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} Abstract

Present paper address the synchronization classification of discrete agents by the
‘ means of z-transform. The developed agent based anticipative model enables us to
‘ change the future as well as the past chain of events. Emergent synchronization
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patterns determined by the application of z-transform provide the base for determi-
nation of stability regions in systems of higher complexities. One of the important
results provided is that the proposed agent-based system is apparently controllable
by considering the frequency response of the system. The proof of the stability for
the arbitrary set of proposed anticipatory agents is proposed.
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1 Introduction

In the present paper, the anticipative formulation of the Kaldor’s cobweb system
will be developed according to the hyperincursivity paradigm [1, 2] which is applied
to the explanation of the emergent holonomic properties of natural and artificial
systems. Kaldor’s cobweb model is particularly suitable for the examination of
discrete dynamics systems since the model is well-known and examined. Extension
by the incursivity paradigm should be considered as the approach to the examination
of the system structure and its relation to the time component. The interaction of
several modified cobweb systems will be analyzed in one of the next sections. The
developed agent-based model addresses the interaction of n agents incorporating
the feedback-anticipative principle. Several such systems could be interconnected in
order to form an agent-based model. Interaction between agents will be determined
by the discrete rule, representing interactions between several economic systems
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which could be of great importance in cases of global systems instability. We will
examine, how the anticipative component influences system response.
Dubois [1] characterized an incursive system from the contraction of ”inclusive”
or ”implicit” recursion [3, 4].
Definition 1.1 Incursive system is defined by:
zt+1)=F[..,z(t —1),z(t),z(t + 1),.. ] (1)

where the value of a variable x(t + 1) at time t + 1 is a function of this variable at
past, present and future times.

Let us consider the Kaldor’s model in a separated form written with difference
operator A [5]:

Pk:+1 = Pk+APk (2)

AP, = 3 p (3)

Qi = Q+AQG @
d b

A = S(Qi-(a+-@-9)) (5)

Application incursivity idea defined by Def. 1.1 to Kaldor’s classic cobweb model
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possibilities:
Pk+2) = %(P(k +1)— (b—}i(’ﬂdlfi‘f)) (6)
Qb +2) = $(Quk+1) - (a+ 3@QuE) - ) (7

In Eq. (6) and Eq. (7) the APy from Eq. (3) is a function of present and past
time, which has a physical meaning [6]. If we reformulate Eq. (6) and Eq. (7) the
dependency of the future-present-past events could be observed:

P(k) = bP(k_2+a—c+gP(k+1) (8)
Qs(k) = ng(k +1)4 ng(k -+a- édg 9)

Eq. (8) and Eq. (9) state that the value of the present is dependent on the
past as well as on the future, which in the linear case could be satisfied. The model
stated in the anticipative form considers that the state value depends not only on
the state value in the time k£ — 1 but also on the state value in time k& + 1. The
equation for the difference operator A has been transformed to the state equation
while the time arguments that were applied are in the form {t — 1,¢,t + 1}; here t
represents discrete time k.
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2 Periodicity of Anticipative Kaldor Model

Fig. 1 represents an example of the synchronization results of the anticipative
cobweb model. Different modes of cyclic behaviour response could be observed
when parameter d is varied. Synchronization patterns are named by the shape of
the Poincaré first-return map representing the values of Py, Py;. Fig. 1 represents
the system before, in and after hexagon synchronization. The vertices converge to
the edge point of the hexagon. Points on the vertices form the line at the periodic
condition values for parameter d. The system is in transition to the next full polygon
synchronization. Graphs have the time step shown on the z-axis, P(k) on y-axis and
P(k+ 1) on z-axis. Part A of Fig. 1 represents the system before synchronization,
Part B represents the system in synchronization (example of parameter values a =
400, b = —20, ¢ = =50, d = —20 and p = 160) and Part C' after synchronization.
Synchronisation is addressed here as the parameters’ values for which the periodic
stability of the system is manifested.

Fig. 1: 3-D mapping of the system before (A), in (B) and after (C) hexagon
synchronization; here the variation of the parameter d value is performed.

The application of z-transform on Eq. (6) and Eq. (7) with initial conditions

gives:

—11z + yodz — Yo
—14dz— 22

Y(z) = (10)

Inverse z-transform yields the following solution:

(d-v=a+d)" N

|
] Y7i(s) = 2y (d—vEaFE) -2

m/—A+ &
271" yod (d— vV=4+d?)" n
+27 1y (d+ V-4 + &2
=4 + d? yo( T ) T
vi (d+vV=4+d)" 27 yd(d+vV—4+H)"
ony/—4+d2 V—4+d?

