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This paper deals with a general method for the analysis and the logical generation of 
discrete systems in Programmable Logical Controller (PLC). The Boolean operators are 
implemented with a generic and unique algebraic model as event-dependent discrete 
equations, which can be executed in a sequential order. With this method, a generator of 
sequential logical tables can be designed, simulated and executed for implementing 
discrete dynamical systems. Two applications are studied. The first application deals 
with the industrial automation of a water supply for a factory. From the logical table of 
the events, an algebraic model is designed with a set of discrete equations. From these 
digital equations, a neural network of the water supply is built. The second application 
deals with an industrial traveling wagon. 
Keywords: control systems, computer systems, neural networks, logical controller, 
industrial automation 

1. Introduction 

This paper deals with industrial automation in relation with CAST (Pichler and 
Schwartze!, 1992), and is the continuation of our work on the prototype GENSYSPRO 
(Dubois and Mascia, 1995a), (Dubois and Mascia, 1995b ), and (Mascia and Dubois, 
1995). 

The purpose of this research is to design an algebraic neural operating system in 
PLC, Programmable Logical Controller, which automatically checks the logic of the 
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implemented discrete dynamical systems, for simulation and execution of sequential 
operations. What is the breakthrough with the prototype of the software GENSYSPRO, 
is the fact that it is at rest when no event happens, contrary to all the other industrial 
computing systems, which work all the time, based on an internal clock. GENSYSPRO 
is this an event-based software with a general method for the analysis and the logical 
generation of discrete systems in Programmable Logical Controller. The mathematical 
model is really a description of the dynamics of the process. Indeed, the model 
automatically permits the validation and the simulation of the process design without 
programming. The performances of the GENSYSPRO computing system for industrial 
automation are due to the fact that there is only an execution if there is a change 
detected by the XOR, either in the functional order (human decisions), either event 
based order. The methodology presented in this paper deals with an algebraic model of 
Boolean tables and the design of neural networks. The method to build the discrete 
equations of the Boolean tables depending on event steps permits to create 
automatically a neural system with McCulloch and Pitts formal neurons. Indeed, it is 
showed that non-linear digital equations can be easily built from Boolean Tables. These 
equations are Heaviside Fixed Functions that can be used to generate directly neural 
networks with McCulloch and Pitts formal neurons. 

Several problems exist in the industrial automation systems, with the Programmable 
Logical Controller (PLC). 
In the world, a completely safe I 00% program of automation systems does not exist, 
and one can only program all combinatory possibilities. 

For enhancing the procedure, the objectives consist to: 

1. Reduce the global cost of automation. 
2. Reduce the quantity of steps, time and tools. 
3. Create completely safe programs and systems. 
4. Create one unique graphic tool for the description, simulation, and execution and 

control the industrial process automation. 
5. Increase the capabilities of the systems: execution speed. 
6. Define a unique methodology (universality of program and training). 

The automation problem is developed in only one global concept based on a generic 
model and a universal method. 

The global concept permits the following functions: 

A - Structured organization of the project (Object Oriented). 
B - Graphical representation of the process. 
C - Sequential description of the process. 
D - Instantaneous simulation (by the operating system). 
E - From the universal method to a unique training. 
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The universal method deals with the fact that the automation engineer: 

1 - needs to describe only expected actions of the industrial automation system. 
2 - describes sequentially all physical events that happened in the temporal 
process evolution. 

Let us explain this, with a practical project described hereafter. 
The global concept needs to create a new way of building the graphical software, the 

operating system and the conceptual construction of the industrial automation systems. 
A graphical tool needs a complete object oriented database with an automatic 

variables generator. 
The design tool, simulator tool and execution tool are regrouped in only one software 

tool: "all in one". 
The global concept is based on the event management: 
A first comparison by the logical exclusive OR (XOR) is realised on events on 

inputs. 
A second comparison by XOR is realised on the functional action ( example, on/off, 

auto/hand, local/remote, etc.). The functional commands events in all the systems are 
given by an initial sequence step, and many functional choices are activated or not 
activated. With XOR between a current functional choice and its change, the system 
will be able to activate or not activate actions and optimise the time of exploitation. The 
system works with active functions on event. 

