
Design of an Algebraic Neural Operating System in
Programmable Logical Controller for Simulation and

Execution of Sequential Operations

Abstract

Daniel M. Dubois* and Antonio Mascia**

* HEC Management School, NI, University of Liege,
rue Louvrex 14, B-4000 Liege, Belgium

Daniel.Dubois@ulg.ac. be - http://www. sia.hec. ulg.ac. be
and

CHAOS ASBL, Institute of Mathematics, B37,
Grande Traverse 12, B-4000 Liege, Belgium

** EURO VIEW SERVICES SA,
Chaussee de Lodelinsart 273 , B-6060 Gilly, Belgium

management@euro-view.com - http://www.euro-view.com
and

ABEX EXPERT
http://www.masl.be

This paper deals with a general method for the analysis and the logical generation of
discrete systems in Programmable Logical Controller (PLC). The Boolean operators are
implemented with a generic and unique algebraic model as event-dependent discrete
equations, which can be executed in a sequential order. With this method, a generator of
sequential logical tables can be designed, simulated and executed for implementing
discrete dynamical systems. Two applications are studied. The first application deals
with the industrial automation of a water supply for a factory. From the logical table of
the events, an algebraic model is designed with a set of discrete equations. From these
digital equations, a neural network of the water supply is built. The second application
deals with an industrial traveling wagon.
Keywords: control systems, computer systems, neural networks, logical controller,
industrial automation

1. Introduction

This paper deals with industrial automation in relation with CAST (Pichler and
Schwartze!, 1992), and is the continuation of our work on the prototype GENSYSPRO
(Dubois and Mascia, 1995a), (Dubois and Mascia, 1995b), and (Mascia and Dubois,
1995).

The purpose of this research is to design an algebraic neural operating system in
PLC, Programmable Logical Controller, which automatically checks the logic of the

International Journal of Computing Anticipatory Systems, Volume 25, 2010
Edited by D. M. Dubois, CHAOS, Liege, Belgium, ISSN 1373-5411 ISBN 2-930396-13-X

implemented discrete dynamical systems, for simulation and execution of sequential
operations. What is the breakthrough with the prototype of the software GENSYSPRO,
is the fact that it is at rest when no event happens, contrary to all the other industrial
computing systems, which work all the time, based on an internal clock. GENSYSPRO
is this an event-based software with a general method for the analysis and the logical
generation of discrete systems in Programmable Logical Controller. The mathematical
model is really a description of the dynamics of the process. Indeed, the model
automatically permits the validation and the simulation of the process design without
programming. The performances of the GENSYSPRO computing system for industrial
automation are due to the fact that there is only an execution if there is a change
detected by the XOR, either in the functional order (human decisions), either event
based order. The methodology presented in this paper deals with an algebraic model of
Boolean tables and the design of neural networks. The method to build the discrete
equations of the Boolean tables depending on event steps permits to create
automatically a neural system with McCulloch and Pitts formal neurons. Indeed, it is
showed that non-linear digital equations can be easily built from Boolean Tables. These
equations are Heaviside Fixed Functions that can be used to generate directly neural
networks with McCulloch and Pitts formal neurons.

Several problems exist in the industrial automation systems, with the Programmable
Logical Controller (PLC).
In the world, a completely safe I 00% program of automation systems does not exist,
and one can only program all combinatory possibilities.

For enhancing the procedure, the objectives consist to:

1. Reduce the global cost of automation.
2. Reduce the quantity of steps, time and tools.
3. Create completely safe programs and systems.
4. Create one unique graphic tool for the description, simulation, and execution and

control the industrial process automation.
5. Increase the capabilities of the systems: execution speed.
6. Define a unique methodology (universality of program and training).

The automation problem is developed in only one global concept based on a generic
model and a universal method.

The global concept permits the following functions:

A - Structured organization of the project (Object Oriented).
B - Graphical representation of the process.
C - Sequential description of the process.
D - Instantaneous simulation (by the operating system).
E - From the universal method to a unique training.

4

The universal method deals with the fact that the automation engineer:

1 - needs to describe only expected actions of the industrial automation system.
2 - describes sequentially all physical events that happened in the temporal
process evolution.

