Quasi-Parallel Approach to Optimization

Eugene Kindler*
Jifi Weinberger**

*Department of Informatics and Computers, Ostrava University
30. dubna 22, CZ-701 03 Ostrava, Czech Republic
ekindler@centrum.cz
** TIMING Praha, Na Pofi¢i 12, CZ-110 00 Praha 1, Czech Republic
timing@timing.cz, www.timing.cz

Abstract

The paper is oriented to a non-standard method of optimizing various systems by means
of object-oriented simulation. The substance of the method consists in modeling parallel
development of several model variants so that they tend - within an evolutional
environment - to the optimum. Each of the variants has its own simulated time and
during that time it develops, communicates with the other variants and — being
stimulated by them — it modifies its own parameters. The variants that develop in a
parallel manner but in different time flows can be realistically interpreted in a “quasi-
paralle]” manner within a mono processor system; that enables to reproduce the
computing; certain obstacles related to the quasi-parallelism can be surmounted. The
programming technology, system metaphor and application are described. In the project
management field the method renders it possible to estimate the real value of a project
as an alternative of compound real option approach.

Keywords: anticipatory systems, optimization, simulation, project risk management,
real options, quasi-parallel handling, co-routines.

1 Introduction — Frequent Cases of Professional Anticipation

An anticipation system in a weak sense has a formal model of its own and uses it to
get data of its possible future states; according to these data the system can modify its
reactions to its instantaneous state and input so that its development aims at certain
objectives [1]. Nowadays, simulation models implemented on digital computers often
represent such formal models; the contemporary advantage of computers is their speed
and the capacity of their memory, which allow to apply models (a) consisting of many
thousands of elements forming very complex structures, and (b) reflecting millions of
more or less interacting events per second.

Let us focus to professional domains. The objectives of anticipatory systems form a
large spectrum, beginning from security against deadlocks (in rare cases) over sums of
time intervals (e.g. dead times in production or transport systems) to more or less
continuous operation satisfying certain demands (in frequent cases of technology,
ecology, services, financial worlds and other domains). The evaluation of such a more
or less continuous operation can be simply measured by means of time integration of
some values that change during the system’s simulated existence. Often the integrated
values are non-negative, like queue length, energy consumption, material or financial

International Journal of Computing Anticipatory Systems, Volume 21, 2008
Edited by D. M. Dubois, CHAOS, Liége, Belgium, ISSN 1373-5411 ISBN 2-930396-08-3

input, energy and/or material production, etc. By dividing by the length of the time,
during which the integration was performed, the integrals serve for computing mean
values. The objective of system optimization is to find the values of parameters of the
studied system so that for these values certain given mean values are optimal; for some
mean values the optimum is defined as minimum, for other mean values the optimum is
defined as maximum.

Let us consider two non-negative functions f{z) and g(), . Let us consider their time
integrals F(z2) and G(72) computed over time interval /=(7l, z2). Let us suppose F(72)
is greater than G(z2). From that relation, one cannot derive any consequence for a simi-
lar relation for the integrals F(z3) and G(73) computed over time interval KX=(7l, z3),
where 73 is rather greater that z2. In what follows, let the term “GL-ordering” represent
the binary relations for comparing real numbers, like “greater than”, “less than”, “grea-
ter or equal to” or “less or equal to”. And let us define that the expression “GL-relation
switches (at time 7)” means, that while it is observed between the same pair of integrals
it was “greater (or equal)” before T and “less (or equal) after 7" or vice versa. The just
mentioned abstract consideration can be interpreted into the universe of anticipatory
systems as follows. Let two systems @ and /I~ be observed during the time interval I of
their existence and let in each of them be a variable depending upon time so that in @it
behaves like f and in I” it behaves like g. Then, from the pure mathematical point of
view, no consequence for a GL-relation between their integrals F(73) and G(z3) can be
derived from a similar relation observed for their integrals F(72) and G(72). Neverthe-
less, if for example F(72) is observed as much greater than G(72) then one could antici-
pate that later, i.e. at time 73, the integral F(z3) could also be greater than the integral

i F
.G

1
: i

o

i <
H 1
; i
! i
LA
o:i H
i i
) i
; !