The operating system consists in the execution of the generic model that translates, in 
one CPU cycle, the Boolean matrix, representing the declarative sequences with inputs 
and outputs, to virtual algebraic equations for the output writing. 

The methodology presented in this paper deals with an algebraic model of Boolean 
tables and the design of neural networks. 

The method to build the discrete equations of the Boolean tables depending on event 
steps permits to create automatically a neural system with McCulloch and Pitts [ 1943] 
formal neurons. Indeed, one of us [Dubois, 1999] showed that non-linear digital 
equations are easily built from Boolean Tables. 

These equations are Heaviside Fixed Functions that can be used to generate directly 
neural networks with McCulloch and Pitts formal neurons. 

2. Theory of Algebraic Neural Networks of Dubois-Resconi 

The Threshold Logic was initiated by the pioneer work of McCulloch and Pitts in 
1943 [21 ], for modelling formal neurons at a logic level. 

An extension of this Threshold Logic with non-linear argument in the Heaviside 
function of the formal neuron was published by D. M. Dubois and G. Resconi , in the 
Academy of Sciences of Belgium in 1993 [13]. Any truth tables can be modelled by 
non-linear neurons represented by Fixed Heaviside Functions. 

The next section will recall the method to design neural networks with algebraic 
models. 
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2.1. Design of Algebraic Neural Systems of Boolean Tables 

The content of this section is reprinted from the paper of D . M. Dubois (1999) [5). 
Let us consider the general Boolean Table 1, with two inputs x1 , x2 and one output y. 

The values of the output y are given by the set y = (y1, Y2 ,y3, y4). 

Table 1. Table 2a. Table 2b. 
General Table XOR Table AND Table 

x, X2 y x, X2 y x, X2 y 

0 0 Y1 0 0 0 0 0 0 

0 1 Y2 1 0 1 0 1 0 

1 0 Y3 0 1 1 l 0 0 

1 1 Y4 l 1 0 1 1 1 

The following general algebraic equation 

y = (1 - X1) .(1 - X2).y 1 + (1 - X1).x2.y2 + X1 .(l - x2).y3 + X1.X2.y4 

Table 2c. 
OR Table 

x, X2 y 

0 0 0 

0 1 1 

1 0 1 

I 1 1 

(I) 

is a non-linear logic equation for the I 6 Boolean Tables. The number of terms is equal 
to the number of lines in the Boolean table (2n where n is the number of inputs). Each 
term is the product of the output value Yi, i= I, ... ,n, by all the inputs variables Xj or their 
complement (I - Xj) depending on its value 1 or O in the table at the line n. Here are 
examples for XOR, AND and OR, given in Figures 2abc: 

(la) 

(lb) 

(le) 

The method for generating algebraic equations is general for any Boolean Table with 
any number of inputs and outputs. 

McCulloch and Pitts formal neurons are defined as follows 

(2) 

where Wi are the synaptic weights, 0 the threshold and r is the Heaviside function 
defined by r(x) = 0 ifx :S: 0 and r(x) =1 ifx>O. 

McCulloch and Pitts formal neurons can be built from the algebraic equations 1 abc. 
Indeed, the terms given by products of the inputs or their complementary inputs can be 
represented by AND hidden neurons and the output by a OR neuron (the sum of all the 
AND hidden neuron). The AND neuron corresponding to eq. I b is given by 
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In a general way, an AND neuron of any equation given by a product y = z1 .z2 .... Zn, is 

y = f'(z1 + z2 + Z3 + ... + Zn - (n-1)) (3b) 

where all the weights are equal to 1 and the threshold is equal to the number of inputs n 
minus 1. So each product of inputs in the digital equations can be represented by such 
AND neurons. These AND neurons will be hidden neurons, the outputs of which being 
the inputs of the output neuron y. The output neuron will be an OR neuron. 
For generating the OR formal neuron from the algebraic eq. le, the following theorem is 
used [Dubois, 5]: For integer values of weights and threshold, the negation of the 
Heaviside function with the negation of its argument is equal to the Heaviside function 
of the argument 

f'(x) = 1 - f'(l - x) 

for any integer x 
From eq. le and eq. 3b, we can write 

] - y = (1 - X1).(l - X2) = f'(l - (X1 + X2)) 