Let us explain this, with a practical project described hereafter.
The global concept needs to create a new way of building the graphical software, the

operating system and the conceptual construction of the industrial automation systems.
A graphical tool needs a complete object oriented database with an automatic

variables generator.
The design tool, simulator tool and execution tool are regrouped in only one software

tool: "all in one".
The global concept is based on the event management:
A first comparison by the logical exclusive OR (XOR) is realised on events on

inputs.
A second comparison by XOR is realised on the functional action (example, on/off,

auto/hand, local/remote, etc.). The functional commands events in all the systems are
given by an initial sequence step, and many functional choices are activated or not
activated. With XOR between a current functional choice and its change, the system
will be able to activate or not activate actions and optimise the time of exploitation. The
system works with active functions on event.

The operating system consists in the execution of the generic model that translates, in
one CPU cycle, the Boolean matrix, representing the declarative sequences with inputs
and outputs, to virtual algebraic equations for the output writing.

The methodology presented in this paper deals with an algebraic model of Boolean
tables and the design of neural networks.

The method to build the discrete equations of the Boolean tables depending on event
steps permits to create automatically a neural system with McCulloch and Pitts [1943]
formal neurons. Indeed, one of us [Dubois, 1999] showed that non-linear digital
equations are easily built from Boolean Tables.

These equations are Heaviside Fixed Functions that can be used to generate directly
neural networks with McCulloch and Pitts formal neurons.

2. Theory of Algebraic Neural Networks of Dubois-Resconi

The Threshold Logic was initiated by the pioneer work of McCulloch and Pitts in
1943 [21], for modelling formal neurons at a logic level.

An extension of this Threshold Logic with non-linear argument in the Heaviside
function of the formal neuron was published by D. M. Dubois and G. Resconi , in the
Academy of Sciences of Belgium in 1993 [13]. Any truth tables can be modelled by
non-linear neurons represented by Fixed Heaviside Functions.

The next section will recall the method to design neural networks with algebraic
models.

5

2.1. Design of Algebraic Neural Systems of Boolean Tables

The content of this section is reprinted from the paper of D . M. Dubois (1999) [5).
Let us consider the general Boolean Table 1, with two inputs x1 , x2 and one output y.

The values of the output y are given by the set y = (y1, Y2 ,y3, y4).

Table 1. Table 2a. Table 2b.
General Table XOR Table AND Table

x, X2 y x, X2 y x, X2 y

0 0 Y1 0 0 0 0 0 0

0 1 Y2 1 0 1 0 1 0

1 0 Y3 0 1 1 l 0 0

1 1 Y4 l 1 0 1 1 1

The following general algebraic equation

y = (1 - X1) .(1 - X2).y 1 + (1 - X1).x2.y2 + X1 .(l - x2).y3 + X1.X2.y4

Table 2c.
OR Table

x, X2 y

0 0 0

0 1 1

1 0 1

I 1 1

(I)

is a non-linear logic equation for the I 6 Boolean Tables. The number of terms is equal
to the number of lines in the Boolean table (2n where n is the number of inputs). Each
term is the product of the output value Yi, i= I, ... ,n, by all the inputs variables Xj or their
complement (I - Xj) depending on its value 1 or O in the table at the line n. Here are
examples for XOR, AND and OR, given in Figures 2abc:

(la)

(lb)

(le)

The method for generating algebraic equations is general for any Boolean Table with
any number of inputs and outputs.

McCulloch and Pitts formal neurons are defined as follows

(2)

where Wi are the synaptic weights, 0 the threshold and r is the Heaviside function
defined by r(x) = 0 ifx :S: 0 and r(x) =1 ifx>O.

McCulloch and Pitts formal neurons can be built from the algebraic equations 1 abc.
Indeed, the terms given by products of the inputs or their complementary inputs can be
represented by AND hidden neurons and the output by a OR neuron (the sum of all the
AND hidden neuron). The AND neuron corresponding to eq. I b is given by

