
Lattice Neural Networks for Incremental Learning

Daisuke Uragami 1, Hiroyuki Ohta2 and Tatsuji Takahashi3

1 School of Computer Science, Tokyo University of Technology, 1404-1 Katakuramachi ,

Hachioji City, Tokyo 192-0982, JAPAN

E-mail: dduragami@gmail.com
2Department of Physiology, National Defense Medical College, 3-2 Namiki,

Tokorozawa, Saitama 359-8513, Japan.
3Division of Information System Design, School of Science and Technology, Tokyo

Denki University, Hatoyama, Hiki, Saitama 350-0394, Japan.

Abstract

In incremental learning, it is necessary to conquer the dilemma of plasticity and stability.

Because neural networks usually employ continuously distributed representation for

state space, learning newly added data affects the existing memories. We apply a neural

network with algebraic (lattice) structure to incremental learning, that has been

proposed to model information processing in the dendrites of neurons. It has been

proposed as a mathematical model of information processing in the dendrites of neurons.

Because of the operation 'maximum' in lattice algebra weakening the continuously

distributed representation, our proposed model succeeds in incremental learning.

Keywords: Stability-Plasticity Dilemma, Distributed Representation, Dendrite,

Anticipation.

1 Introduction

There are two aspects of anticipation (Rosen, 1985; Dubois 1998) in learning. One

is generalization. It is to presume a distribution or a function from existing data for

predicting new data. Another aspect is incremental learning (Giraud-Carrier, 2000). In

incremental learning, because the coordination of existing learnt data and newly added

data is needed, learning mechanism must assume data addition.

First we explain what is incremental learning and why it is hard. Then we show

how our model solves the problem.

International Journal of Computing Anticipatory Systems, Volume 24, 2010
Edited by D. M. Dubois, CHAOS, Liege, Belgium, ISSN 1373-5411 ISBN 2-930396-12-1

1.1 Incremental Learning

Incremental learning is a task to learn a data set after learning another data set

sequentially (on line). In the learning of the second data set, the first data set is neither

learnt nor referred. In ordinary neural networks, because of the continuously distributed

representation (Rumelhart, Hinton and Williams, 1986), the incremental learning

destroys the existing learning.

Figure 1 is a simple example exhibiting the difficulty of incremental learning. It

shows the destruction of old learning by new learning. With the connection in the left, it

outputs only 'A' from the input 'a'. Now the input 'a' and the output 'A' is the existing

memory. Then, by learning the correspondence from the input 'b' to the output 'B', the

connection becomes as in the middle. As the result, as in the right figure, the 'B' is

outputted from 'a'. Such an aspect leads to the dilemma of stability or plasticity. One of

the principal factors is that all the neurons in the state layer contribute to the output. It is

that memory is distributed to the neurons.

Old memory --> Added data --+ Old memory is destroyed

Output Layer 0 0

Sta te Layer

Input Layer

Figure 1: Destruction of memory by incremental learning.

As a solution to the dilemma, Ohta and Gunji (2006) proposed a model that

employs winner-take-all method and negative reinforcement. Winner-take-all is an

activation algorithm proposed in the study of self-organizing maps by Kohonen (2001).

In this algorithm, only the most excited neuron in the state layer fires. As a result,

distributed representation is weakened. On the other hand, negative reinforcement is a

learning algorithm proposed by Chialvo and Bak (1999). In this algorithm, the teacher

signal is not explicitly given. The depression is given in failure to the connections that

108

contributed to the firing. It is negative feedback; the strengths of active synapses get

reduced if mistftkes are made, otherwise no changes occur. By this algorithm, together

with weight conservation and pre-synaptic inhibition, the unused firing pathways come

to be used. As the result, existing memory can avoid getting overwritten. The model by

Ohta and Gunji succeeds in incremental learning of time series data.

1.2 Lattice Neural Networks

In this study, we apply lattice neural networks (LNN) to incremental learning tasks.

LNN proposed by Ritter and Urcid (2003) model the actions in the dendrites in neurons

by lattice algebraic operations. As in the Figure 2, each neuron in the output layer has

several dendrites. The dendrites can work as the state layer in an ordinary neural

network. Each neuron in the input layer connects to all the dendrites. Every connection

consists of a pair of excitatory and inhibitory synapses as in the left figure. (The neurons

mediating inhibitory connection as in the right figure are here just omitted.) The

operation between dendrites is the 'join' operation in lattice algebra. It is actually

maximum operation, because, as we mention later, the lattice structure we treat is totally

ordered, an interval of real numbers. Ritter and Urcid (2007) have applied their LNN to

associative memory tasks by batch learning but not to online learning.