(4) 

(5a) 

where the complement output 1-y is the AND of the complement inputs which is an 
AND formal neuron as shown previously. The eq. 5a can be written as 

y = 1 - f'(l - (x1 + X2)) 

and, from eq. 4, we obtain the formal OR neuron 

y = 1 - r(l - (x1 + X2)) = f(x1 + x2) 

(5b) 

(5c) 

because the weights and the threshold are integers. So the OR is given by a Heaviside 
function with a linear sum of its inputs with weights equal to 1 and a null threshold. 

In a general way, the OR neuron y form inputs Y1, Y2, ... , Ym, is 

(5d) 

Let us apply these relations to algebraic eq. 1 with two inputs and one output. This 
eq. 1 is a Heaviside Fixed Function and thus, we can define four AND hidden neurons 
Y1, Y2, y3, y4, corresponding to the 4 terms with products in eq. 1 and then one single 
output OR neuron: 

Yi= (1-x1).(l-x2).y1 = f(- x1 - x2 + Y1) (6a) 

Y2 = (1-x1).X2-Y2 = f'(- X1 + x2 + Y2 - 1) (6b) 

y3 = x1.(l-x2).y3 = f'( x1 - x2 + YJ - 1) (6c) 

y4= X1.X2.Y4 = f( X1 + X2 + Y4 - 2) (6d) 

(6e) 

We remark that when y; = 0, the argument of the Heaviside function is always null or 
negative, so the corresponding hidden neuron can be cancelled. The weights are -1 or 
+ 1 when the corresponding value of the input is 0 or l, and the threshold is equal to the 
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sum of all the input values minus the output value for each line of the Boolean table. 
The outputs of the hidden neurons are mutually exclusive, Yi . Yi = 0 for i * j. The 
weights of the output neuron are 1 and the threshold is 0, so the output neuron is the 
sum of the outputs of the hidden neurons. 

For example, XOR Boolean table 2a can be represented by two hidden neurons Y2 
and y3 for which y2 = y3 = l , so XOR neural network is given by two input neurons, x1 
and x2, two hidden neurons Y2 and y3, given by the two following Heaviside threshold 
functions 

Y2 = f'( - X I + X2 ) 

and one single output neuron y, given by the following Heaviside threshold function 

Y = f'( + Y2 + Y3) 

2.2. Design of the Neural Network of the XOR Boolean Table 

The figure 1 gives the XOR neural network, based on the eqs. 7abc. 

neuron 

Input 
neurons 

(7a) 

(7b) 

(7c) 

Figure I. The XOR neural network is given by eqs. 7a-b-c, with weights, + 1 and -1, 
and a null threshold. 

Let us apply this methodology to two industrial applications. 
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3. The Algebraic Model of a Water Supply 

This section describes the project for the industrial automation of the process of a 
water supply for a factory. 

The analysis and graphical description of the process of the water supply for a 
factory is given in Figure 2, which gives a start condition without water in the tank. 

Pump P1 

LSH 
O=OK 

= LSL 

1 =Run 

1 =Alarm.__ ____ ...... 

I ST 
ST= 1 

Event 

Pump P2 
0 = Stop 

Figure 2: This figure corresponds to a start condition, with no water in the tank, where 
the Event is the Start/Stop at ST = 1, and the Pump P l at 1 = Run. 