(11)
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In order to gain conditions for the periodic response of the system the following
equation should be solved:

Y7z) = o (12)

Let us compute a numerical example of periodic solution applying the z-transform.
The period examined will be the period of 9, i.e. n =9. In Eq. (12) one should put
the condition n = 9. One of the possible solutions for the initial condition worth
examining is the following:

d = (1(_1:i\/§))%+(%(—1+i\/§)>% (13)

By inspecting Eq. (13) and considering the equation for the roots of complex
numbers [7]:

sin

0+2kr . . 0+2knm
+1 )

Wz = C/F(cos (14)

the general form of the solution for parameter d could therefore be defined as:

d = 2cos ol

15

" (15)
where n is the period and m = 1,2,3,...,n — 1. A similar procedure could be per-
formed for the arbitrary period n. A more general solution, which applies parameter
b, which was fixed for the purpose of determining solutions, is:

2
d = 2bcos m

n (16)
The computation of numerical values is shown in Table 1. The set of values is
similar to the gained parameter values for the domain of 2-D dynamic attraction by
Sonis [8]. Asterisk* marks the critical points in calculation at period 2 and 4.
Stability result corresponds to the polynomial A% = trJ\ — detJ where periodic
solutions will be considered. One should consider [8] for details. The discrete
map stated according to Eqs. (8) and (9) should be analyzed according to the
variation of parameter d and the determinant A = p? — 4q. As shown in Tab. 1,
the following classification of the periodic solution, gained by the z-transform could
be drawn, shown in Fig. 2. One of the questions that arose at the analysis of
similar 2d systems is the question about the rule that determines the periodicity.
In our case the change of parameter d causes the system to switch between different
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Table 1: Synchronization parameter d values of periodicity
conditions up to period 7

‘ Period Shape Argument Algebraic or alternative Num. value
! n symbol Q=27T  trigonometric d value representation d = 2cos QLn"l
‘ 2% —_ v —2.00000
‘ 3 25 z —1.00000
\ O z 0.00000
! 5 O 2 1(-1+5) 0.61803
\ * e ir-i = &) ~1.61803
6 @) z 1.00000
7 O i}—’ 3(—1+ 2T cos(} arctan(3v/3))) 1.24698
o iz 2(-1+2vTcos(¥ + 1 arctan(3v/3))) —0.44504
F br 1(—=1 4 2v7cos(Z + L arctan(3v/3))) —1.80194

equilibriums. The ordering of the equilibriums is determined by the general Eq.
16. The rational fraction 2!, which is in our case transformed by the Eq. 16 to
the value of the parameter d, corresponds to the Farey sequence, which could be
represented by the Farey tree. Fig. 2 represents the classification of the periodicity
values. Aperiodic region is determined by the condition A > 0 and the periodicity
by the A < 0. The vertical classification at d < 0 determines the angles which are
determined by the three points in the 2-d map in our case, a, < 5; d > 0, the
angles of the map are a, > 5. The strongest periodicity points are determined by

the polygon structures in 2-d mapping. In Fig. 2, the polygons are marked near the

main sections that is determined by the ) «,, and the Farey tree. The emergence of
the system periodic stability in the shape of an n-sided polygon could be observed not
only in economical systems [9]; the n-sided polygon and the Farey tree organization
of the equilibria could be observed in the technical systems; for example, in laser
control as the paradigm of the chaotic system [10].

3 Agent Based System

In order to analyze the interactions between several entities modelled as agents the
following agent-based model is proposed. In our case, agent interaction represents
an alternative control mechanism, which should provide standing oscillations and
global equilibrium-seeking behaviour found in real world cases [12]. Consider the
following agent-based anticipative system where the dynamics is denoted by the
variable P as the function of control parameters f(a, b, c,d):

bPr_1+a—c b

P, = ——+—P 17
k d, +dk k+1 (17)
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Fig. 2: Periodicity of the discrete 2D map — Classification of solutions according
to the determinant [11]

| Equation 17 captures the general feedback-anticipative mechanism of system control
| where the present state at time k is dependent on the state at time k£ — 1 as well
as on the state at time £ + 1. Such model has many possible applications in the
field of complex dynamics modelling. In the above equation the matrix annotation
represents column vectors, which have the same arbitrary dimension n determined
by the number of agents. Initial conditions for Eq. (17) should be stated in matrix

form as:
—a
Piy = 2 5 (18)
bP, —
P, e (19)

