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Abstract
The paper contains several results belonging to the theory of systems with infiniæ
memory, using the differential calculus in locally convex spaces. These results are the
following: the general constitutive functional can have, as a first approximatiOa, an
integral representation; the constitutive functional could be expressed by a double
integral, so obtaining a better approximation; the speed of tbe present state modificdion
is in a linear dependence on the history of the speed by which ttre inputs were cbanged"
the whole time elapsed till the present moment; the state of the system in a next moment
is obtained also by means of some formulae using the derivative of the constitutive
firnctional; the problem of optimal control of the system evolution, formulated for this
general fi:nctional representation, leads to the equæions of the Calculus of Variations.
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1 Introduction

From the very beginning, the general theory of systems with fading memory
achieved an integrating expression for the most diverse phenomena belonging to some
domains of cognition that seemed, under all detectable aspecB, disjunctive. The strong
nature of mathematics with regard to the power of abstracting and of creating models
has been proved once again in the theory of systems with infinite fading memory.
Mathematics has not been enriched much with new elements since the apparition of the
general systems theory, except more definitions for the concept of system; nevertheless
the well-established mathematical notions, such as function, equation, matrix,
derivative, integfal, vector space, and So on, have becOme cornmon assets of
scientific disciplines.

Our research object was the dynamic system with infinite fading memory. For such a

system, its initial state could be considered at the moment (-æ).
The results hereby presented" t}re most of them I already published (Manzatu, 1983;

Otlacan, 2000, 20M) have two ideas as a starting point:
l.The causes of a phenomenon unfold in time, so they can be functions of one or more
real variables. The effects numerically expressed at a certain moment are values of some
real or vector functionals defined on sets of functions that describe the causes. In brief,
the relationship cause - effect is one of functional type.
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2.In the general study of phenomena we discuss about greater or smaller effects, close or
remote causes, the speed of modification of effects or causes. From the mathematical
point of view, we have to establish the contiguity, to fix the topology on the set of the
functions considered as causes, and adopt an adequate definition for the functional
derivative.

I have obtained a satisfactory answer to these questions and important results for the
theory of systems with infinite fading memory, by imagining a locally convex linear
topological space for the set of functions that describe in time the causes of a
phenomenon that is presented numerically at a given moment. The topology in this
space is defined by semi-norms linked to this given moment. The differential calculus
for functionals defined on locally convex spaces that I used was created by Gheorghe
Marinescu (1963), as a generalization of the Fréchet's differential on normed spaces,
and uses the so called Fréchet-Marinescu's differential, a notion that will be presented
below.

2 A pattern of the relationship between the input history and the state
of a dynamic system with infinite fading memory

Let S be a dynamic system, -r(l) one of its state parameter 4(t), x2O, ..., x,(t), at the
presentmoment l, lsaninitialmoment,t0 lt,andtherealrn-dimensionalvectorfunction
u1to,û(t)deftned for ae Uo,tf , describing ûs inputs which acted upon the system S in

the time interval [ls,l]. The correspondence from the function u1gJlG)to r(l) is given

by a state transitionJunction @, according to Kalman, Falb and Arbib (1969). In fact,
this function is a functional dçending on the fimction uvg,tl(:,) and also on /s, d x{/s),

i--1,2,. ..,n, as r*2 real parameters:

x(r) = p11o, r, x1 (t g), x 2 Q g),.... x n Q g); u1rs, 11 (r)1

For a system with infinite fading memory the initial moment could be at -- and so
the inputs are described by a vector function u: (*,t]->R^, u: u(t), and called the
global history of inputs (input history). Introducing the constitutive functional F, the
relationship will become:

x(1)-- F{uG);?€ (*,tl}

More suggestive is the following writing:
I

x(t)= F [u(c)]
t=<

Sometimes a variable s with an opposite sense from the variable time e is
convenient, so we also introduce the following notations instead of u(Q,ze(-æ,fl:

(2.1)

(22)

(2.3)

more

265



ats) : a(t-s), s : t-r, se[O,+-;

Thus the constitutive equation written for:r(l) will be:

(2.4)

x(t) = P lrt (")] (2.5)
s=0

For simplicity, sometimes we will write F[n] or Flu'|.
The object of the mathematical modelling in this paper is given by the following

definition:
DEFINHON 2.1. A system with infinite fading memory is a system for which the
relationship between the global input history u(ù,æ (*,tf, and any parameter -r(l) of
its state at the present moment / is given by one of the equivalent formulae (2.3) or (2.5),
where the values of u(t) taken on t< l, but tclose to the moment t, bring a much more
important contribution to the value -r(r) than those values of u(.Èl taken for rin intervals
of time very remote of t, that is when î1 -æ.