The abbreviations are given as follows in the analysis and graphics of the water supply.: 

ST: Start/Stop switch water supply, 0 is Stop and l is Start 
Pl: Pump 1 (input tank), 0 is Stop pump and 1 is Run pump 
P2: Pump 2 (output tank), 0 is Stop pump and I is Run pump 
LSL: Level Switch Low, 0 is OK (no alarm - white) and I is Alarm low level (black) 
LSH: Level Switch High, 0 is OK (no alarm - white) and I is Alarm high level (black) 

Let us describe the different steps of system evolution on the graphics: 

- The description is done with graphic tools 
- The program translates this description into Boolean data matrix 

The following 4 figures 3-ABCD, give the graphical design, with their variables and 
steps, where the "Event" is shown. 
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Pump P1 

LSH 
0=OK 

LSL 

1 =Run 

1 = Alarm i;_;_====;.;.i 

(i) ST 

~ ST= 1 

Figure 3-A: Event 1 representing the Low Level, 
with LSL at l = Alarm, and the Pump Pl at 1 = Run. 

Pump P1 

LSH 
0=OK 

= LSL 
0=OK 

1 =Run <i> ST 

<!> ST= 1 

Pump P2 

Figure 3-8: Event 2 representing the Normal Level , 
with LSL at 0 = OK, and the Pump P2 at I = Run. 



Pump P1 
0 = Stop i ST 

(!> ST= 1 

LSH 
1 =Alarm 

=:= LSL 
0=OK 

Figure 3-C: Event 3 representing the High Level, 
with LSH at I = Alarm, and the Pump PI at 0 = Stop. 

Pump P1 

LSH 
0=OK 

,,,,,_ LSL 
0=OK 

0 = Stop (i) ST 

(!, ST= 1 

Figure 3-D: Event 4 representing the Normal Level , 
with LSH at 0 = OK. 
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Let us now give the Boolean presentation of this process. The validation of the 
evolution is given by the simulation mode. The program creates the whole table before 

the model generation. The future occurrences, at event step k+ 1, are taken into account 

for anticipation, and the past occurrences, at event steps k-1 , k-2, ... are taken into 
account to suppress incoherencies. 
The following table 3 gives the logical table of the successive event steps k-1 , k, k+ 1. 

Table 3: Logical table of the events cycle of the water supply 

In1>uts Out outs 
Step k Levels ST LSL(k) LSH(k) LSL(k-1) LSH(k-1) PI P2 

1 Low level 1 1 0 0 0 1 0 
2 Normal level 1 0 0 1 0 1 1 
3 High level 1 0 1 0 0 0 1 
4 Normal level I 0 0 0 I 0 I 

Important Remark: The event step index "k-1, k, k+ 1" represents the numbering of 
steps of the events, and does not represent the time interval .M(k) between two 
successive events, which is not necessarily a constant. The index k becomes k+ 1, at 
each new event. For a cycling process, the next k is k = 1, when k = kmax is the 
maximum number of steps of the process. So for 4 cycling steps, the values of k are 
given by k = 1, 2, 3, 4, 1, 2, 3, 4, ... , so the next, k, is given by, 1 + (k modulo 4). 

The model consists in a set of algebraic equations, as explained in section 2. 

Here are the algebraic equations for the water supply for each output PI and P2: 

Pl=ST.LSL.(l-LSH).(l-LSLk-1 ).(1-LSHk-1) 

+ST.(1-LSL).(l-LSH).LSLk-1-0 - LSHk- l) 

P2=ST.(l-LSL).(l-LSH).LSLk-J .(l-LSHk-l) 

+ST.(l-LSL).LSH.(l-LSLk-1).(1-LSHk- l) 

+ST.(l-LSL).(1-LSH).( 1-LSLk-J).LSHk- l 
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GENSYSPRO shows three functions in one step: the application design (graphic), 
with the simulator system, and with the supervision and control system. The result goes 
to the PLC and executes the algebraic equations of this model. 

Next section will give the design of the neural network corresponding to this model 
of the water supply. 