6

In a general way, an AND neuron of any equation given by a product y = z1 .z2 Zn, is

y = f'(z1 + z2 + Z3 + ... + Zn - (n-1)) (3b)

where all the weights are equal to 1 and the threshold is equal to the number of inputs n
minus 1. So each product of inputs in the digital equations can be represented by such
AND neurons. These AND neurons will be hidden neurons, the outputs of which being
the inputs of the output neuron y. The output neuron will be an OR neuron.
For generating the OR formal neuron from the algebraic eq. le, the following theorem is
used [Dubois, 5]: For integer values of weights and threshold, the negation of the
Heaviside function with the negation of its argument is equal to the Heaviside function
of the argument

f'(x) = 1 - f'(l - x)

for any integer x
From eq. le and eq. 3b, we can write

] - y = (1 - X1).(l - X2) = f'(l - (X1 + X2))

(4)

(5a)

where the complement output 1-y is the AND of the complement inputs which is an
AND formal neuron as shown previously. The eq. 5a can be written as

y = 1 - f'(l - (x1 + X2))

and, from eq. 4, we obtain the formal OR neuron

y = 1 - r(l - (x1 + X2)) = f(x1 + x2)

(5b)

(5c)

because the weights and the threshold are integers. So the OR is given by a Heaviside
function with a linear sum of its inputs with weights equal to 1 and a null threshold.

In a general way, the OR neuron y form inputs Y1, Y2, ... , Ym, is

(5d)

Let us apply these relations to algebraic eq. 1 with two inputs and one output. This
eq. 1 is a Heaviside Fixed Function and thus, we can define four AND hidden neurons
Y1, Y2, y3, y4, corresponding to the 4 terms with products in eq. 1 and then one single
output OR neuron:

Yi= (1-x1).(l-x2).y1 = f(- x1 - x2 + Y1) (6a)

Y2 = (1-x1).X2-Y2 = f'(- X1 + x2 + Y2 - 1) (6b)

y3 = x1.(l-x2).y3 = f'(x1 - x2 + YJ - 1) (6c)

y4= X1.X2.Y4 = f(X1 + X2 + Y4 - 2) (6d)

(6e)

We remark that when y; = 0, the argument of the Heaviside function is always null or
negative, so the corresponding hidden neuron can be cancelled. The weights are -1 or
+ 1 when the corresponding value of the input is 0 or l, and the threshold is equal to the

7

sum of all the input values minus the output value for each line of the Boolean table.
The outputs of the hidden neurons are mutually exclusive, Yi . Yi = 0 for i * j. The
weights of the output neuron are 1 and the threshold is 0, so the output neuron is the
sum of the outputs of the hidden neurons.

For example, XOR Boolean table 2a can be represented by two hidden neurons Y2
and y3 for which y2 = y3 = l , so XOR neural network is given by two input neurons, x1
and x2, two hidden neurons Y2 and y3, given by the two following Heaviside threshold
functions

Y2 = f'(- X I + X2)

and one single output neuron y, given by the following Heaviside threshold function

Y = f'(+ Y2 + Y3)

2.2. Design of the Neural Network of the XOR Boolean Table

The figure 1 gives the XOR neural network, based on the eqs. 7abc.

neuron

Input
neurons

(7a)

(7b)

(7c)

Figure I. The XOR neural network is given by eqs. 7a-b-c, with weights, + 1 and -1,
and a null threshold.

Let us apply this methodology to two industrial applications.

8

3. The Algebraic Model of a Water Supply

This section describes the project for the industrial automation of the process of a
water supply for a factory.

The analysis and graphical description of the process of the water supply for a
factory is given in Figure 2, which gives a start condition without water in the tank.

Pump P1

LSH
O=OK

= LSL

1 =Run

1 =Alarm.__ ____

I ST
ST= 1

Event

Pump P2
0 = Stop

Figure 2: This figure corresponds to a start condition, with no water in the tank, where
the Event is the Start/Stop at ST = 1, and the Pump P l at 1 = Run.

The abbreviations are given as follows in the analysis and graphics of the water supply.:

ST: Start/Stop switch water supply, 0 is Stop and l is Start
Pl: Pump 1 (input tank), 0 is Stop pump and 1 is Run pump
P2: Pump 2 (output tank), 0 is Stop pump and I is Run pump
LSL: Level Switch Low, 0 is OK (no alarm - white) and I is Alarm low level (black)
LSH: Level Switch High, 0 is OK (no alarm - white) and I is Alarm high level (black)

Let us describe the different steps of system evolution on the graphics:

- The description is done with graphic tools
- The program translates this description into Boolean data matrix

The following 4 figures 3-ABCD, give the graphical design, with their variables and
steps, where the "Event" is shown.

