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Abstract The convergence to the mean values of observables is studied for nonlinear
dynamical systems in the period-doubling bifurcation regime. The phase space
convergerlce to the mean values is studied numerically; it reveals a characteristic
behaviour induced by several special points in phase space. The convergence to the
rnean value for these points is exponential as opposed to the power-law convergence
of the majority of the phase space. The issue of universality of these results which
characterize the period doubling bifurcation behaviour is discussed.
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L lntroduction

During the la.st decades much effort has been devoted in order to understand in detail
the dynamics of nonlinear systems [1, 2, 3, 4]. A typical behaviour of these dynamics
is the approach to a,n attracting subspace of the phase space as time evolves. The
complexi.ty of the a.symptotic state (attractor) varies, depending on the parameters
involved in the dynamics, from a finite set to a multifractal set of points embedded in
the phase space of the system. Although many works deal with the properties of the
attractor [1, 2, 3, 4] much less is done in order to understa.nd the transient dynamics
leading to this asymptotic state. The simplest example of a system possesing zuch
complex dynamical behaviour are nonlinear single humped maps on the interval. In
this ca.se the most common regime is the period doubling bifurcation scenario where
the attractors of the dynamical system are cycles of period 2p with increasing p as
the corresponding control parameter increases. Recently in [14] a detailed.study of
the approach to the period 2e cycle for the logistic map has been been performed.

In [14] the time required for the system to approach the fixed point or the periodic
cycle to within a distance e is studied. Several complicated structures connected
with the ûxed point or the preimages of the fixed point, or finally with the periodic
cycle or the preimages of the periodic cycle, are recognized in the phase space. These
structures in the period doubling regime scale with the Feigenbaum constant a.
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In the present work we will adopt a different viewpoint in order to explore tran-
sient d;rnamics. Instead of calculating the time needed to approach the attracting
set to within an euclidian dista.rrce e, we will focus on the corresponding statistical
issue of the dynamics and exâmine the convergence of a system's trajectory towards
the mean value of a prescribed observable. The interest in this ca^se is to classify
the phase space points according to their convergence properties to the mean value
of the evolving variable.

In order to study the dependence of the mean value from the initial point in
the phase space, we used as a tool the numerical simulation. For methodological
reasons we have sepa,rated the case where the system presents a stable fixed point
from the region of multistability. The corresponding properties of convergence and
sr-rme correlation functions have also been studied in some detail.

The paper is articulated as follows. In Section 2 we present the phase space
relaxation modes for the example of the logistic map, before and after the period
doubling regime. In Section 3, we focus on the period-doubling regime and we ex-
amine the modes of convergence to the mean value, which is undoubtedly the central
result of our paper. In Section 4, we study the correlation functions of the pha.se
space above a control para^ureter value entailing a stable fixed point. The paper ends
with a Section of conciusions. where we also discuss plans for future work*

2 Rate of Convergence to the Mean Value in the Phase
Space

2.1 Study Before the Period-Doubling Regime

The objective of the present work is the study of the relaxation time to the mean
value, i.e. the time required for the convergence of the trajectory to the mean value.

We consider a well-studied system. that is the logistic map in the nonchaotic
region [11, 12]. The logistic map is defined in general as the quadratic recurrence

rn+1 :  r rn ( l  -  nn ) ,  ( 1 )

w h e r e l  < r 1 4 , 0 S r , ( 1 .
To start our study we plot the number of iterations required to find a mean value

with a difference s from the asymptotic rnean value. Below (Fig. 1 and Fig. 2) we
plot this diagram for r : 1.7, and r : 2.5. We remind the reader that the first
biftrrcation point of the logistic map is at r :3.0.

As is depicted in the figures below, for 1 < r' < 3 the graph presents two minima
and a local mâximuûr, as weil zu two maxima at the ends of the interval. One of the
two minima corresponds to the stable fixed point r"6 (which is the global minimum),
and we shall speak about the other in the sequel.
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Fig. 1: Number of iterations to arrive to the mean value with a precision e : 10-a
as a firnction of the initial position in the phase space for the logistic map. (r : 1.7).
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Fig. 2: Number of iterations to arrive to the mean value with a precision s : 10-a
as a function of the initial position in the phase space for the logistic map. (r : 2.b).
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Fig. 3: Number of iterations N for which the equation has converged to the mini-
mum with a precision of 1.08-10, as a function of r.

It should be noted that in the case of the convergence to the mean vahre, the
graph is a.symmetric. As the value of r increases, the disùance between the twt-'
minima decreases and the two milima coincide for r * 3.