3.1. Design of the Neural Network of the Water Supply 

From the algebraic model of the water supply, given by the two equations 3-ab, let us 
build the neural network, with the method described in section 2. 

The input neurons are given by the following variables: 

ST, LSL, LSH, LSLk- 1, and LSHk- 1 

The threshold functions of the 2 hidden neurons for P 1 are given by 

Hl 1 = r(ST + LSL - LSH - LSLk-1 - LSHk-1 - I) 

H12 = f(ST - LSL - LSH + LSLk-1 - LSHk-1 - I) 

The threshold functions of the 3 hidden neurons for P2 are as follows 

H21 = f(ST - LSL- LSH + LSLk-1 - LSHk-1 - I) 

H22 = r(ST - LSL + LSH - LSLk-1 -LSHk-1 - 1) 

H23 = f(ST - LSL - LSH - LSLk-1 + LSHk-1 - 1) 

The threshold functions of the 2 output neurons are finally represented by 

Pl = I'(HI 1 + H12) 

P2 = r(H21 + H22 + H23) 

The figure 4 gives the neural network corresponding to the water supply. 
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(10b) 
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P1 

Input 
neurons 

neurons 

Output 
neurons 

' P2 

Figure 4. Neural Network corresponding to the algebraic model of the water supply 
application. 
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4. Model of a Travelling Wagon 

Here is another industrial example with a specific logical problem given by an 
industrial wagon travelling between two positions: at the left, SPS is the Start Position 
Sensor, as shown in figure 5. The sequential description is given in this figure 5 . 

. L.. h Stop - Initial state 

(S)sT=O ~i-i~s_P_S=--~:-~---~□....-L-SS-1-------~□....-LS-S-2------,---,' 

Sequential cycle 1 to 6 

(2}sT=l lJ. =---t.~ Start High Speed Foiward 

SPS D LSSl ULSS2 
I 

D EPS 

(2)sT=l I Low Speed Foiward i_-------i>lh I 
... □-sp-s----~□-L-S-Sl-----~--,l-LS_S_2_=_1 _ ___ □,.....,..EPS 

(2)sT=l I Stop Foiward and Tempo 1 I• 
l-b~s_P_s----~□....-LS-s1-------~□....-Ls-s~2--__,.,.__----,.., 

(2)sT=l b-----~-- --S-tart_H_i_gh_s_p_ee_d~B_a_c_kw_ar_d_d~;--__ ....,ti ....... 11 
SPS D LSSl ULSS2 □ EPS 

(2)sT=l ~----- -dl...,<}----=--~•~I_Lo_w_s_p_ee_d_B_a_c_kw~a~r_d _____ --r-,'I 
□sPSLSSl=l ULSS2 □ EPS 

17\. ~ h Stop Backward and Tempo 2 I 
~ST=l .. F-c-=~■----....,,....,,----=--=-c----------.--=-=--=-=--------.-.' 

SPS=l D LSSl ULSS2 □ EPS 

Figure 5: Sequential cycle description of travelling wagon 

The meaning of the abbreviations used with this example is given in the table 4. 

Table 4. Abbreviations used for the travelling wagon 

Translation: Speed: 

1- Forward I- High 

2- Backward 2-Low 

Inputs: Outputs: 
ST: Start/Stop button LSF: Low Speed Forward 
SPS: Start Position Sensor HSF: High Speed Forward 
EPS: End Position Sensor LSB: Low Speed Backward 
LSS 1: Low Speed Sensor 1 HSB: High Speed Backward 
LSS2: Low Speed Sensor 2 Tl : Start Tempo 1 
Tl: end of Tempo 1 T2: Start Tempo 2 
T2: end of Tempo 2 
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The successive steps are given in table 5. 