Cd il s o NI s -‘_._..' ______ E----X._..>
1 time 72 73 1 time 72 3

Figure 1: Dynamic relations between time integrals and its anticipation for time z3

G(73). A simple example is in Fig. 1, where two integrals F and G developing during
time are illustrated. Of course, some assumption on stationary or even ergodic must be
adopted, however, we are not going into any details in this kind of statistical reasoning.
Let us note that it is the first stimulus for discovering the main idea applied in the
method described in the present paper. Naturally, this idea is still very poor, non-intelli-
gent, it contradicts elementary mathematical reasoning, but, as it will be explained, it is
opened for large improving. Now, let us use this idea for formulating the first metaphor.

288

2 First Metaphor of Software for Optimizing

| When a person (or a team) @#* applies a conventional simulation for getting
} information on a system intended for realization, such a person or a team is an
| anticipatory system. @+ uses the simulation model to generate data on the possible
| operation (existence, behavior) of the designed system and — informed by that data that
| he (or the team) can change the design.
| Let us apply the principles derived in the previous section and, according to them, let
| us introduce another anticipatorysystem S, having the following properties:
(a) it contains three persons (or teams) @*, [*and ¥ and two systems @ and 7,
(b) both @ and /" have an entity x that — in general — in @ develops in a different
way than in I,
(c) the integrals of x over interval (7l,72) be denoted F(72) in @ and G(72) in [,
(suppose 7/ be given as a constant)
(d) people @*and I* are interested in GL-relation between F(72) and G(72),
(e) ¥is a certain observer or judge in S; at time 72 he (or the team) observes the
GL-relation between F(72) and G(72) and anticipates that the same GL-relation
should hold at a later time 73.
¥ takes place in case S is a certain primitive, poor

and non-intelligent anticipatory system. Let x be a for- e 1— 3 —‘.\
| mal model of such a system §. Then it should follow a : 13-‘: i -
| statement “GL-relation between F(z2) and G(72) does If_?\':‘- il =2
| T. 5 &

not switch when 72 is enlarged” and can be classified
as simple, trivial and often false. But let us change S so
that % observes simulation models ¢ and y of the sys-
tems @ and /" The new version of S is a primitive anti- @ H b
cipatory system, too, but it offers a certain special as-
pect that could be characterized as anticipatory system

of second order: each of the simulation models ¢ and y
N2

causes S to be an anticipatory system that may anticip-
ate the behavior of @ or 7, but using y for guessing on
the GL-relation between F(z3) and G(73) (now based
on GL-relation between F(72) and G(72) observed at
the models ¢ and) is a formal model (though primi- Figure 2: Scheme of
tive) that anticipates on models ¢ and y — see Fig. 2. anticipatory system of

3 The Role of Steady States

As we mentioned, 4 is very primitive model and often offers more seduction than
anticipation. A question arises whether the quality of x could be improved.

The simulation people speak about steady-state of the studied systems, say that its
testing is usually quite an easy task, since a “non steady state used to be very different,

289

however, for rigorously studying the problem we refer e. g. to [2]. There were
mathematical experiments to define what term steady-state means, but their applications
demonstrate that each of the definition follows idealized and simplified cases and that it
is not possible to convert the definition into a robust algorithm that would decide on a
commercially viewed system (i.e. without essential simplification) when or whether it
has or has not entered its steady state. Expressed in the language oriented to applications
(i.e. in a language that is not exact), steady state is the phase when the studied system
behaves “in an ordinary manner”. A frequent and general situation, in which a real
system exists out of its steady state, is that after its start from scratch; for example,
when a hospital, a factory, a transport system or that of supply chain was just built and
starts operating, it is not in steady state, as its resources and transport lines are idle and
queues are empty, so that no capacity overflowing and dead times spent by waiting in
queues menace; observing a system inhering in such an initial phase can tell no serious
information on its longer existence in future, on its operating in “a normal situation”,
professionally said in “the steady state”. The phase before a system enters its steady
state is called start phase. If one has to determine optimal parameters of such a system
(e.g. number of resources, capacity of stores, geometrical configuration etc.) he must
count with steady state and not with some exceptional situations like that of start phase.

The starting phase and steady state is mapped in the corresponding simulation model.
It is constructed, debugged and run but — in general — its run does not start from its
steady state but before it occurs in its start phase. Therefore the view applied for
observing real systems is interpreted also to the simulation models, namely in the most
frequent case of its application, when they are applied for generating information how
different variants of the designed system would operate; the objective of determining
the optimum variant is related to the system operating in steady state and so the
computing way to the optimum configuration should evaluate only the simulation
models performing within their steady state.

