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Abstract A characterization of a simple Markov process based on a random graph 
theoretic structure is introduced. We propose a polynomial time algorithm for the 
calculation of a limit state matrix. The algorithm is based on two procedures which 
will be derived in this contribution. They exploit a distinguished decomposition 
principle of the underlying graph theoretic structure and the special property of an 
acyclic directed graph. 
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1 Introduction 

Let a time-discrete system with finite set of states X be given. Assume that the 
dynamics of the system is described by a simple Markov process with a given matrix 
P = (Px,y ), where Px,y 2: 0, 'r:/x , y E X and L yEX Px,y = l , 'r:/x E X. The matrix 
contains the probability for the states' transitions. We consider t he problem of 
determining a matrix S = ( Sx,y), where an arbitrary element sx,y of this matrix 
represents the probability that the system will occupy the state y after a large 
number of transitions (when it starts in the state x) . 

This problem arises as an auxiliary one in many practical and theoretical decision 
problems [2, 3, 7] . 

2 Graphical Interpretation and Main Results 

In a first step , we introduce a graphical interpretation of the considered Markov 
process. We apply the random graph G = (X, E) of states [1, 2, 4), where e = 
(x, y) E E if the probability Px,y is strictly positive. It is easy to see that the 
following lemma holds. 
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Lemma 1 A simple Markov process is an ergodic process without transient states 
if and only if the random graph C = (X , E) is strongly connected. 

It is well-known [2 , 7] that for the ergodic process all rows of the matrix (of the 
limit state probabilities) Sare the same, i. e. 1fy = s x, y , Vx, y E X. The vector 
7f with the components 1r y for y E X can be determined by solving the following 
system of linear equations: 1r = 1r P, L 1fy = 1. 

y EX 

If the Markov process is not ergodic then the random graph C contains several 
strongly connected components C 1 = (X1, E 1 ) , C 2 = (X2

, E 2
) , ... , Ck = (X\ Ek) 

k 

where U X i = X. Additionally, among these components , there are such strongly 
i= l 

connected components Cir = (Xir, Eir ), r = 1, 2, ... , q which do not contain a 
leaving directed edge e = (x , y) where x E X ir and y E X \ X ir. We call such 
components Cir deadlock components in C. 

Lemma 2 If c ;,. = (Xir, E i, ) is a deadlock strongly connected component in C then 
q 

X ir is an ergodic class (recurrence chain) of the Markov process; if x E X \ U Xir 
r=l 

then x is a transient state of the system in the Markov process. 

3 Algorithmic Approach: 
An Algorithm for the Calculation of the Matrix 

Applying this characterization of the Markov process described above and using the 
results from [2 , 4] we can propose an algorithm for the calculation of the matrix 
of the limit probabilities S. The algorithm consists of two parts. The first part 

q 

determines the limit probabilities s x,y for x E U X ir and y E X. 
r= l 

q 

The second procedure calculates the limit probabilities sx,y for x E X \ U X ir 
r= l 

and y EX. 
Algorithm for the calculation of the matrix of limit probabilities 

Procedure 1: 

1. For each ergodic class X ir we solve the system of linear equations: 

where pir is the the matrix of probability transitions corresponding to the 
ergodic class X ir , i.e. p ir is a submatrix of P , and 1rir is a vector with the 
components 1r;; for y E X ir. 
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If 7r; are known then s x,y for x E X ir and y E X can be calculated as follows: 

Set Sx ,y = 7rt•·, Vx, y E Xir, r = l , 2, .. . q and Sx ,y = 0, Vx E Xir, Vy E 
X \ X ir, r = l , 2, . .. q. 

Procedure 2: 

1. We construct an auxiliary acyclic directed graph GA = (XA, EA) which is 
obtained from the graph G = (X, E) by using the following transformations: 

We contract each set of vertices Xir into one vertex zir where X ir is a set of ver­
tices of strongly connected deadlock components Cir = (Xir, Eir). If the ob­
tained graph contains parallel directed edges e1 = (x, z), e2 = (x, z), ... , e1 = 
(x, z) with the corresponding probabilities p;,,2 , p;,, 2 , .. . , P~,z then we change 

l 

them by one directed edge e = (x, z ) with the probability p~ z = L p~ 2 ; after 
' i=l ' 

this transformation to each vertex z; we put in correspondence an directed 
edge of the form e = (z,., z,.) with the probability p:,•,zr = 1. 