Table 5: Successive steps of the travelling wagon 

INPUTS OUTPUTS 

k SPS LSSl LSS2 EPS TI T2 ST LSF HSF LSB HSB 

1 SPS=l I 0 0 0 0 0 I 0 0 0 0 

2 Tl=l I 0 0 0 1 0 I 0 I 0 0 

3 SPS=0 0 0 0 0 0 0 I 0 I 0 0 

4 LSSl=l 0 I 0 0 0 0 I 0 I 0 0 

5 LSSl=0 0 0 0 0 0 0 I 0 I 0 0 

6 LSS2=1 0 0 I 0 0 0 I I 0 0 0 

7 LSS2=0 0 0 0 0 0 0 I I 0 0 0 

8 EPS=l 0 0 0 I 0 0 I 0 0 0 0 

9 T2=1 0 0 0 I 0 I I 0 0 0 I 

10 EPS=0 0 0 0 0 0 0 I 0 0 0 I 

11 LSS2=1 0 0 I 0 0 0 I 0 0 0 I 

12 LSS2=0 0 0 0 0 0 0 I 0 0 0 I 

13 LSSl=l 0 I 0 0 0 0 I 0 0 I 0 

14 LSSl=0 0 0 0 0 0 0 I 0 0 I 0 

There are incoherencies in this table 5, because some outputs are different for the same 
inputs. 
As for the water supply example, the step k-1 is taken into account to avoid the logical 
incoherence. 
But in this case, it appears that outputs are still different for the same inputs, in two 
successive steps, k- l and k. 
There are two possibilities to correct the problem, either to take the time t-2 into 
account, or to add an input variable FW (Forward). 
This last solution is chosen, because it only adds one more variable FW in the algebraic 
model. FW is defined using the feedbacks of the outputs and the start button, as shown 
in table 6. 

Table 6. Behaviour ofFW. 

INPUTS OUTPUT 

ST LSF HSF LSB HSB FW 

I I 0 0 0 I 

I 0 I 0 0 I 
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The following table 7 is the table 5 built with the variable FW as INPUT, and also in 
adding Tl and T2 as OUPUTS. 

Table 7: Logical table of the travelling wagon 

INPUTS OUTPUTS 

k SPS LSSI LSS2 EPS Tl T2 ST FW LSF HSF LSB HSB T1 T2 

I SPS=l 1 0 0 0 0 0 1 0 0 0 0 0 1 0 

2 Tl=l 1 0 0 0 1 0 1 0 0 I 0 0 0 0 

3 SPS=0 0 0 0 0 0 0 I 1 0 1 0 0 0 0 

4 LSSl=l 0 I 0 0 0 0 1 1 0 I 0 0 0 0 

5 LSSI=0 0 0 0 0 0 0 1 1 0 I 0 0 0 0 

6 LSS2=1 0 0 I 0 0 0 1 1 1 0 0 0 0 0 

7 LSS2=0 0 0 0 0 0 0 I 1 I 0 0 0 0 0 

8 EPS=l 0 0 0 I 0 0 I I 0 0 0 0 0 I 

9 T2=1 0 0 0 I 0 I 1 I 0 0 0 1 0 0 

10 EPS=0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 

11 LSS2=1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 

12 LSS2=0 0 0 0 0 0 0 1 0 0 0 0 I 0 0 

13 LSSI=l 0 1 0 0 0 0 1 0 0 0 I 0 0 0 

14 LSSl=0 0 0 0 0 0 0 I 0 0 0 1 0 0 0 

On k = 9, Tempo 2 is set to the wanted time duration, where T2 = I at the elapsed 
time. 

On k = 2, Tempo I is set to the wanted time duration, where Tl = I if the duration is 
finished. 

The algebraic model is given by the following 6 digital equations 12-abcdef. 