In other words, if u(Q had modifications for T1 t-Fe, pr> 0 a large enough number,
then these modifications are insignificant for the value x(r), being less than an arbitrary
little number s>0.

To have concretê results for the mathematical modelling of systems with infinite
fading memory, it is necessary to impose:

l) a topology of the set f,l'of the functions a(@ admissible as input histories of the
system S;

2) properties of the constitutive functional F.
DEFINITION 2.2. The space of admissible input histories till the present moment t is a
linear topological locally convex space Çl'of vector functions u(ù: (u{c), uz(ù, ...,

u^(t)), far ce (*,tf, respectively rz(s) for s e [0,+-1, ut 1t1 :1ults).u\ t.s),...,of {s)) ,

fimctions with any order derivatives, the topology of Çf' being given by a family of semi-
norms linked bv the moment /:

l'l t = 
r,Y,,tla 

( r)l' where lu Q1l =17=,"1' nl%

respectively

(2.6)

(2.7)l"'l =
t t l ô'ïrl,'(")1, 

*ne,e l,'1";l = 
[É, 

,îu - r]Y'

In consequence, a neighbourhood around the function u(t) is formed by all the
functions v( z) belonging to Ot and meeting the condition | ,-ul x . ô for certain numbers
À>0,6>0.
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A first result for the modelling of systems with infinite fading memory is given with
the hypotheses of the continuity of the constitutive functional:
THEOREM 2.1. If the constitutive functional F of a system S is defined and continuous
on the locally convex space Ç)' to which the input history n(z) belongs, then the
correspondence given by the formula (2.3) will describe the present state of a system
with infinite fading memory.

lndeed, the continuity of.F'means that if v(r) is another function different of u(l1,the
difference between ftu(t)l and fIv(dl will be inferior to an arbitrary small number P0,
if luU) - r(,ù1, for all telt-)"r, tl, is smaller than a number 6V0, Lrand ô'depending on
e. But when te (--, t-1") the difference lu(r) - v(.ùl could be no matter how large
without affectingtoo much the value of the functional F, respectively the value r(l).

3 Fréchet-Marinescu dilferentiabitity hypothesis of the constitutive
functiond end its consequences

More than tlre continuity, we need the differentiability of the constitutive functional
F. For that we resorted to the following definition:
DEFINITION 3.1. The real functional F, defined on the locally oonvex space O'
endowed with the family of semi-norms expressed by the formulae (2.6) or (2.7), is
differmtiable in Fréchet-Marinescu's sense in a point ueO' if there exist: a number l>0
and a liner lmctional &L depending on the point a, so as the following two equalities
hold:

(3.2)

As consequences of the differentiability of the constiûrtive fimctional, we found more
results that can be interpreæd in connection with the modelling of dynamic systems.

A vcry important theorem asserts the possibility to have an integral expression of the
differential ff, of the constitutive firnctional.
THEOREM 3.1 (of integral representation): If the constitutive functional is
differentiable in Fréchet-Marinescu's sense in the point aef)'and fr, is its differential,
that meets together with the number 2>0 the conditions (3.1), (3.2), then rn real
firnctions a(ù, az(ù, . . ., a-(l), with integrable squares on [tJ"t] will exist, so fhat:

t t t
F lu(r)+h(r\l- F lu(r)l: tro[h(r)]+a(u;h)

7--a t4 t=a

lathr.hll
l i m r  , ' , '  

' ' : 0

h+o lhlt

I l m

âFu [nç71= 
'[ 

2ae1r1Ë1,1rydr
î=a t - , |k=l
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Hereh(l : (h{ù,hz(ù,. . . ,h^(ù),  i t (c) , læl,2,. . . ,m,arethef irstorderderivat ives
of the functions hdtl and h(t):O for r< t-1; the functions a(e) depend on the input
history u(î),x< tJ. and do not depend on h(fl.