9

Pump P1

LSH
0=OK

LSL

1 =Run

1 = Alarm i;_;_====;.;.i

(i) ST

~ ST= 1

Figure 3-A: Event 1 representing the Low Level,
with LSL at l = Alarm, and the Pump Pl at 1 = Run.

Pump P1

LSH
0=OK

= LSL
0=OK

1 =Run <i> ST

<!> ST= 1

Pump P2

Figure 3-8: Event 2 representing the Normal Level ,
with LSL at 0 = OK, and the Pump P2 at I = Run.

Pump P1
0 = Stop i ST

(!> ST= 1

LSH
1 =Alarm

=:= LSL
0=OK

Figure 3-C: Event 3 representing the High Level,
with LSH at I = Alarm, and the Pump PI at 0 = Stop.

Pump P1

LSH
0=OK

,,,,,_ LSL
0=OK

0 = Stop (i) ST

(!, ST= 1

Figure 3-D: Event 4 representing the Normal Level ,
with LSH at 0 = OK.

11

Let us now give the Boolean presentation of this process. The validation of the
evolution is given by the simulation mode. The program creates the whole table before

the model generation. The future occurrences, at event step k+ 1, are taken into account

for anticipation, and the past occurrences, at event steps k-1 , k-2, ... are taken into
account to suppress incoherencies.
The following table 3 gives the logical table of the successive event steps k-1 , k, k+ 1.

Table 3: Logical table of the events cycle of the water supply

In1>uts Out outs
Step k Levels ST LSL(k) LSH(k) LSL(k-1) LSH(k-1) PI P2

1 Low level 1 1 0 0 0 1 0
2 Normal level 1 0 0 1 0 1 1
3 High level 1 0 1 0 0 0 1
4 Normal level I 0 0 0 I 0 I

Important Remark: The event step index "k-1, k, k+ 1" represents the numbering of
steps of the events, and does not represent the time interval .M(k) between two
successive events, which is not necessarily a constant. The index k becomes k+ 1, at
each new event. For a cycling process, the next k is k = 1, when k = kmax is the
maximum number of steps of the process. So for 4 cycling steps, the values of k are
given by k = 1, 2, 3, 4, 1, 2, 3, 4, ... , so the next, k, is given by, 1 + (k modulo 4).

The model consists in a set of algebraic equations, as explained in section 2.

Here are the algebraic equations for the water supply for each output PI and P2:

Pl=ST.LSL.(l-LSH).(l-LSLk-1).(1-LSHk-1)

+ST.(1-LSL).(l-LSH).LSLk-1-0 - LSHk- l)

P2=ST.(l-LSL).(l-LSH).LSLk-J .(l-LSHk-l)

+ST.(l-LSL).LSH.(l-LSLk-1).(1-LSHk- l)

+ST.(l-LSL).(1-LSH).(1-LSLk-J).LSHk- l

12

(8a)

(8b)

GENSYSPRO shows three functions in one step: the application design (graphic),
with the simulator system, and with the supervision and control system. The result goes
to the PLC and executes the algebraic equations of this model.

Next section will give the design of the neural network corresponding to this model
of the water supply.

3.1. Design of the Neural Network of the Water Supply

From the algebraic model of the water supply, given by the two equations 3-ab, let us
build the neural network, with the method described in section 2.

The input neurons are given by the following variables:

ST, LSL, LSH, LSLk- 1, and LSHk- 1

The threshold functions of the 2 hidden neurons for P 1 are given by

Hl 1 = r(ST + LSL - LSH - LSLk-1 - LSHk-1 - I)

H12 = f(ST - LSL - LSH + LSLk-1 - LSHk-1 - I)

The threshold functions of the 3 hidden neurons for P2 are as follows

H21 = f(ST - LSL- LSH + LSLk-1 - LSHk-1 - I)

H22 = r(ST - LSL + LSH - LSLk-1 -LSHk-1 - 1)

H23 = f(ST - LSL - LSH - LSLk-1 + LSHk-1 - 1)

The threshold functions of the 2 output neurons are finally represented by

Pl = I'(HI 1 + H12)

P2 = r(H21 + H22 + H23)

The figure 4 gives the neural network corresponding to the water supply.