LSF=l for k=6 or k=7, LSF=0 for all the other values ofk: 

LSF=(l - SPS).(1-LSS I ).LSS2.(l-EPS).( l-Tl ).(l-T2).ST.FW.(l-SPS[k- l ]). 
(1-LSS I [k- l]).(l-LSS2[k-l]).(l-EPS[k-l]).(l-Tl [k-l]) .(l-T2[k-1]).ST[k-l]. 
FW[k-1] + 
(1-SPS).( 1-LSS I) .( l-LSS2).( 1-EPS).(l - Tl ).(l-T2).ST.FW.(l-SPS[k- I]). 
(1-LSS 1 [k-l]).LSS2[k-l].(l-EPS[k- l]).(1-Tl[k-l]).(l-T2[k-l]).ST[k-l] .FW[k- l] 

(12a) 
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HSF=l for k=2 or k=3 or k=4 or k=5, HSF=O for all the other values ofk: 

HSF=SPS.( 1-LSS 1 ).(l-LSS2).(l-EPS).Tl .( l-T2).ST.(I-FW).SPS[k- l]. 
(1-LSS 1 [k-1 ]).(I-LSS2[k- I ]).(l-EPS[k- 1 ]).( 1-Tl [k-1 ]).(I-T2[k- I ]).ST[k-1]. 
(I- FW[k-1]) + 
(1-SPS).(l - LSS1).(l-LSS2).(l-EPS).(l-Tl).(1 - T2).ST.FW.SPS[k-l]. 
(1-LSS 1 [k- I ].(l-LSS2[k- I ]).(I-EPS(k-1 ]). Tl [k- I].( l-T2[k- l ]).ST[k-1 ]. 
(l-FW[k-1]) + 
(1-SPS).LSS I .(l-LSS2).(1-EPS).(l-Tl ).( l-T2).ST.FW.(l-SPS[k- l ]). 
(1-LSS 1 [k-1 ]).(I-LSS2[k- I ]).(I-EPS[k- 1 ]).( 1-Tl [k-1 ]).(I-T2[k- I ]).ST[k-1]. 
FW[k-1] + 
(l-SPS).(1 - LSS 1 ).(l-LSS2).(l-EPS).( 1-Tl ).(I - T2).ST.FW.(l-SPS[k- l ]). 
LSS 1 [k-1 ].(I-LSS2[k- l ]).(I-EPS[k-1 ]).(1-Tl [k-1 ]).(I-T2[k- I ]).ST[k-1 ].FW[k-1] 

LSB=l for k=l3 or k=l4, LSB=O for all the other values ofk: 

LSB=(l-SPS).LSS l .(l-LSS2).(l-EPS).(l-Tl ).(l-T2).ST.(l-FW).(l-SPS[k- l ]). 
(1-LSS 1 [k-1 ].(l-LSS2[k-l ]).(l - EPS[k-1 ]).(1 - Tl [k-1 ]).(1-T2[k- l ]).ST[k-1 ]. 
(l-FW[k-1]) + 
( 1-SPS).( 1-LSS 1 ).( l-LSS2).(l -EPS).( 1-T 1 ).( 1-T2).ST.(l-FW).( 1-SPS[k- l ]). 
LSS 1 [k-1 ].(l-LSS2[k- l ]).(1-EPS[k- l ]).(1-Tl [k-1 ]).(1-T2[k- I ]).ST[k-1]. 

(12b) 

(l-FW[k-1]) (12c) 

HSB= I for k=9 or k= 10 or k= 11 or k= 12, HSB=O for all the other values of k: 