Note that the steady state is not a state that lasts without any change. In commercial
applications, one could assume the following law: if @ and I” are two systems with
numerical entity x, the necessary condition for judging that both of them are in steady
state at time 7/ is that for any 72 greater than ¢/ the GL-relation between the integrals
F(72) and G(72) (defined as in the preceding section) are the same (in other words:
when 72 grows up from 7/ the GL-relation between the integrals F(72) and G(z2) does
not switch). It would be also possible to state that starting from 7/, the GL-relation can
be anticipated in the same manner as in the first metaphor.

The same argumentation can be transferred from the observed systems @ and /" to
their simulation models ¢ and y .And that can be the first starting point for the
improving the idea-seduction and for its further application for optimizing.

4 First Improving the Method

Let V be a set of data structures. The data structures that are elements of V' may
represent parameters of a parametric system S: assigning the components of an element

290

y € V as parameters of S turns this parametric system to a (non-parametric) system,
which will be denoted S(3)) and called variant of S. Let W be a set of numerical entities
defined for S. If w ¢ W and y € V then w(y,?) represents the value of w in variant S(y) at
time ¢ and INT(w,y,t1,12) represents integral of w(y,?) from ¢=tl to t=¢2. Letx e V, y e V,
w e W and R be a GL-relation; then we use the sentence “x dominates y for entity w over
time interval (71,2)” for R(INT(wx,t1,12),INT(w,y,tl,t2)), and denote it as
DOM(R,x,y,w,t1,t2). Intuitively, it represents a sentence that variant S(x) carries better
behavior of the integral of w over (¢/,£2) than variant S(y), where GL-relation R
expresses what means “better behavior”. C(x,y,71,#2) be a Boolean function composed
of dominatings DOM(R,x,y,w,t1,t2), where x ¢ V, y ¢ V, w ¢ W and R is a GL-relation.
Such a C is called criterion. y € V is called optimum of S relating to V, W and (t1,12)
according to criterion C, if C(y,x,t1,12) is true for any x ¢ V. In such a case, S(y) is called
optimum variant of S. Note that y does not need being unique but discussing about it is
not the subject of the present paper (such a situation roots in commercial base of the
optimizing and can be an image either of a bad formulation of the criterion C or of a real
situation that allows a free choice of several variants viewed as equivalent). It is
reasonable not to apply ¢/ belonging to the start phase of any variant of S.

If the moment #y, in which each of the variants of V is in steady state, were known
then it would be possible to continue simulation for each of the variants up to a certain
time #y, during it to integrate the values of ¥, to use the given criterion C for a stepwise
process of partial ordering of V' — beginning with some elements of V. As V is often
enormously great, it would be suitable to start with some subset U of V, to perform
some steps to derive other variants of ¥ from those already tested and ranged into the
partially ordered subset, and to make it so that the derived variants would be hopeful for
being better than the optimum one(s) heretofore existing in V. Such steps could be
considered as models of a certain sort of adaptation, or — better — each variant v; of V'
could be considered as governed by a certain virtual expert & so that the community of
N experts would “live, think and communicate”: during the communication, any expert
could be inspired by his colleagues so that he would modify his variant and possibly
start to think on another one, on which he could hope to be better than the best variants
owned by his colleagues.

5 Another Metaphor

The community of the experts represents another metaphor. In general, the less
successful experts may be inspired by their more successful colleagues so, that a less
successful expert refuses his variant — either as the whole or only in some of its
parameters — and creates a new variant in that he imitates one or several of its
colleagues. For example, such an expert would recognize the parameters {oi, o, ...,
or}of a variant v; owned by his more successful colleague and take one or more of them
as the corresponding parameters of his own new variant, i.e. of a variant on that he
would hope to be still better than v; (of course such a hope could be dud). Or an expert
could take such parameters of several colleagues over, or he could even use them as
inputs for computing new values like average one etc. Another step could consist in

291

random deviating of the parameters taken over, or extrapolating a trace that already
improved a variant.