13

(9a)

(9b)

(10a)

(10b)

(10c)

(11 a)

(11 b)

P1

Input
neurons

neurons

Output
neurons

' P2

Figure 4. Neural Network corresponding to the algebraic model of the water supply
application.

14

4. Model of a Travelling Wagon

Here is another industrial example with a specific logical problem given by an
industrial wagon travelling between two positions: at the left, SPS is the Start Position
Sensor, as shown in figure 5. The sequential description is given in this figure 5 .

. L.. h Stop - Initial state

(S)sT=O ~i-i~s_P_S=--~:-~---~□....-L-SS-1-------~□....-LS-S-2------,---,'

Sequential cycle 1 to 6

(2}sT=l lJ. =---t.~ Start High Speed Foiward

SPS D LSSl ULSS2
I

D EPS

(2)sT=l I Low Speed Foiward i_-------i>lh I
... □-sp-s----~□-L-S-Sl-----~--,l-LS_S_2_=_1 _ ___ □,.....,..EPS

(2)sT=l I Stop Foiward and Tempo 1 I•
l-b~s_P_s----~□....-LS-s1-------~□....-Ls-s~2--__,.,.__----,..,

(2)sT=l b-----~-- --S-tart_H_i_gh_s_p_ee_d~B_a_c_kw_ar_d_d~;--__,ti 11
SPS D LSSl ULSS2 □ EPS

(2)sT=l ~----- -dl...,<}----=--~•~I_Lo_w_s_p_ee_d_B_a_c_kw~a~r_d _____ --r-,'I
□sPSLSSl=l ULSS2 □ EPS

17\. ~ h Stop Backward and Tempo 2 I
~ST=l .. F-c-=~■----....,,....,,----=--=-c----------.--=-=--=-=--------.-.'

SPS=l D LSSl ULSS2 □ EPS

Figure 5: Sequential cycle description of travelling wagon

The meaning of the abbreviations used with this example is given in the table 4.

Table 4. Abbreviations used for the travelling wagon

Translation: Speed:

1- Forward I- High

2- Backward 2-Low

Inputs: Outputs:
ST: Start/Stop button LSF: Low Speed Forward
SPS: Start Position Sensor HSF: High Speed Forward
EPS: End Position Sensor LSB: Low Speed Backward
LSS 1: Low Speed Sensor 1 HSB: High Speed Backward
LSS2: Low Speed Sensor 2 Tl : Start Tempo 1
Tl: end of Tempo 1 T2: Start Tempo 2
T2: end of Tempo 2

15

The successive steps are given in table 5.

Table 5: Successive steps of the travelling wagon

INPUTS OUTPUTS

k SPS LSSl LSS2 EPS TI T2 ST LSF HSF LSB HSB

1 SPS=l I 0 0 0 0 0 I 0 0 0 0

2 Tl=l I 0 0 0 1 0 I 0 I 0 0

3 SPS=0 0 0 0 0 0 0 I 0 I 0 0

4 LSSl=l 0 I 0 0 0 0 I 0 I 0 0

5 LSSl=0 0 0 0 0 0 0 I 0 I 0 0

6 LSS2=1 0 0 I 0 0 0 I I 0 0 0

7 LSS2=0 0 0 0 0 0 0 I I 0 0 0

8 EPS=l 0 0 0 I 0 0 I 0 0 0 0

9 T2=1 0 0 0 I 0 I I 0 0 0 I

10 EPS=0 0 0 0 0 0 0 I 0 0 0 I

11 LSS2=1 0 0 I 0 0 0 I 0 0 0 I

12 LSS2=0 0 0 0 0 0 0 I 0 0 0 I

13 LSSl=l 0 I 0 0 0 0 I 0 0 I 0

14 LSSl=0 0 0 0 0 0 0 I 0 0 I 0

There are incoherencies in this table 5, because some outputs are different for the same
inputs.
As for the water supply example, the step k-1 is taken into account to avoid the logical
incoherence.
But in this case, it appears that outputs are still different for the same inputs, in two
successive steps, k- l and k.
There are two possibilities to correct the problem, either to take the time t-2 into
account, or to add an input variable FW (Forward).
This last solution is chosen, because it only adds one more variable FW in the algebraic
model. FW is defined using the feedbacks of the outputs and the start button, as shown
in table 6.