HSB=(l-SPS).(1-LSS 1 ).(l-LSS2).EPS.(l-Tl ). T2.ST .FW .(l-SPS[k-1 ]). 
(1-LSS 1 [k- l]).(1-LSS2(k- l]).EPS[k-l].(l-Tl [k-1 ]).(1-T2[k- I ]).ST[k- I]. 
FW[k-1] + 
(I-SPS).(1-LSS 1 ).(l-LSS2).(l-EPS).(l-Tl ).( l-T2).ST.( 1-FW).(l-SPS[k- I]). 
(1-LSS l[k-l]).(l - LSS2(k- l]) .EPS[k-l].(l-Tl [k-l]).T2[k-l ].ST[k-1 ].FW[k-1] + 
(l-SPS).(1 - LSS 1 ).LSS2.( 1-EPS).( I-TI ).(l-T2).ST.(l-FW).( 1-SPS[k- l ]). 
(1-LSS 1 [k-1 ]).(l-LSS2(k-1 ]).(l-EPS[k-1 ]).(1-Tl [k-1 ]).(I - T2[k- l ]).ST[k-1]. 
(l-FW[k-1]) + (l-SPS).(l-LSS1).(l-LSS2).( l-EPS).(l - Tl).(l-T2).ST.(l-FW). 
(l-SPS[k- 1]).(l-LSSl [k-l]).LSS2[k-l].(l-EPS[k- l]).(l-Tl [k-l]).(l-T2[k-l]). 
ST[k- 1].(I-FW[k-l]) (12d) 

Tl = 1 for k= 1, Tl =O for all the other values of k: 

Tl =SPS.(1-LSS 1 ).(l-LSS2).(l-EPS).(l-Tl ).( I-T2).ST.( l-FW).(l-SPS[k-1 ]). 
(1-LSSl [k- 1 ]).(l-LSS2(k-l]).(l-EPS[k-l ]).(1-Tl [k-l]).(l-T2[k- l]).ST[k- l]. 
(l-FW[k-1]) (12e) 
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T2=1 for k=8, T2=0 for all the other values ofk: 

T2=(l-SPS).( 1-LSS I ).(l-LSS2).EPS.(l-Tl ).(l-T2).ST.FW.(l-SPS[k- l ]). 
(l-LSS l [k- 1 ]).(I-LSS2[k- l ]).(l-EPS[k-1 ]).(1-Tl [k-1 ]).(l-T2[k- l ]).ST[k-1]. 
FW[k-1) (12f) 

These equations are Heaviside Fixed Functions and can be used to design a neural 
network, as already shown in the section of the water supply. 

5. CONCLUSION 

This work permitted to outline some properties in industrial automation for 
developing a new industrial operating system (IOS), which gives rise to a semantic 
information about the process. The main point is that such a CAST, Computer Aided 
Systems Theory for the Design of Intelligent Machines, presented in this paper, would 
open new avenues where programmation and artificial languages would disappear in 
profit of the Human Natural Language. 

All the actual computing systems work on a permanent cyclic recursive basis, 
without necessarily execute a function. Nevertheless, all the computing systems execute 
functional orders given by man and execute an output value only if the equation is true 
based on an event ( evolution) of an input or on a parameter that has changed. 

GENSYSPRO does execute nothing if there is no change of functional order 
( controlled by an XOR), and ifthere is no event or change of parameters (XOR on the 
inputs). What is the breakthrough with GENSYSPRO, is the fact that it is at rest when 
no event happens, contrary to all the other industrial computing systems, which work all 
the time, based on an internal clock. GENSYSPRO is thus an event-based software with 
a general method for the analysis and the logical generation of discrete systems in 
Programmable Logical Controller. The performances of the GENSYSPRO computing 
system for industrial automation are due to the fact that there is only an execution if 
there is a change detected by the XOR, either in the functional order (human decisions), 
either event based order. 

This approach deals with artificial intelligence, neural networks and, recently, with 
multi-agent systems [Wooldridge, 2009]. 

A new type of operating systems can be designed, which automatically checks the 
logic of the implemented discrete dynamical systems, for simulation and execution of 
sequential operations. The mathematical model is really a description of the dynamics 
of the process. Indeed, the model automatically permits the validation and the 
simulation of the process design without programming. The Boolean operators are 
implemented with a generic and unique algebraic model as event-dependent discrete 
equations, which can be executed in a sequential order. So, a generator of sequential 
logical tables can be designed, simulated and executed for implementing discrete 
dynamical systems. Research is in progress to develop such an operating system based 
on neural systems generated by algebraic models based on logical tables described in 
natural language. This is a very important field in risk engineering management. 
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