Nevertheless, there is an essential obstacle for direct application of this metaphor: 7
is not known and it is difficult to suppose that is will be computed even for certain
special domains of the studied systems. Note that #; must hold as a time for steady state
for all the variants, i.e. — beside the starting ones — for those derived during the
improving of the elaborated ones.

6 Further Improving the Method

Determining # is a difficult problem even for one variant, especially for the systems
generated from scratch. This fact causes that about # certain prognoses, hypotheses and
approximations are formulated. The same concerns simulation models of such systems.
Among the prognoses on Z, there are the following extreme ones: one of them can be
called optimistic one (telling the steady state will come at a rather small time #o) and
the other can be called pessimistic one (telling the steady state will come at a rather
distant time #pes).

Let us define both the terms exactly. The statement that a prognosis is optimistic
means that every other prognosis on the time t; supposes it being greater than 7o,. And,
inversely, the pessimistic prognosis is that with the greatest approximation of #y. In fact,
t occurs somewhere between #,p and Zpes.

One may expect that the pessimistic prognosis is the most secure: when one bases the
comparing of the variants and deriving new variants on the integrals over time interval
(#pes, T+ tpes) he may be sure that he comes to the best solution. But the computing time
for running the simulation models up to (simulated) time T+ f, is long, sometimes
enormous, especially when we know that in such a case many variants must be simu-
lated (note that in applications the pessimistic prognosis may be even of some order
greater than the reality of fy; and note that T is in the most cases known, in certain
commercial cases even prescribed by law).

In the opposite way, the optimistic hypothesis saves computing time but can lead to
erroneous information on the optimum: since 7y may be greater than t.p, the integrating
over time interval (Zopt, T+ fopt) can proceed before attempting the steady state and so the
integrated values may be distant from the typical ones and the optimum values
computed under that regime may differ from those expected as optimum in the ordinary
operation of the designed system.

7 Completing Metaphor

Nevertheless, the metaphor mentioned in section 5 can be adapted so that it offers the
best of both the extremes, namely that it can serve as a model of computing, which is
secure like computing based on f,.s and which exploits computer time like computing
based on 7.

The metaphor can be described as a session of the experts &, &,..., &, mentioned in
section 5. Nevertheless, they do not worry about £, but they only agree on the values of

292

Topt and fyes. Every expert & of the session has a variant y; that he understands as a
hypothesis on the optimum behavior of the studied system S. Each of the experts has its
own computer and starts to simulate S respecting his own variant. All experts simulate
until reaching o, and then start to collect the integrated values, which demands to
continue the simulation until reaching #,+7 where T>0 is a certain value declared for
the wholes session as the duration of integration (to determine T is generally not a
problem). Let #,,+7 be identified as #;.Then the experts start to communicate, so that
each of them makes his colleagues acquainted with his variant y; and with the results of
the simulation experiments obtained by it. So one expert & gets to know that according
to the simulation experiment his variant yx is the worst of all ones figuring in the
session, and he decides to learn from his more successful colleagues to formulate a
variant that — may be — should be a more successful. He learns similarly as mentioned in
section 5. The newly formulated variant replaces yx.

Then the session continues so that each of the experts simulated his variant until z,=
11+T. Expert g should start from 7=0, while the other ones can simply continue. Then
the communication among the experts takes place similarly as after reaching ¢, and with
a similar conclusion: an expert discovers his variant the worst and — being enlightened
by his colleagues — he formulates a new variant, with which he starts from scratch in the
next step (performing simulation from time zero up to 3= £,+7) while his colleagues
need only to continue the simulation from #, to ;.

So the alternating simulation-communication goes on until to #, which is equal or
greater to fpest7. Although the value of #y is not known it had to be “met” at a step in
simulating from #,to #,+; and beginning from that step the changes of the variants could
approach to the optimum one.

8 Implementation of the Metaphor

The last metaphor can be slightly improved in details. The result is as follows.

If an approximation of 7,y and 7, are at disposal one determinates a time interval
(topts) Where 7> s and divides it into Q subintervals of the same length, which he then
declares as T (see Fig. 3). Then the computer model M of the session of experts based
on the time-table and manipulating with the given parametric system S is activated.
When the model is at its end it should give a good approximation to the optimum
variant of S.