The second minimum is the second solution of the equation

N

. l i -  ( I r i  -  Nr,1) :  $,  (2)
N - æ ' ?

where the first solution of this equation is evidently the value t1 : !n56. (where .r"1
is the stable fixed point àfld r*6, the second solution of the Eq(2)). We may notice,
that the existence and uniqueness of the second solution is a numerical statement.

The solutions of the above equation converge to the second minimum when ly'
bypasses a cut-off value which depends on r. In the diagram below (Fig.3) we plot

the dependence of N on r (N is the iteration for which the equation has converged
to the minimum with a precision of 1.08-t0).

It should be noted that our numerical analysis leads to the existence of a special
point for r :2.5. This special point converges to the mean value extremely rapidly.

Notice that the solutions of eq(2) when N is increased, converge exponentially
to the minimum, that is

P r , r+ r - ï n i n  _^  (3 )
pN - Imtn

(where p7y is the root of the equation for the first N iterations) and À is the value
of the derivative in the linear regime. This is depicted in the following figure.
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Fig. 4: (px - ,^nn) as a function of the number of iterations N. This holds for
r : 1..8.

As we have already mentioned the two minima tend to coincide as r --+ 3 (this
is a numerical statement). In the following figure the dependence of the second
minimum on r is depicted. As we car see from the frgure, for r -* 1 the minimum
tends to the unity, wherea.s for r --- 3 the minimrmr tends to the fixed point.

2.2 Study in the Period-Doubling Regime

As the value of r bypasses 3, the stable fixed point becomes unstable and the rycle-2
is born. The points of the cycle are given by well-kncrwn relatious [2]. Consequently
the asymptotic mean r,alue is given by the relation

r r  i  r * l
Elxl: 

2" 
(4)

To bypa.ss the problem of the æcillation for the cycle'2, we study the convergence
to the mean value for the quantity

1 1 t f r 2
Yt -- -Z-, A2:

In the following figure, we present the diagram of the time (number of iterations)
required to converge to the mean value as a function of the initial position 11, Tor
the specific control parameter value r : 3.1.

As it is shown in Fig.6, in the centre of the figure in between the three ô-functions
which are marked with arrows, there emerge structures similar to those that appear

1 0I

N

I g t ï a
( D l
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Fig. 5: The special point r-;, as a function of the control parameter r.

wlren r < 3. The two minima in between ro:0.32 and 16 :0.676 correspond the
first one to one point of the cycle 2 and the other to a special point with similar
properties of convergence to the mean lalue, as those of r*in (for r < 3).

Similar features are exhibited also for the region in between the second and the

third ô-functions (betwe€r /6 : 0.676 and r" : 0.8825). There are some ba.sic
differences ir.l the behaviour of the diagra,m of the relaxation time in respect to the
mean value a.s a function of the initial position. One important difference is the
presence of infinitely many maxima that appeax under the form of delta functions.
The delta functions correspond to the unstable fixed point (16) and to the infinite in

number preimages of this unstable fixed point. A second difference is that on each
side of the delta functions there exist two minima (one on each side), to which we

refer in the sequel. It is worth mentioning that these minima (except from the first
four in the centre of the figure), are points that appear in the linear region of the
pre-images of the unstable fi,xed point and are consequently also infinitely many. It
is interesting to note that these points are local minima (and not maxima), although
they lie in the region of the pre-images of the unstable fixed points.

As the value of the control parameter bypasses the value r : 1 * r,/6, the cycle 4
is born. In the next diagram which corresponds to r:3.46, it is shown that as the

control parameter value increases, the diagram of the relaxation time as a function
of the initial position becomes more and more complex. In any case we note the
presence of many maxima and minina interconnected with the same reasons as in
Fig.6. We expect similar behaviour with many maxima and minima until r : r-
(the Feigenbaum point).
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Fig. 6: Number of iterations lequired to arrive to the mean value with a precision
î : 10-5 as a function of the initial position in the phase space for the logistic
map. (r : 3.1)(cycle-2).
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Fig. 7: Number of iterations to arrive to the mean value with a precision e : 10-b
as a function of the initial position in the phase space for the logistic map. (r :
3.46)(cycle-4).
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Fig. 8: The difierence of the rrrnnillg mean v'alue froru the me:ut value E,yft;l - x",
as a function of the number of iterations lv'. This holds for the control parameter
value r - 1.7, and with initial point 11 : 0.6 different fronr Ji,.;,,. \!'€ observe a
power-law convergence.