2. We fix the directed graph GA = (XA , EA) obtained by the construction 
q 

principle from step 1 where XA = (X \ ( LJ X ir)) U zq, zq = {z1 , z2 , ... , zq }. 
r = l 

In addition we fix the new probability matrix P' = (P~,y) which correspond to 
this random graph CA. 

3. For each x E X A and every zi E zq we find the probability 7r~(zi) of the 
system transaction from the state x to the state zi. The probabilities 7r~(zi) 
can be found by solving the following systems of linear equations: 

P'7r'(z1
) = 7r'(z1

) , 7r:1 (z1
) = 1, 7r:2(z2

) = 0, ... , 71":p(zq) = 0; 

P'7r'(z2
) = 7r'(z2

), 7r:1 (z1
) = 0, 7r:2 (z2

) = 1, ... , 71":p( zq) = 0; 

where K'(zi) is the vector with components 7r~(zi) for x E XA. So, each vector 
7r~(zi) gives probabilities of system transactions from states x E XA to the 
ergodic class Xi. 
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q 

4. We put Sx,y = 0 for every x, y EX \ ( LJ X ir) and Sx,y = 1r:(zr )1r~ for every 
r = l 

q 

x EX\ ( LJ X ir) and every y E X ir, X ir C X , r = 1, 2, .. . , q. 
r = l 

The algorithm described above represents a modification of the algorithm pro­
posed in [6]: 

The algorithm from [6] works on initial graphs and do not use the contraction 
operation. 

q 

In the case when the subgraph G' = (X \ ( U X ir ), E') of G generated by the 
r = l 

q 

set of vertices X \ U X ir has a structure of an acyclic graph then the Procedure 2 
r = l 

in the algorithm can be exchanged by the following procedure: 

Procedure 2': 

1. We make step 1 of Procedure 2 of the algorithm and determine the auxiliary 
directed graph GA= (X A , EA). Then for every directed edge e = (zr, zr ) in 
GA we set P~r zr = 0. 

2. We fix the directed graph GA = (XA , EA) obtained according to the con­
q 

struction from step 1, where XA = (X \ ( U X ip) ) U z r, z ={ z1, z2, ... , zP} . 
p= l 

Then we change the probabilities P~,Y of edges e = (x, zP) E EA as follows: 

For every vertex x E XA \ zr we find directed edges e1 = (x, z1 ) , e2 = 
(x , z2

), . .. , er = (x , zq) with associated probabilities Px,zl, Px,z2, . .. , Px,z• and 
q) 

determine the value Q(x) = I: Pxzi; then change p' ; by p" ;, where 
p= l , x ,y x, z 

i = 1, 2, ... , q. 

After that we obtain a new matrix of probability transitions P" = (P~,y) for 
GA. 
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3. For each x E XA we calculate Px(zi, t) by using the following formula 

Px(z·i, t + 1) = L Py(z;, t)p:,y, t = 0, l , 2, . .. , jXAj , 
yEXA 

where Pzi ( zi, 0) = 1, V z; E zq ; then we calculate 

IXAI q 

Px(i) = L Px(zi, t) , Vx EX\ (LJ x ip ), Vzi E V. 
p= l 

Here the values Px ( z;, t) express the probability that the system will occupy 
the state zi after t transactions when it start transactions in x; the values 

q 

Px(zi ) represents the limiting probability from the state x X \ ( U X iv) to the 
p=l 

state zi E zq. 

q ' ' 
4. We put Sx,y = 0 for every x, y E X \ ( U X 'v ) and S x ,y = P x ( z r)1r~r for every 

p= l 
q ' ' 

x EX \ ( LJ X 'v ) and y E X' r, r = l , 2, .. . q. 
p=l 

The following theorem holds. 

Theorem 1 The algorithm calculates correctly the matrix of lim'it probabilities S. 
The running time of the algorithm is O(IXl3 ) . 

The proof of the theorem follows from [6]. 

4 Conclusion 

This contribution deals with a special characterization of a simple Markov process 
based on a random graph theoretic structure. The authors derived a special poly­
nomial t ime algorithm for the calculation of a limit state matrix. The algorithm is 
based on two procedures which are elaborated in this contribution. They exploit 
a distinguished decomposition principle of the underlying graph theoretic structure 
and the special property of an acyclic directed graph. 

This is a new results which extends approaches from [5] and [6]. In [6] the 
algoritm works on initial graphs and do not use this special contraction operation. 
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