I have published a demonstration of this theorem (Otlacan, 20Aq.
An immediate consequence of this theorem is the expression of the difference

between two values of the constitutive functional F:

t t t m
F lu(r)+h(c) l-  F lu(c) l= |  lap(r)hp(r)dr+at(u:h)

r _a  r=<  t _ ) k= l

t -).

ap(r)= A f t ,x(t  -  1),u(0) l
Q = <

a\u;h) has the properfy (3.2), namely its absolute value is smaller than the semi-norrn
I hl t wtd this will tend to zero when à tends to the function zera, faster than I il t.
Setting aside this tenn a\u;h), the difference between the two values remains as an
integral formula. We can interpret this result in relation with the state of the system. Let
v{t1=u(11+h(È), Ét, the input history till the moment t. As h(114 for Ét-X" we have
v(ù=u(ù for ÉtJ" and so tle value of Ffu@1|gives the state parameær at the moment
t-)" flu(t1+h( r)l grving this state parameter at the moment t- We have dre formula of the
respective state parameter evol u tion:

t m
x(t) - x(t - tr) = I f.o,r(r)tt'1,@)ctr + a(u;h)

t - ) 'k - r
(3.5)

Only renouncing to the term aXu;h), that depends both on the whole input history
u(t),ze(-*,7), and on the input h(t) that acted on the time interval ftJ.,tj, we have a
simple integral. The weight functions odfi also depend on the whole input history
u(t),æ(-*.1-A), and they can be established only experimentally. Theoretically, we
notice that the infinite memory of the system is implicitly expressed by these functions.
Taking into account the mentioned dependence, we can write the functions a{fl as
values of certain functionals:

(3.4)

(3.6)

Differentiability properties of functionals with the use of integral theorem 3.1 lead us
to an integral formula expressing the evolution of the state parameter x. The equality
which follows is an approximation only, because we will renounce to the
complementary term of the differential definition, that is alu:h) from (3.1), (3.5) and a
similar term of the differential formula of the functional I from (3.6). ln a new formula
we used an interval of time [t-g t-1] prior to t-À..The formula emphasizes the synergy of
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the system (Otlacan, 2004), the multiplication of inputs that are coming from different
paths and on different periods of time. The new formula is of the following type:

x(t) - x(t - A) = i,ar(t)ht (t) + i 
t[ 
q p(c\h1,ç1ar +

t= l  k=7t - ) "

m m t t - ) "
+ I t I dc I pir(r,0)ei@)hp(r)d0

. i= lk= l t - ) .  t -p

(3.7)

Here 1I>4, h*{ù we the input functions that acted on the interval (t-L,t), and ef01
represent the input functions on the interval of time (t-19 t-A), for k, j:\,2,...,m.

We have to notice that the functions ek, Çk, pik arc not determined mathematically,
they result from a theorem of existence.

4 The derivative of the state vector; formulae for the future state

The formulae (3.5) and (3.7) could be used to predict the value of the state parameter
x at a moment t+d. An approximate formula deduced from (3.7) replacing t by t+a,
0<ætr<lt is the following;

To use this formula we must impose the inputs h{r) on the time interval ft, *al and
know the past input history e{,0): hAA on an interval (t-p+q t) prior to the present
moment. The weight functions qk, pik arc established by a past experience. It is necessary
that the inputs hdz) nd h{Ol should not have too great values so that the error may not
be too big.

A part of these inconveniences are removed using a fsmula based on the theorem of
the derivative of the state-function of the sysæm with infmite f".lingmemory.
THEOREM 4.1. Let the frmction x(A be the value at the moment 0 < t of a state
parameter:

x(t + a) - xe) = I a 1, (t + a)h p (t + d) + i.' 
*1f, 

o ç1, o g1a, *
k--1 k=l t

m  m l + A  1
+ I t I dr Ini*G3)e,(0)4G)d0

. i= lk= l  t  t - \ ! -a \

e
x(0) = F[u(r)]

t=a

If the constitutive functional F: C)'-+ R is a
Marinescu's sense on C2' and its derivative 6Fu:
functional. then the function x(ô defined on each

(4.1)

(4.2)

differentiable functional in Fréchet-
d2' + L(d2t,R) is also a continuous
0 3t by the formula 4.2 admits a left
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derivative in the point t and the value of this derivative will be given by a value the
derivative F,:

(4.3)