For the computation of the new values of P, shift operator p on sequence P is
applied, which shifts sequence p € P one step to the left:

p((P)) = (Pn+1) (20)

providing the forward shifted values for P;_; and Py in Eq. (17). The decision of
change in parameter d will be dependent on the sum of two values of variable P
at time k + 1 and time k — 1. Here, the relative value of P by taking the range of
system response in the denominator will be considered:

_ Gigr &y

= TTe = &) 1)
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In Eq. (21) £ represents the estimation chain for r time steps computed in a similar
manner to P in Eq. (17) except for the initial conditions, which are stated in matrix
form as in Eqgs. (18, 19) for time 0, while for £(0) the shift operator p is applied
forcing the anticipation principle as §; = f(P41). Besides the notation for absolute
value in the denominator, the roof and floor operators are applied. In order to
perform the control by variation of parameter d, where n agents are present, the
following state equation with the adaptive rule for Ady, is introduced:

dey1 = di + Adg (22)
where Ad determines the change in control parameter d:
B if e=e]
Ady = { -8 if e=|e| (22)

In the above definition of the agent’s rule, the floor and ceiling functions over a
vector of relative values e reflect only a finite number of lags. One should notice
that the mentioned floor-roof operators are applied on vector d rather than on
vector P, which would mean the strict, conventional implementation of the floor-
roof principle [6]. Parameter § is the intensity of the agent’s reaction to the system
disequilibrium; 3 € (0,1). Initialization of vector d is determined by random value
r; € [—2,2], which falls within the interval of periodic solutions [5, 8, 13, 14] for the
anticipative agent-based system. Certainly, one could also assign an arbitrary value
for d as this will also be considered.

The idea captured in the above definition considers a situation where an agent-
based system where the state space values in the past and estimated future are at
their peak, should be controlled by increasing the value of control parameter d, thus
changing the frequency response of the system [15]. The case at the lower end of
the system response is inverse.

Fig. 3 represents the interaction of eight agents as defined by Eqgs. (17)-(23) as
an example of the system response. Here the values of the parameters are: a = 1,
b=1,c=1,p= % On the z-axis the time step k is represented and on the
y-axis, the value of parameter d is shown. Each line of the graph represents the
variation of parameter d for particular agent A. The synchronization plateaux can
be observed from Fig. 3, which are marked as ¢ and ®. Synchronization is indicated
as the plateaux in the system response, where dynamical equilibrium occurs. One
of the main properties of the system of n agents is that equilibrium could occur
only as a trivial solution of the system, meaning that the system is not active, i.e.
there is no interaction with the environment. This is the property of an agent-based
system which should be considered by the proposed agent-based implementation.
Therefore, in the case of equilibrium, system S does not exist hence 7 S; the system
is closed. Another important property which should be considered by the proposed
agent-based implementation is the dynamical equilibrium synchronization of agent
response. Analyzing real time series of interacting agents, one could observe vivid
synchronization plateaux [10, 16].
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Fig. 3: Agents (8) interacting with synchronization plateaux at ¢; each curve rep-
resents the adjustment dynamics of a particular agent.

4 System Stability

In our case, system stability of the anticipative agent-based model is dependent on
the value of agent reaction 3 € (0, 1). Higher values of § result in a higher volatility
of system response. Another important variable is the number of anticipative agents
n considered. Note, that the value for parameter d is not limited, i.e. by applying
Ad the values could range from —oo to 400, while the standing oscillation response
of the agent could only be possible in the interval d € [—2,2]. Therefore, let us
formulate the following proposition:

Proposition 4.1 The anticipative agent-based system defined by Equation 17 is
stable if n = 2, Ad = 1 — ¢, initial conditions d; = 1, dy = —1 when k — oo; and
de[-1,1].