Figure 3: Using the interval between both extreme hypotheses
293

For the implementation, let us emphasize the statement that appeared already in
relation with the first metaphor: a person or a team using model M is a certain
anticipatory system of second order, because M is a model of a system containing
elements (the experts) who are themselves anticipatory systems, because they use their
own models, namely simulation models of the variants they think of. Among other, a
consequence of that is a parallel existence of different flows of simulated time (an
example is the state of M when the successful experts should continue their simulation
models relating to a certain simulated time greater than 7., While the expert forced to
refuse his variant has to start simulation of a new variant from time equal zero). That
nesting of anticipatory systems is projected in the implementation — one has to
manipulate M that manipulates other models nested in it, in general each with its proper
simulated time. The habitual simulation programming tools like simulation languages
and packages cannot be used, because they allow handling only one Newtonian time
flow during a simulation experiment.

Model M was successfully implemented at computers programmed in a
monoprocessor way. It was enabled by using programming language SIMULA (3], [4]
that has suitable standard tools for simulation, is object-oriented, process-oriented and
block-oriented (and thus permits nesting of models and existence of more simulation
models with different time flows in one “supermodel” [5]-[8]) and has quasi-parallel
sequencing of program components so that the program product and its parts can be
viewed as composed of more objects operating in parallel, though they exist at the same
monoprocessor system (such quasi-parallel system of components that switch their
operation at a monoprocessor system to model a multiprocessor operation is to be
preferred also because its run is deterministic and reproducible). SIMULA allowed
developing software systems based on the principles mentioned in the present paper and
oriented to optimizing [9] and multioptimizing [10] simulation models. The user is
expected to complete a description of a model S, an algorithm for computing a Boolean
function that tests whether a structure of parameters belong to the set ¥ of permitted
structures, and a procedure for evaluation the GL-relations (all three procedures are
added as declarations of the procedures with the same names introduced in the software
systems as virtual).

9 Applications

The first experiments and experiences were obtained by use of main-frame IBM
computers, with which many systems were optimized, covering a large spectrum of
scientific and technical domains from steel and machine production [9], [10], over ser-
vices until neurophysiology of brain [11]. During that development a lot of experiences
were obtained, which enabled improving the mentioned software system. Nowadays the
software works at PC under Windows and is widely used as a part of a greater software
product PMF (Project Management Forcast) [12]. Together with other modules (for risk
analyzis etc [13]), the optimization is nested in an interactive dialog which enables
describing the project structure in special formal language. The whole software system
can be bought at the address of TIMING Praha (see under the title of the paper).

294

10 Summary

Optimizing a system is a frequent and typical activity that characterizes a person or a
(part of a) society as an anticipatory system, namely that in the weak sense. For the last
fifty years, computers offer to help the optimizing; the growing operation rate of the
computers offer to use simulation for that purpose. That technique can be characterized
so that the formal models figuring in the anticipatory systems in weak sense according
to their definition become simulation ones.

There are two obstacles related to the optimizing of simulation models. One is the
determining of the moment when the models is in a “steady state”, i.e. when its initial
run enters the state representing a situation that could exist in the simulated system
when is would exist. The other problem is that the optimizing needs much computing
time when the optimized function has to be computed as a result of a simulation
experiment.

The paper offers ideas that are able to surmount both the obstacles. The ideas root in
the fact that the optimized function is almost always a time integral of a positive (vector
or scalar) function generated during the run of a simulation experiment, i.e. a function
that monotonely grows during that run; that enables that prior to the end of simulation
experiments the integrals related to different variants can be compared and their
configuration can be used to a way to probable optimum. On the time when a given
system reaches its steady state, one can formulate many hypotheses based on intuition,
| on analogies taken from the former case studies, and on mathematical argumentation
based on simplified aspects of the concerned system. Among them, there is the
“pessimistic” hypothesis (considering the maximum value of the time when steady state
could be reached) and the optimistic one (considering the minimum value of such a
time). The difference D between both the hypotheses is often enormous. One can be
sure that the accumulating the considered data performed after reaching the steady state
according to the pessimistic hypothesis gives a true value of the integral. Taking into
account that that hypothesis is really pessimistic, one could hope the integration should
have start sometimes before. Thus the integration start already at time of reaching
optimistic hypothesis and during the phase until reaching the pessimistic one the data
that are to be optimized could already more or less approach to their optimum
configuration.