I have given and published a demonstration of this theorem (Manz.atu, 1983).
With the theorem 3.1 of integral representation for the functional &, and adapting

the formula (3.3), we will have, with l. > 0:

x('l)= rtl#l

' t r u
r(r)=- [ lfu(r)hp(r)dc

t m
x(t + a\ = x(t)-d I lbp(t)hp@)dr

t - )" k--l

m t m
x(t + a) = x(t) - d Llb k Q)h' (t) - fi çyn1tS1 a' I î t i OV 1, G)d r

k = l  t - ) " k = l

t-) '  k=l

Here h"(ù is the second derivative of h(ù.
Based on this formula and on Taylor's formulq with a> 0 and t+a a moment in the

futrre, we obt"in the following also an approximate formulq because the rest of
Taylor's formula was put aside:

(4.4)

(4.s)

(4.7)

The vector function h"(fl may be considered the acceleration of the input à( z).
We could obtain other formulae in conditions of derivability of the weight functions

bdt1. Let us remember that â(t):0 for Ét-À and we will have the formulae:

m t ' m l

r(t + a) = x(t)- a Zbk(t)h (t\n I lbp(r)hp@)dr
k= l  t -Lk= l

(4.6)

The advantage of the formulae (4.5) - (4.7), as compared ro rhe formula (4.1), is the
fact that in these formulae the knowledge of input functions hç(t) refers to the past time,
prior to the present moment. Besides, the step a> 0 does not depend on l, this number
imposed by the differentiability condition 3.1.

5 The problem of optimal control; relation with Calculus of variations

Let us consider again the defining correspondence (2.5).
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More convenient is now to refer to the vector function h(ù = (h(ù,hz(ù, ..-, h,n(t\)
belonging to Ç)t, defined on (-æ,1] and null before the moment tJ,, as a process r that
took place in the system between the moments tJ, arrd,l. This function-process is added
to the input history u(t),t< t-L: t1, transforming this history into the input history till
the moment 12: t, u(È1,î< { I wrote (Otlacan 2005) til,s) instead of h(ù and defined this
function on an intervalft;t2f as a difference:

,[tt,t zJ 6y = st2 1s1* rrl (r)
so that:

,t 1"1 = u'- I 19 + vlt 
- )"t) 

61

t
e(t,x(t - tr)) = L ^1r1t - Â1,ilt-e'tlç41

î=t -tL

In a problem of optimum leadership the introduction of commands in a system on an
interval of time ft-l,l] presupposes an efficiency criterion to be satisfied, many times
this signifying to obtain a minimum (or a maximum) of a real functional that could
represent the costs (or benefits) of the system work. This functional depends on the
reference (initial) state x(t-A), by this understanding all the r? state parameters, and on the
process aon the interval lt-A,tl. To fix the ideas, let us take the cost of the system as the
value of a firnctional I:

(s. l  )

(5.2)

(5.3)

For the dlmarnical system with infrnite fading memory we introduced a new
fimctional, called the total cost functional, that has a theoretical interest.
DEFINITïON 5.1. The total cost of a systan with inJinite farling memory S rill the

moment I is the value E(r) of a real continuous functional Z : O1 -r R, named the total
cosl functional, that will pennit to express the system costs on different finite intervals
oftime:

E(t)= [o'( t) ] (5.4)

The argument z'1s; is the history of inputs which realized the state x(t) at the moment /.
DEFINITION 5.2. T?lLe cost E(tçt2) of the system S on an interval of time ftyt2l, t1<t2<1,
is the difference between the two total costs:

E(4t2)= E(tù- E(tù

The general formula for this cost is the following difference;

(s.5)

L
s=0
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E(t1,t2)= i lu'r(r)l- i frtr (r)]
s=0 s=0

(5.6)

The relationship between

means of the process lz

u t2  ( r ) - r t l ( " )  -  r I t t J2)1s 's ,

the two functions u'2(s) and ull (s) is expressed by

ond tr l î t ' rz l1s) =o whens>t2-t1 (s.7)

Within the theory of optimal control, usually, the study of the optimum evolution of a
continuous system is given by a criterion ofintegral type:

tz
Jful= IG(t;x(t).u(t))dt, (5.8)

t l

while the relationship from the input n(t) to the systsm state is described by the
differential systems:

dx
fi= tÂ$\;u(t\) (s.e)

Classically the problem of optimal control has the following formulation: to
determine a sequence of command a(r), with telt1,t2l and a trajectory x(t) corresponding
to the system (5.9) so that {ul takes the minimum (maximum) value and the values
x(/y), x(/2) be those we impose.