Table 6. Behaviour ofFW.

INPUTS OUTPUT

ST LSF HSF LSB HSB FW

I I 0 0 0 I

I 0 I 0 0 I

16

The following table 7 is the table 5 built with the variable FW as INPUT, and also in
adding Tl and T2 as OUPUTS.

Table 7: Logical table of the travelling wagon

INPUTS OUTPUTS

k SPS LSSI LSS2 EPS Tl T2 ST FW LSF HSF LSB HSB T1 T2

I SPS=l 1 0 0 0 0 0 1 0 0 0 0 0 1 0

2 Tl=l 1 0 0 0 1 0 1 0 0 I 0 0 0 0

3 SPS=0 0 0 0 0 0 0 I 1 0 1 0 0 0 0

4 LSSl=l 0 I 0 0 0 0 1 1 0 I 0 0 0 0

5 LSSI=0 0 0 0 0 0 0 1 1 0 I 0 0 0 0

6 LSS2=1 0 0 I 0 0 0 1 1 1 0 0 0 0 0

7 LSS2=0 0 0 0 0 0 0 I 1 I 0 0 0 0 0

8 EPS=l 0 0 0 I 0 0 I I 0 0 0 0 0 I

9 T2=1 0 0 0 I 0 I 1 I 0 0 0 1 0 0

10 EPS=0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

11 LSS2=1 0 0 1 0 0 0 1 0 0 0 0 1 0 0

12 LSS2=0 0 0 0 0 0 0 1 0 0 0 0 I 0 0

13 LSSI=l 0 1 0 0 0 0 1 0 0 0 I 0 0 0

14 LSSl=0 0 0 0 0 0 0 I 0 0 0 1 0 0 0

On k = 9, Tempo 2 is set to the wanted time duration, where T2 = I at the elapsed
time.

On k = 2, Tempo I is set to the wanted time duration, where Tl = I if the duration is
finished.

The algebraic model is given by the following 6 digital equations 12-abcdef.

LSF=l for k=6 or k=7, LSF=0 for all the other values ofk:

LSF=(l - SPS).(1-LSS I).LSS2.(l-EPS).(l-Tl).(l-T2).ST.FW.(l-SPS[k- l]).
(1-LSS I [k- l]).(l-LSS2[k-l]).(l-EPS[k-l]).(l-Tl [k-l]) .(l-T2[k-1]).ST[k-l].
FW[k-1] +
(1-SPS).(1-LSS I) .(l-LSS2).(1-EPS).(l - Tl).(l-T2).ST.FW.(l-SPS[k- I]).
(1-LSS 1 [k-l]).LSS2[k-l].(l-EPS[k- l]).(1-Tl[k-l]).(l-T2[k-l]).ST[k-l] .FW[k- l]

(12a)

17

HSF=l for k=2 or k=3 or k=4 or k=5, HSF=O for all the other values ofk:

HSF=SPS.(1-LSS 1).(l-LSS2).(l-EPS).Tl .(l-T2).ST.(I-FW).SPS[k- l].
(1-LSS 1 [k-1]).(I-LSS2[k- I]).(l-EPS[k- 1]).(1-Tl [k-1]).(I-T2[k- I]).ST[k-1].
(I- FW[k-1]) +
(1-SPS).(l - LSS1).(l-LSS2).(l-EPS).(l-Tl).(1 - T2).ST.FW.SPS[k-l].
(1-LSS 1 [k- I].(l-LSS2[k- I]).(I-EPS(k-1]). Tl [k- I].(l-T2[k- l]).ST[k-1].
(l-FW[k-1]) +
(1-SPS).LSS I .(l-LSS2).(1-EPS).(l-Tl).(l-T2).ST.FW.(l-SPS[k- l]).
(1-LSS 1 [k-1]).(I-LSS2[k- I]).(I-EPS[k- 1]).(1-Tl [k-1]).(I-T2[k- I]).ST[k-1].
FW[k-1] +
(l-SPS).(1 - LSS 1).(l-LSS2).(l-EPS).(1-Tl).(I - T2).ST.FW.(l-SPS[k- l]).
LSS 1 [k-1].(I-LSS2[k- l]).(I-EPS[k-1]).(1-Tl [k-1]).(I-T2[k- I]).ST[k-1].FW[k-1]