When a usual computing technique is at disposal, the described method needs to
allow running more than one simulation experiment at the same computer task and the
simulated time flows of such experiments have to be mutually independent. Beyond a
very small number of exceptions, the existing programming languages and other tools
do not allow it in a bearable form. The programming languages that are truly object-
oriented, agent-oriented and block-oriented allow that. Good experiences were made
with SIMULA [3], [4] which is a language with PC implementation under Windows
and under LINUX is fee and efficient and enabled a wide spectrum of applications (see
chapter 9). Nevertheless, to understand class and agent nesting is difficult and therefore
some metaphors were elaborated to facilitate the understanding (see chapters 2 and 5).

295

11 Conclusion

The view of the model of communicating experts is near to the view of real
discussions of real experts tending to an optimal design of a system. The basic idea of
such a session came to existence in the 80-ies of the XX century, i.e. before the genetic
algorithms were commonly known. Naturally, the development of the variants handled
by the communicating experts has a lot of properties that could be observed in the
developing generations of cells, but the metaphor of communicating experts appeared
sufficient. Nevertheless, at the present months, the description of model A is
transformed as being viewed from the direction of genetic algorithms.

References

1. Dubois Daniel M. (2000) Review of Incursive, Hyperincursive and Anticipatory
Systems - Foundation of Anticipation in Electromagnetism. Computing Anticipatory
Systems: CASYS'99 — Third International Conference. Edited by Daniel M. Dubois,
Published by The American Institute of Physics, AIP Conference Proceedings 517,
pp- 3-30.

2. Lee Jong-Suk R., Mc Nikle D. and Pawlikowski K. (2000) Initial Transietnt Period
Detection for Steady State Quantile Estimation. Proc. Int. Summer Computer
Simulation Conf. Published by Int. Society for Computer Simulation Press, pp.
213.1-6.

3. Dahl O.-]., Myhrhaug B. and Nygaard K. (1968). Common Base Language (1st ed.).
Norsk Regnesentralen, Oslo. 1972 (2nd ed.), 1982 (3rd ed.), 1984 (4th ed.).

4. SIMULA Standard (1989). SIMULA a.s., Oslo.

5. Kindler E. (2001) Computer Models of Systems Containing Simulating Elements.
Computing Anticipatory Systems. CASYS 2000 — Fourth International Conference.
Edited by Daniel M. Dubois, Published by The American Institute of Physics, AIP
Conference Proceedings 573, pp. 390-399.

6. Kindler E. (2000) Nesting Simulation of a Container Terminal Operating With its
own Simulation Model. JORBEL (Belgian Journal of Operations Research,
Statistics and Computer Sciences), 40, pp. 169-181.

7. Berruet P., Coudert T. and Kindler E. (2004) Conveyors With Rollers as
Anticipatory Systems: Their Simulation Models. Computing Anticipatory Systems:
CASYS 2003 - Sixth International Conference. Edited by Daniel M. Dubois,
Published by The American Institute of Physics, AIP Conference Proceedings 718,
pp. 582-592.

8. Kindler, E., Coudert T. and Berruet P. (2004) Component-Based Simulation for a
Reconfiguration Study of Transitic Systems, SIMULATION, 80, pp.153-163.

9. Weinberger J. and Mojka A. (1983) Optimization of an Industrial Simulation Model
by Means of Quasi-Parallel Handling. Ekonomicko-matematicky obzor, 19, pp. 179-
187.

10. Weinberger J. (1988) Evolutional Approach to Extremization of Vector Criteria of
Simulation Models. Acta Universitatis Carolinaec Medica, 34, pp.249-257.

296

Simulation Using The Simula Language. Acta Universitatis Caorlinae Medica, 34,
pp. 149-248.

12. Weinberger J (2005) Steep Steps to Optimization of Simulation Models. Simulation
Almanac 2005. Edited by M. Snorek, J. Stefan, Publisher by The Czech and Slovak
Simulation Society and Czech Technical University, Prague, pp.145-150.

13. Weinberger J. and Kopecek S.(2004) Object Oriented Modeling in Investment
Project Feasibility and Profitability Analyse. PRONT 03, konference on PROject

| 11.Faber J. and Weinberger J. (1988) Thalamocortical Reverberation Circuit
|
|
1
i
| managemeNT. Edited by M. Brejcha, Publisher by EVIDA, Pilsen, Czech Republic.

297

	Casus_v21_pp287-297_Kindler