Proof. Due to the feasibility of proof the interaction of two agents will be ana-
lyzed here. One of the agents will be marked with the [+] sign as A4} and the other
with the [—] sign as A[_) due to the initial conditions for the value of parameter
d. The observed parameters are: a = 1, b =1, ¢ = 1, dj13(0) = 1, d;(0) = -1,
p= % Let us consider the value for Ad = 1 — ¢. For the first step the value for d
is dj4(1) = d41(0) — Ad and di-)(1) = d4(0) + Ad.

di(0) — Ad
di) = [ dH(O) +Ad ] (24)
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By examining the system response, one would expect that further values for d would
vary in the interval [—1,+1]. According to this proposition, the following should
hold

dk“:[—lﬁifz] i dkz[_ll] VP € ®/{0} (25)

This would limit the value for parameter d in the prescribed interval [—1,+1]. There
is an exception at critical point 0. In a further investigation of system stability, one
should consider the following condition for parameter d:

(IPrgr+al = [Pl A (1Pgel = 1B-3xl) A (1P| = [ P--1l) (26)
Eq. (26) determines the parameter space in which the solution of the system could
exist.
For the condition (P_jx-1 = Pyjk-1) A (P-x = —P4) at d33(0) = 1 and
d_j(0) = —1, the condition efy) < e_) from Eq. (23) is determined by two planes:

P._ P, — P._
a= o + £ s (27)
| max(s;)| + | min(s2)| | max(s3)|+ | min(sy)]
3 Py P, — P4 (28)

| max(ss)| + | min(sg)| * | max(s7)| + | min(ss)|
In Eq. (27) and Eq. (28) s, represents the sequence from P and . On account of
the periodicity condition, which is met at d € {—1, —¢, ¢, 1}, the minimum number
of sequence values are taken for determining the planes. Planes a(P;_1, P;) and
B(Py_1, Py,) cross symmetrically with respect to the origin, which could be proven
by a reduction of Eq. (27) and Eq. (28):
Pk < Pk
| max(ca)| + [min(e)| [ max(c)| + [ min(<a)|
Inequality defined by Eq. (29), where ¢ represents proper system sequence, holds
except for the critical point 0 and limit values as P — +o0o. The condition ey < e
for the postitive combination of signs is met, meaning that for such values of P the
direction of parameter d change is correct. The procedure for the negative set of
signs is performed respectively.
The above procedure does not provide an answer to what will happen in the
limit. The answer is provided by the following four limits:
lim Pi(V5 - 1 __1-V5 (30)
Pe——co 2(| max(¢1)| + |min(¥2)[)  2(v5+1)
lim (V5 —1) _ V51
A2 2 max(yn)| + [min(0)) | 2(v3 + 1)

. P(v5-1) 1 =
P ST max(s)] + [mm@d)]) 1(V5-9) (32)

Pu(v5 - 1) = 2(3— V’5) (33)

(29)

(31)

plﬁnw 2(| max(¢3)| + | min(1y)])
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The results of limits in Eqgs. (30, 31, 32, 33) with fulfilled conditions for —oco <
P, < 400 including critical point O confirm that the critical stability condition is
not met for P € [—o00,+00], thus providing a proper change of parameter d in a
critical step before d takes the values d41x41(0) = 1 and dj_jx41(0) = -1 [

5 Conclusion

The feedback-anticipative principle is an important concept in the modelling of
multi-agent systems. The Dubois anticipative paradigm [1, 17] could be further
extended to the field of hyperincursive systems. It is important to know that complex
systems such as multi-agent systems incorporate two loops: a) a feedback loop and b)
an anticipative loop. These two loops inevitably produce oscillatory behaviour of the
system which is the main property of real world complex agents. By the proposition
of an agent based system stated in the form of linear system with nonlinear rule of
interaction the periodic response was determined with a significant ¢ value in the
example of system response. The gained periodicity results are applicable in further
analysis of interacting agent-based systems [11, 18, 19].

The analysis of the agent-based model provides proof of system stability, which
is one of the key conditions that should be meet by agent-based models simulat-
ing complex systems. The provided proof of system stability for the case of two
agents, which also provides promising results for the n-agent case, confirms that the
model could be set in the global equilibrium mode. All the stated characteristics of
the agent-based model as well as the response of the system for eight agents pro-
vides a promising methodological platform for the study of the interaction between
several agent-based systems that incorporate feedback-anticipative principles. The
proposed model provides the means for analyzing interaction, feedback, anticipa-
tion, frequency response, synchronization, standing oscillations and system equilib-
rium. An introduction of feedback-anticipative systems interconnection and control
by varying the parameter, which influences system frequency response, represents
a new perspective for the analysis of complex evolutionary agent-based systems.
The findings presented here provide the interaction rules of program agents with
potential business applications in the field of informational systems.
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