LSB=l for k=l3 or k=l4, LSB=O for all the other values ofk:

LSB=(l-SPS).LSS l .(l-LSS2).(l-EPS).(l-Tl).(l-T2).ST.(l-FW).(l-SPS[k- l]).
(1-LSS 1 [k-1].(l-LSS2[k-l]).(l - EPS[k-1]).(1 - Tl [k-1]).(1-T2[k- l]).ST[k-1].
(l-FW[k-1]) +
(1-SPS).(1-LSS 1).(l-LSS2).(l -EPS).(1-T 1).(1-T2).ST.(l-FW).(1-SPS[k- l]).
LSS 1 [k-1].(l-LSS2[k- l]).(1-EPS[k- l]).(1-Tl [k-1]).(1-T2[k- I]).ST[k-1].

(12b)

(l-FW[k-1]) (12c)

HSB= I for k=9 or k= 10 or k= 11 or k= 12, HSB=O for all the other values of k:

HSB=(l-SPS).(1-LSS 1).(l-LSS2).EPS.(l-Tl). T2.ST .FW .(l-SPS[k-1]).
(1-LSS 1 [k- l]).(1-LSS2(k- l]).EPS[k-l].(l-Tl [k-1]).(1-T2[k- I]).ST[k- I].
FW[k-1] +
(I-SPS).(1-LSS 1).(l-LSS2).(l-EPS).(l-Tl).(l-T2).ST.(1-FW).(l-SPS[k- I]).
(1-LSS l[k-l]).(l - LSS2(k- l]) .EPS[k-l].(l-Tl [k-l]).T2[k-l].ST[k-1].FW[k-1] +
(l-SPS).(1 - LSS 1).LSS2.(1-EPS).(I-TI).(l-T2).ST.(l-FW).(1-SPS[k- l]).
(1-LSS 1 [k-1]).(l-LSS2(k-1]).(l-EPS[k-1]).(1-Tl [k-1]).(I - T2[k- l]).ST[k-1].
(l-FW[k-1]) + (l-SPS).(l-LSS1).(l-LSS2).(l-EPS).(l - Tl).(l-T2).ST.(l-FW).
(l-SPS[k- 1]).(l-LSSl [k-l]).LSS2[k-l].(l-EPS[k- l]).(l-Tl [k-l]).(l-T2[k-l]).
ST[k- 1].(I-FW[k-l]) (12d)

Tl = 1 for k= 1, Tl =O for all the other values of k:

Tl =SPS.(1-LSS 1).(l-LSS2).(l-EPS).(l-Tl).(I-T2).ST.(l-FW).(l-SPS[k-1]).
(1-LSSl [k- 1]).(l-LSS2(k-l]).(l-EPS[k-l]).(1-Tl [k-l]).(l-T2[k- l]).ST[k- l].
(l-FW[k-1]) (12e)

18

T2=1 for k=8, T2=0 for all the other values ofk:

T2=(l-SPS).(1-LSS I).(l-LSS2).EPS.(l-Tl).(l-T2).ST.FW.(l-SPS[k- l]).
(l-LSS l [k- 1]).(I-LSS2[k- l]).(l-EPS[k-1]).(1-Tl [k-1]).(l-T2[k- l]).ST[k-1].
FW[k-1) (12f)

These equations are Heaviside Fixed Functions and can be used to design a neural
network, as already shown in the section of the water supply.

5. CONCLUSION

This work permitted to outline some properties in industrial automation for
developing a new industrial operating system (IOS), which gives rise to a semantic
information about the process. The main point is that such a CAST, Computer Aided
Systems Theory for the Design of Intelligent Machines, presented in this paper, would
open new avenues where programmation and artificial languages would disappear in
profit of the Human Natural Language.

All the actual computing systems work on a permanent cyclic recursive basis,
without necessarily execute a function. Nevertheless, all the computing systems execute
functional orders given by man and execute an output value only if the equation is true
based on an event (evolution) of an input or on a parameter that has changed.