For the beginning, our formulation of the problem of optimal control applied to a
system wilh infinite fading memory described by a constitutive functional I' from the

input history ut (ù , se [0,-), to the state x(t), with a total cost functional Z having the
value E(l) in the same input history (relation 5.4), is the following:

With the given moments re and t, to < t,to determine the process o[toJ)61, that is

the function ,[to't)7s1 =r'(r)-r'\(s), equal to zero for s2/-/0, so that the cost
e(t'tftoD should be minimum.

We proved thât this formulation, available for general systems with fading memory,
could lead us to the classical formulation of optimal control, namely the formulae (5.8),
(5.9). Two statements were to be demonstrated:
I. The system S with infinite fading memory may be described by a differential system
comparable with (5.9).
II. The functional of the costs of the system may have. in a first approximation, an
integral expression, similar to (5.8).

Based on the results presented before, the following theorem is true:

272



THEOREM 5.1. If the total cost functional I accomplishes the same conditions of
differentiability as the constitutive functional 4 and if the magritude of the process

ott-lJ161is sufficiently small on the interval 10, 21, i.e. the command u(ù, ceU-Ltl,
has a small magnitude (formula 2.6 for l"Gll\ then the cost of the system in this interval
of time will have approximately the integral expression:

E(t  -  À,t)  = (s.10)

the functions 8 ; (s) = Glut- ^ (s); s] being certain functionals on the history of inputs till

the moment /-2.
The theorem is an approximate representation of the cost on the interval [l-À, l], but it

explains the successful use of the integral (5.8) in the problem of optimal control.
We give here the following formulation of the optimal control:

To determine the process r : (n , rb, ..., tr-\ on the interttal of time lt-L t) so that it has
10:
*give the minimum value of the integral of cost:

du i (s \
sib)f  ds,

). m dlt ,(s\
E1t - ). , t)= i  I  S7 (s)--fds

O i = l  
"  a s

) "  m  d2 t , ( s l
=  J I . / i ( s ) *ds

t= t  O i= l  
"  ds '

L m
I '

0 j = l

(5 .1  1 )

** accomplish the conditions tdl):O, td0):u(t)-u(t1), with u(t-.L) btown and u(t)
imposed (therefore also known),
**tF realite imposed values to the derivoîive x (t) of the porameter state, æpressed by
their dependence on q in theJ'ollowingformula:

dxl
del

(5.  l2)

We obserye that this is an isoperimetic problem with n iiltegral links.
This way, from the general model of the correspondence bween the input history

and the present state of a dlaramic system, we arrived to the Calculus of variations and
could use Euler-Lagrange theory.

6 Conclusions

The differential calculus in semi-normed spaces is more adequate to deduce
mathematical models of the behavior of dynamic systems, taking into account the
infinite memorv of these svstems.
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Obviously, the results here presented have a theoretical importance, but they
constitute a mathematical accreditation of a lot of formulae which are used in many and
diverse domains, from thermodynamics to biology. So, in the mechanics of the
dcf6lrmable rrediunir every material, exeept the perfectly elastic ones, has urernory, that
means that the tensor of tensions x(l) depends not only on the deformation gradient at
the moment I and on the current temperature, but also on the whole previous history of
the deformations and temperature. The functions udll, 1A,2,...,6, represent the
components of the function-gradient of the deformations, u7(| being the history of the
temperature variation. If a fbrmula of (3.5) type (without ar) is frequently met in works
about visco*elasticity and thermo-visco-elasticity, the formula (4.4) could be interpreted
as the derivative of the tensor of tensions and could be used to estimate the speed of
tension change in a point of a rnaterial.

In biology, the functions u{tL, re(--,/1, are the history of stimuli which acted till the
moment r, .r(r) is the answer in the special nervous fibre of a living organism at the
moment r. In ûris field, the interpretation of the formula (4.4) of the derivative is rather
surprising the modification of the speed of every possible answer x!t) to fhe stimulus-
function u(ù, æ(*J], is linearly dependent on the derivative a (z), namely on the
speed of the input modifications, but the same derivative -r (l) is in a non-linear
dependence on the functionu(fi.

Besides the interpretations in thermodynamics and biology, the rnathematical theory
hereby exposed provided coherent explanations in the theory of observation operators
(Otlacan,2000).
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