In this study, we modify LNN for online learning. We call the new model LNNI

(Lattice Neural Networks for Incremental learning). In the model, the operation 'join'

(denoted by 'V') works instead of winner-take-all. To prevent the added data from

overwriting, negative reinforcement and the plasticity of the dendrites are exploited.

Output layer

Dendrites

Input layer 6
Figure 2: Lattice neural network that employs dendritic computing.

109

2 Model

2.1 Activation Algorithm

We explain about the firing algorithm of LNNJ. It is, in other words, how to

calculate the output from an input.

y = f(x; W) (I)

As in eq.l, the function with the parameter W calculates the output y =
(y1,·· · ,Y1, ... ,yM) from the inputx = (xi,--·,xi,'",XN) · W == [wfk1] is the parameter

representing the connection weights . It is a 4-dimensional matrix. There are four

indices: i = 1, · · · , N is for the input nodes, j = 1, · · ·, M is for the output nodes and

k = 1, • · · , K is for the dendrites of each output nodes, and / is for discriminating

excitory and inhibitory connection. N, Mand K are respectively the number of the input

nodes, output nodes and the dendrites of each output node. Although the number of the

dendrites can be different in the respective output nodes, we assume that each neuron in

the output layer uniformly has K dendrites for simplicity. If/ = 1, the connection is

excitory and if l = 0, it is inhibitory. The detail of the function/i s as follows.

(2)

(3)

(4)

f/)jk(x) is the result of calculation at the k-th dendrite of the j-th output neuron. ri (x)

is the maximum of the rpik(x) at the j-th output neuron. If rj(x) > 0, the j-th output

neuron fires. If not, it does not fire. r 1 = 1 and r 0 = -1. 01 = -0.5 and e0 = -1.5. 0 1 is a

constant just for alignment that makes easier to see the relation between input-output

and wfki· As briefly mentioned earlier, in this study, the underlying lattice structure is an

interval of real numbers that is a kind of chain and a totally ordered set. Therefore, 'V'

and'/\' respectively denote maximum and minimum.

110

2.2 Examples

2.2.1 Example 1

Example 1 is the simplest experiment. There is only one input, output neuron and

its dendrite (N = M = K = l). r(x) is the following.

r(x) = (+1) x (x + w 1 - 0.5)/\(-1) x (x + w 0
- 1.5) (5)

We setw1 = w0 = 0. y=l if0.5 < x < 1.5. Otherwise,y=0. Actually, substituting 1 to

x, we get y= 1 as follows.

r(l) = (+l) X (1 + 0 - 0.5)/\(-1) X (1 + 0 - 1.5)

= (0.5)/\(0.5)

= 0.5

y = g(r(l)) = g(0.5) = 1

Similarly, substituting 1 to x, r(0) = 0 and y = 0.

r(0) = (+1) x (0 + 0 - 0.5)/\(-1) x (O + 0 - 1.5)

= (-0.5)/\(1.5)

= -0.5

y = g(r(0)) = f(-0.S) = 0

(6)

(7)

(8)

(9)

In Figure 3 (left), the change in the input-output relation according to the value of

w 1 and w0 . The interval bounded by the arrows is the range of x that makes r positive,

hence y = I in the interval.

2.2.2 Example 2

In the second example, we show that we can construct an XOR gate with two inputs

and two dendrites (N = 2, M= 1, K=2). We set Wand r(x) as follows.

111

-{ (+1) X (X1 - 0.5)/\(-1) X (X1 - 1.5) }
,(Xi,Xz) - /\(+1) x (Xz + 0.5)/\(-1) X (X2 - 0.5)

V f (+1) X (X1 + 0.5)/\(-1) X (X1 - 0.5) 1
l /\(+ 1) x (x2 - 0.5)/\(-1) x (x2 - 1.5)5

From the input (1, 0), l is outputted.

r(l,0) = {(+0.5)/\(+0.5)/\(+0.5)/\(+0.5)}

V {(+ 1.5)/\(-0.5)/\(-0.5)/\(+ 1.5)}

= { +0.5} V { -0.5}

= +o.5

y = g(r(l,0)) = g(+0.5) = 1

(10)

(11)

(12)

(13)

Similarly, the model outputs 0 from input (1, l), 0 from input (0, l) and 0 from input (0,

0). ln the plot, the gray square regions are where y = 1. Each square is a region where

the calculated value on a dendrite becomes larger than 0. It is how to adjust the

connection weights between neurons.