GENSYSPRO does execute nothing if there is no change of functional order
(controlled by an XOR), and ifthere is no event or change of parameters (XOR on the
inputs). What is the breakthrough with GENSYSPRO, is the fact that it is at rest when
no event happens, contrary to all the other industrial computing systems, which work all
the time, based on an internal clock. GENSYSPRO is thus an event-based software with
a general method for the analysis and the logical generation of discrete systems in
Programmable Logical Controller. The performances of the GENSYSPRO computing
system for industrial automation are due to the fact that there is only an execution if
there is a change detected by the XOR, either in the functional order (human decisions),
either event based order.

This approach deals with artificial intelligence, neural networks and, recently, with
multi-agent systems [Wooldridge, 2009].

A new type of operating systems can be designed, which automatically checks the
logic of the implemented discrete dynamical systems, for simulation and execution of
sequential operations. The mathematical model is really a description of the dynamics
of the process. Indeed, the model automatically permits the validation and the
simulation of the process design without programming. The Boolean operators are
implemented with a generic and unique algebraic model as event-dependent discrete
equations, which can be executed in a sequential order. So, a generator of sequential
logical tables can be designed, simulated and executed for implementing discrete
dynamical systems. Research is in progress to develop such an operating system based
on neural systems generated by algebraic models based on logical tables described in
natural language. This is a very important field in risk engineering management.

19

References

1. Dubois D. M., Resconi G. (1992), HYPERINCURSIVITY: a new mathematical
theory, Presses Universitaires de Liege.

2. Dubois D. M. , Resconi G. (l 993), Mathematical Foundation of a Non-linear
Threshold Logic: a new Paradigm for the Technology of Neural Machines,
ACADEMIE ROY ALE DE BELGIQUE, Bulletin de la Classe des Sciences, 6eme
serie, Tome IV, 1-6, pp. 91-122.

3. Dubois D. M. (1995), "Modelling of Fractal Neural Networls" . In Proceedings of the
14th International Congress on Cybernetics, Namur (Belgium), 2lst-25th August
1995, pub!. by International Association for Cybernetics, pp. 405-410

4. Dubois D. M. (I 998), "Boolean Soft Computing by Non-linear Neural Networks
with Hyperincursive Stack Memory". In Computational Intelligence: Soft
Computing and Fuzzy-Neuro Integration with Applications, Edited by 0 . Kaynak,
L. A. Zadeh, B. Turksen, I. J. Rudas, NATO ASI Series, Series F: Computer and
Systems Sciences, volume. 162, Springer-Verlag.

5. Dubois Daniel M. (1999) Hyperincursive McCulloch and Pitts Neurons for
Designing a Computing Flip-Flop Memory. Computing Anticipatory Systems:
CASYS'98 - Second International Conference. Edited by Daniel M. Dubois,
Published by The American Institute of Physics, AIP Conference Proceedings 465,
pp. 3-21.

6. Dubois D. M., A. Mascia (1995), Methode Generale pour !'Analyse et la
Programmation des Systemes Discrets, Proceedings of the 14th International
Congress on Cybernetics, edited by the International Association for Cybernetics,
pp.571-576.

7. Dubois D. M. and A. Mascia (1995), Computer Aided Generator of Models for
Designing Automation Devices, in Advances in Computer Cybernetics, volume III ,
edited by G. E. Lasker, published by The International Institute for Advanced
Studies in Systems Research and Cybernetics, University of Windsor, Canada, pp.
23-27.

8. Mascia A., Dubois D. M. (1995), Generateur de Modeles Algebriques Applique a la
Conception d'un Automatisme Industriel, Proceedings of the 14th International
Congress on Cybernetics, edited by the International Association for Cybernetics,
pp.577-582 ..

9. McCulloch W. S., Pitts W. (1943), A logical calculus of the ideas immanent in
nervous activity, Bulletin of mathematical Biophysics, vol 5, pp. 115-133.

10. Pichler F., H. Schwartze! (Eds.) (1992), CAST Methods in Modelling, Computer
Aided Systems Theory for the Design of Intelligent Machines, Springer-Verlag,
Berlin, Heidelberg.

11 . Wooldridge Michael (2009). An Introduction to MultiAgent Systems, John Wiley &
Sons, 2nd Edition

20

	Casus_v25_pp3-22_Dubois

