to 0, t hen the task setting in our model is the same as the one proposed 
in [5] . 

3 Simulation Results 

3.1 Trajectory 

To see the basic property of the system, we observed the trajectories of E, Xt , and 
o. We found that in the case of O < a < 3.5, E rapidly converged to 0, and the 
trajectories of Xt and o tended to show fixed points. However, in the case of around 
3.5 < a < 4.0, 0.0 < c < 0.5 , E converged to O very slowly or never converged , and 
Xt and o frequently showed intermittent dynamics (Fig. 1). 

3.2 Bifurcation and Convergence 

We observed bifurcations of E, Xt , and o for regions whose convergence of E to 0 
is very slow or does not occur. By varying the coupling strength c, we observed 
a chaotic regime, a periodic regime, and a fixed point. The common feature we 
observed by varying c is that in t he large number of c, it tends to show the period 
2 regime and then rests to the fixed point (Fig. 2). 

To see the dependency of the convergence of E, we observed the average value 
of E in the a-c plane (Fig. 3). It showed that in the region of around 3.5 <a< 4.0, 
0.0 < c < 0.5, the convergence speed tends to be very slow or never converged to 0. 

3.3 Transfer Entropy 

We have seen the basic dynamic property of the system we use in this paper. If E 
converges to 0, t his means that the agent and the interacting system are perfectly 
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Fig. 1: Typical trajectories of E1 (upper line) , Xt (middle line) , and Ot (lower line). 
(a, c)= (3 .6, 0.1) , (3.7, 0.1) , (3.85 , 0.15) , (3.74, 0.22) , (3.75, 0.182) , and (4.0, 0.2) 
are shown. 
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Fig. 2: Typical bifurcations observed in Et (upper line), Xt (middle line) , and Ot 

(lower line) by varying coupling strength c. a= 3.6, 3.7, 3.8, and 4.0 are shown. T 
is set to 10000, and the last 100 timesteps are plotted. 

Fig. 3: Average of error shown in the a-c plane. The brighter the color , the larger 
the error . T is set to 1000, and the last 300 timesteps are averaged. (a) shows when 
3.0 <a< 4.0, 0.0 < c < 0.5. (b) shows 3.6 < a < 4.0, 0.0 < c < 0.2. 
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assimilated. In this case, the agent does not need to perform prediction, and there 
is no information transfer between the agent and its interacting system. Our focus 
of interest is to quantify the adaptation process where the agent is constantly trying 
to adapt to its interacting system. We picked up the region of the a-c plane whose 
convergence of E to O is very slow or never converges (around 3.5 < a < 4.0, 
0.0 < c < 0.5), and quantify its interaction regime. It is difficult to reveal the 
hidden causal relation with only the dynamics. 

To see the informational structure of this system, we used a measure that aims 
at extracting directed flow (transfer of information) between time series, called 
transfer entropy [6]. Given two t ime series Xt and Yt , the transfer entropy es­
sentially quantifies the deviation from the generalized Markov process: p(Xt+i /xt ) ::::; 
p(Xt+1lxt,Yt) , where p denotes the transition probability. If the deviation from a 
generalized Markov process is small , then the state of Y can be assumed to have 
little relevance for the transition probabilities of system X. If the deviation is large, 
however , then the assumption of a Markov process is not valid. The incorrectness 
of t he assumption can be expressed as follows: 

(y ) '°"' '°"''°"' ( ) p(Xt+i/Xi,Yt) TE -. X = 6 6 6 p Xt+1, Xt, Yt log ( I ) , 
x1+1 x, Yt p Xt+l Xt 

(11) 

where the sums are over all amplitude states, and the index T E(Y -. X) indicates 
the influence of Y on X. The transfer entropy is explicitly nonsymmetric under 
the exchange of X and Y , and can thus be used to detect the directed exchange of 
information between two systems. The method is frequently applied in the field of 
sensorimotor coupling system research to quant ify the informational structure over 
the redundant network architecture [7] . In this paper, we analyzed the following 
types of transfer entropy, (1) TE(O -. I) , (2) TE(h0 --+ x), (3) TE(x -. h0) , 
(4) TE(hl -. x), and (5) TE(x -. hl) (Fig. 4). For (1), it shows the causal 
dependencies from the agent 's output to input. If this value is high, it quantitatively 
means that the agent obtains information from the interacting system by stimulating 
it. For (2), (3), (4), and (5) , t hey quantify the causal relations between the agent 's 
and the system's internal dynamics. 

See Fig. 5. It shows t he values of transfer entropy plotted in the a-c plane. On 
(a) , (c) , and (e), we observed high values of transfer entropy when parameter a is 
around 3.5, and the value of parameter c is very small . Also, we observed relatively 
high values of transfer entropy when both a and c are large. On the other hand, in 
(d) and (f), they showed high values in all the regions where the value of E is not 
0. Especially, if a is large and c is small, it tends to show a very high value. On 
(b), it shows that when parameter a is around 3.5 and the value of parameter c is 
very small, t he interaction is agent-driven, and in the other region, the interacting 
system is significantly driving the agent's dynamics (Fig. 6). 
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Fig. 4: A schematic diagram showing the information flow focused on this paper. 
See text for details. 
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Fig. 5: The values of transfer entropy plotted in the a-c plane (3.5 < a < 4.0 , 
0.0 < c < 0.4) . For each plot, T is set to 3000, and the last 2000 timesteps are used 
to calculate the transfer entropy. The brighter the color, the larger the value. (a) 
TE(O- I) , (b) (TE(h0 - x) +TE(hl - x))- (TE(x - h0) +TE(x - hl)) , (c) 
TE(h0 - x), (d) TE(x - h0) , (e) TE(hl - x ), and (f) TE(x - hl). 
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Fig. 6 : The value of transfer entropy as a function of coupling strength c (0.0 < 
c < 0.4). The upper line shows the value of TE(O-, I). The lower line shows the 
value of (TE(h0 _, x ) + TE(hl _, x )) - (TE(x _, h0) + TE(x - hl)) . The figure 
shows the cases of a=3.6, 3.8, and 4.0. For each plot, T is set to 3000, and the last 
2000 timesteps are used to calculate the transfer entropy. 

4 Conclusion 

In this paper, we proposed a simple adaptation model and numerically showed its 
interacting regime accompanied by the adaptation process using transfer entropy. 
As a result, we showed that the adaptation dynamics can be distinguished between 
an agent-driven and a non-agent-driven dynamics in the a-c plane. 

For future work, both dynamical systems analysis and information theoretic 
analysis of this system should be performed in detail. For example, we saw that , in 
the case of around 3.5 < a < 4.0, 0.0 < c < 0.5, E converged to 0 very slowly or 
never converged. Actually, in our setting, we confirmed that, when T = lO00000 , the 
large part of this region still did not converged to 0 (e.g. (a , c) = (3.83 , 0.1)). The 
analytical clarification of whether E converges to 0 or not in this region should be 
needed in the future. 
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