Example 1 (N = M = K = 1)

X

0

w 1 = 0

W O = 0

X

0

X

w 1 = 1 w1 = 0
w 0 == 1 ,v 0 = 1

Example 2 (N = 2, ,t/ = 1, K = 2)

k = 2

(0, 1)

(0, 0)

(1, 1)

0

k=l

(1, 0)

Figure 3: The activation regions.

112

2.3 Learning algorithm

Next we explain the learning algorithm of LNNI. Now the calculated value of the

system from input x = (xi, · · ·, x;, · · ·, xN) is y = (y1 , · .. , Yv · ·, YM) . The correct answer

is y' = (y'i, · · •, y' v · ·, y' M) . Comparing y and y', the increase or decrease of W is

determined as follows.

(L- 1) For all j satisfying y1 = 1 and y' 1 = 0

for all k satisfing <fJJk(x) > 0

for all i

!J.w(k1 = d1'nissf O'J < 0

!J.w3'1 = d~iss/Oj' > 0

where c,1 is the number of k satisfied (f)Jk (x) > 0.

(L-2) For all j satisfying y1 = 1 and y' 1 = 1

for all k satisfying (/)Jk(x) > 0

for all i satisfying xi = 1

tJ.wlkJ = dUc,1 < 0

tJ.w&1 = dVO"J < 0

for all i satisfied xi = 0

!::.wi\J = d5f cr1 > 0

t::.wfkJ = d8f c,1 > 0

(L-3) If all YJ = 0, K(t + 1) = K(t) + 1

(14)

The algorithm is divided into three cases. (L-1) means that if a firing of an output

neuron was wrong, W is adjusted so that it uniformly closes the all related pathways.

Here, the correct output itself is not given. (L-2) is that, if a firing of an output neuron

was not wrong, W is adjusted so that the used pathway does not fire with the other

inputs. (L-3) prescribes that, if none of output neurons fire, all the output neurons get

one more dendrite added. If it is felt ad-hoe, a more natural method is to apply 'weight

conservation' (Royer and Pare, 2003). However, our algorithm is sufficiently reasonable

113

by the plasticity of dendrites and in this way we can observe the learning process clearer.

Note that the dendrite is uniformly added to all the output neurons. The addition is not

restricted only to the output neuron corresponding to the correct output.

3 Simulation and Results

We have explained the firing and learning algorithm of LNNI. Hereafter we

confirm that LNNI can execute incremental learning by simulation. The initial values of

the parameters are the following. wi\/t = O) = 1 , w?k/t = 0) = 0. It is that the

pathway is maximally open. In the course of learning, wfkj can be larger than I or

smaller or 0. Then wfkj is set I or 0. They do not go beyond the interval from O to l.

The number of dendrites is one for each output neuron, in the initial setting (K(t =
0) = 1). The rates for learning are the following. dtriiss = -0.02, d~iss = 0.02, d} =
-0.2, dr = -0.2, d5 = 0.1, d8 = 0.05. We execute three simulations. We cyclically input

the samples. Comparing the system's output and the sample output, the weight W is

adjusted. The initial setting described here is common to all the three simulations.

Figure 4 is the learning set used in all the experiments. One vertical column is a

sample of input-output. Output is in the above and input is in the below. The number of

inputs and outputs are both 5 (N = 5, M = 5), and there are 6 sets of inputs and outputs,

discriminated by the index s. The characteristics of the input data set is that the inputs

are partially overwrapped as in i=3 at s=2 and s=3. On the other hand, the characteristics

of the output data set is that there are three in the row ofj=l.

}=1

2

Output Yj 3

4

i = 1

2

Input X; 3

4

5 .___......._........__

s= 1 2 3 4 5 6

Figure 4: The learning set.

114

3.1 Experiment 1

This is how the learning goes. First the input samples from s=l to s=4 is repeated

15 times, so it consumes 60 steps. Next the fifth sample (s=5) is iterated 40 times.

Figure 5 (top) shows the learning curve. The horizontal axis is time step and the

vertical axis is the accuracy rate, the rate of the correct output by the system, among five

samples. After t =20, it begins to correctly output to the sample of s=l, 2, 3. Before t=30,

the second dendrite is generated. Although the correct rate becomes O once, but after the

learning by the newly added second dendrite for s=4 sample, around t=50 it correctly

responds to the sample s== 1, 2, 3 and 4. At t=6 l, the incremental learning starts. Here

again, by the third generation of dendrite, once the accuracy rate becomes 0, Then,

because of the learning by the dendrite for the s=5 sample, finally the rate becomes 1.

Figure 6 (upper-left) shows how the weight W changes through the learning. It is

how the dendrite is excited. The dendrite is of k=l of the j=l output neuron. The

horizontal axis is time and the five plots correspond to the five inputs from i=l to i==5.