3 Modes of Convergence to the Mean Values

3.1, Study Before the Period-Doubling Regime

In the present work we have also studied the mode of convergence to the final ntean
value of the system as a function of the initial point. In the region 1 < r < 3, we
have found that essentially there are two ways. The first way is followed by the
majority of the initial points. Here, the approach of the mean value follows the
equation

E*lrl - rs1 : af N, (6)

where o is a constant and we denote as Ery[r] the "ruming mean value" of the
position r. The graph of E,ulrl - rs às à function of I[ is depicted in Fig. 8.

The second way is followed only if 17 : rmin. In this case the approach to the
mean value follows the relation

E*l" l  -  r" t :  erp(-ÀN). (7)

The graph of 81-.[r] - rsr ffi a function of N is depicted in Fig. 9.
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Fig. 9: The difference of the running mean value from the mean value Ey[r]-r"1 as
a function of the number of iterations N. This holds for the control parameter value
r : 1.5, and with initial point 11 : trnin: 0.88209. We observe an exponential
convergence.
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Fig. 1O: The difference of the running mean rm,lue from the mean value g*[d- Eld
as a function of the number of iterations N. This holds for the control para.meter
vaiue r : 3.1, and with initial point 11 : 0.2, different from r^in. We observe a
powcr-law convergence.

3.2 Modes of Convergence to the Mean Value in the Period-Doubling
Region

In this subsection, we study the case r ) 3, and iu particular for r:3.1. However,
our conclusions are quite general.

In Fig.10. u'e show the evolution of the quantity Eylrl - E[r] as a function
of N, for a randomly chosen point 11 : 0.2. In this case, we observe a power law
coD!€rgence over ûrany orders of magnitude.

In Fig.11. we show the evolution of the quantity 81,1[r]- Elrl as a function of N,
for lr1 : tmin :0.3435. In this câse, the special poinl r*;n has similar properties to
the corresponding r^1, when 1 < r < 3 and we observe an exponential convergence
over 10 orders of magnitude.

In Fig.12, we show the evolution of the quantity Err[r]- E[r] as a function of
N, for rr : rmin: 0.03962.... This point belongs to the linearized region of the
unstable fixed point. In this case, we first observe initially a power law convergence,
and then an exponential convergence.

The universality of these results is an open problem.
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Fig. 11: Tlre difference of the running mean value from the mean value Ey[r]- Elx]
as a fimction of the number of iterations N. This holds for the control parameter
value r :3.1, and with initial poiat c1 : rmin: 0.3435. We observe an exponential
convergence.
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Fig. 12: The difierence of the running mean value fïorn tire mean value Evfrl- Eirl
as a function of the number of iterations N. This holds for the control parameter
value r - 3.1, and with initial point 11 : r.min : 0.03962. \\'e first observe a
power-law convergence, and then an exponential .convergence.
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Fig. 13: The correlation function of the logistic map for r : I.7 and with initial
point c1 - 0.6, different from r^6n. The correlation function tends to a non-zero
value.

4 Study of the Correlation [bnctions Below r :3

In our study for control pa.rameter values in betlveen 1 < r < 3, we have also studied
the conelation function. too. The correlation function is defined bv the relation

l N t N
C(r) : .li* (* T ,,rn*, - (* I("n))'). (8)

ir,*æ'fl Ei 
'/v 

;='

In this regime the system possesses a stable fixed point and it is obviously non-
mixing. This entails that the correlation function converges to a value different from
zero, as 7 -+ oo. This is depicted, for typical values of the control para,meter r and
the initial point 11 in Fig. 13.

As an exception to this ba.sic rule, the correlation function of the special point
opi2 conv€rges to zero, âs r -+ oo. This is presented in Fig.14. In this ca.se the
system is mixing. This is related to the particuia^r role of the special point r*;n.

5 Conclusions

In this work, the phase space convergence to the mean values has been studied
for. the period doubling scenario on the logistic map. Many special points have
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Fig. 14: The correlation function of the logistic map for r : I.7 a"nd with initial
point ri : rmin: 0.85649. The correlation function tends to zero.

been recognized and their role examine.d. The correlation functions in the region
I < r'< 3 er,re aLso considered.

In the general case, a power-law convergence to the mean value is observed for the
majority of the phase space points. An exponential convergence is however observed
for the special points. The correlation function of the special points corresponds to
that of a mixing system unlike the correlation functions of the majority of the
phase space. This is quite unanticipated and somehow surprising. All these special
properties are generated by the property of the special points as solutions of the
equation defining the mean value.

The issue of the universality of these results for unimodal maps, as well as the
the rigorous proofs and the extension of these results for continuous time dynamical
systems is an open question tha,t could be addressed in the future.
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