The white region is where it excites. At t=O, they get excited to all the inputs.

Contrastingly, at t= 100, they excite only to the input (I , 0, 0, 0, 0).

~ 1.0

~ 0.8

~ 0.6

'" ~ 0.4

~ 0.2

0

0

0

Exp. l

~
20

Exp. 2

20

Exp . 3

20 40

' .0.
40 60

time

rv

40 60
time

60
t ime

80

80

80

100

Figure 5: The learning curves.

115

[
100

-

Exp. 1 (J = 1, k = 1) Exp.2 (J= 1,k = 2)

w~ ~~ [~ :toox,
Wi OJ t j ,<------ - -------~

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90

time time

Exp. 3 (j = 1,k = 1)

10 20 30 40 50 60 70 80 90 100 110 120

t ime

Figure 6: The evolution of the weight W.

3.2 Experiment 2

In the second experiment, the incremental learning beings earlier at t=53 . The other

conditions coincide with the one of the first experiment. It is when the system has learnt

to correctly output to the first four samples. As the result, the existing learning result is

overwritten. The correct rate does not get greater than 0.8 (Figure 5 middle).

116

We can see the overwriting by watching the time development of the weight W

(Figure 6 upper right). In the center plot, for the i=3 input, before t=53, the result of

learning is that it gets excited only to x3=0. After t=53, the direction of the learning is

changed so that it gets excited exclusively to X3 = 1.

3.3 Experiment 3

In the third experiment, we confirm that the existing memory can be corrected by

additional learning. First the input samples from s=l to s=4 are repeated 15 times (60

steps). Next the sample s=6 is iterated. Note that the sample of s=6 has the same input

as of s= l but the output differs.

See Figure 6 (bottom). At the 60th step, the learning is finished so that excites only

to the input s=l, (I, 0, 0, 0, 0). However, by additional learning, it excites to none of

inputs. Afterwards, another dendrite is added and used for the input s=5. Figure 5

(bottom) shows the learning curve.

4 Discussion

The results by simulation can summarized as follows: (l) LNNI can execute

incremental learning, (2) if the learning period is not long enough, it is overwritten by

the new learning, and (3) the learning can be revised even if it has lasted long.

Now we review distributed representation. In distributed representation a concept is

represented by a pattern of activity over a collection of neurons. Normally, the

distributed representation is regarded as an antithesis to the grandmother cell

representation.However, we consider that the problem is not in the dichotomy of

distributed or not distributed. Although we normally believe that the representation is

constructed only by the result of neuronal firing, we can choose another viewpoint to

assume the potent input pattern on dendrite as implicit distributed representation. The

operation '.join' (denoted by ' V ') in the proposed model extends the variability of

possible input pattern. This 'implicit distributed representation' may be a principal

subject of brain science.

117

5 Conclusion

In this article, we have reported that LNN can be refined to our LNNI for online

learning, and that it can incrementally learn. It may be a touchstone to discuss

distributed representation in the brain.

Acknowledgements

Preparation of this article was partially supported by the Cooperative Research

Project Program of the Research Institute of Electrical Communication, Tohoku

University.

References

Chialvo, D., Bak, P. (1999). Leaming from mistakes. Neuroscience 90, pp.I 137-1148.

Dubois, D. M. (1998). Introduction to Computing Anticipatory Systems. International

Journal of Computing Anticipatory Systems 2, pp3-14.

Giraud-Carrier, C. (2000). A Note on the Utility of Incremental Leaming. AI

Communication 13, pp.215-223.

Kohonen, T. (2001). Self-organizing maps. New York: Springer.

Ohta, H., Gunji, Y.-P. (2006). Recurrent neural network architecture with pre-synaptic

inhibition for incremental learning. Neural Networks 19, pp.1106-1119.

Ritter, G. X., Urcid G. (2003). Lattice algebra approach to single neuron computation.

IEEE Trans on Neural Networks 14, No.2, pp.282-295.

Ritter, G. X. , Urcid G, (2007). Leaming in lattice neural networks that employ dendritic

computing, Studies in Computational Intelligence 67, pp.25-44.

Rosen, R. (1985). Anticipatory Systems. Pergamon Press.

Royer, S. , Pare, D. (2003). Conservation of total synaptic weight through balanced

synaptic depression and potentiation. Nature 422, pp.518-522.

Rumelhart, D. E. , Hinton, G. E. , Williams, R. J. (1986). Leaming internal

representations by error propagation. Parallel distributed processing: explorations in

the microstructure of cognition, vol. 1: foundations, Cambridge, MA, USA: MIT

Press, pp.318-362 .

118

	Casus_v24_pp107-120_Uragami

