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Genetic Algorithms (GAs) are robust probabilistic algorithms for optimization, relying 
strongly on parallel computation. Their power comes from multi-point exploiting of the 
searching space, avoiding the stagnation in local optima. First we review the state of art 
in GA theory. Next, two illustrative original applications highlight the efficiency of GA 
on multi-parameter optimization tasks: on solving systems of fuzzy relational equations, 
and on optimizing the parameters involved in an economic forecasting task. 
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1 Introduction 

Genetic Algorithms (GAs), as well as Evolution Strategies and Evolutionary 
Programming, are part of a steadily growing optimization methodology, usually referred 
to as Evolutionary Computation, (Back et al., 1997). 

Introduced by Holland ( 1975), GAs are imitating - in an algorithmic formalization -
the mechanics of natural genetics and natural selection by starting the search for an 
optima with an initial population of likely problem solutions and then evolve towards 
better and better solutions. 

According to Goldberg (1989) , GAs differ in some very fundamental ways from the 
classical optimization methods, namely: 
• GAs work with a coding of the parameter set, not with the parameters themselves; 
• GAs search from a population of points, not from a single point; 
• GAs use objective function information, but not derivatives or other auxiliary 

knowledge; 
• GAs use probabilistic transition rules, not deterministic ones. 

A simple GA requires the definition of the following components: 
I. a genetic representation of potential'problem solutions, 
2. a function verifying the fitness of the solution (called objective/fitness function), 
3. genetic operators, like: crossover, mutation, selection, · 
4. some constant values for the parameters used by the algorithm (such as population 
size, probability of applying an operator etc.). · 
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The natural parameters of the optimization problem - representing a potential 
solution - have to be coded as a finite-length string over some finite alphabet; within 
this paper we shall tackle the binary case only - as it is most representative, both by 
current practice and illustrative reasons. This string is called chromosome and its 
components are called genes. A population consists in a set of chromosomes. The 
iterates of a GA involve only copying, swapping and comparing binary strings - this 
simplicity of operations, together with their proved efficiency made GAs so attractive 
for optimization tasks. 

A simple GA that works well on many practical problems will be described in the 
following. As stated above, this will be composed of three operators: selection 
(appealed also as reproduction, in some references), crossover and mutation. 

Selection is the process in which individual strings are copied proportional to their 
objective function values: in case of a maximization problem, strings with a higher value 
have a higher probability of contributing by one/more offspring in the next generation. 

Crossover is a two-step operator. First, members of the newly reproduced strings are 
mated at random and second, each pair of strings undergoes crossing over by swapping 
some segments of genes with same size and position. Mathematically, the crossover 
combines the features of two randomly selected chromosomes, making use of a 
template, yielding two offspring, like in the following example: let A and B be the 
initial chromosomes, T the template, and T'= not T: 

A=[llOJO], T=[OOOl l], 

B = [O 0 I 0 0), T'= [l I I 00), 

then, the offspring are given by the formulas: 

C1 =MIN {T', A}+ MIN {T, B} 

C2 =MIN {T, A}+ MIN {T', B} 

where MIN and negation are w.r.t. the binary logic. We thus obtain: 

C2 = [00 I l O] 

The last operator, mutation, is performed on a bit by bit basis, by negating a single bit 
position of a string. For example, if we apply the mutation operator on the chromosome 
A, with the mutation site #3, we obtain the offspring: 

C=[llIIO]. 

In our case, the GA's parameters are the population size and the probabilities Pc and Pm 
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of applying crossover and mutation, respectively. The chromosome's length is rather 
depending on the function to be optimized than a parameter at our choice. Summing up, 
the algorithm can be represented in the following form: 

Procedure Simple Genetic Algorithm 

choose an initial population 
determine the fitness of each individual 
perform selection 
repeat 

perform crossover, according to a mutation probability, Pc 
perform mutation, according to a mutation probability, Pm 
determine the fitness of each chromosome 
perform selection 

until some stopping criterion applies 

2 Theory of Genetic Algorithms 

As announced in the previous section, we shall consider a general optimization task for 
the simple GA, that is: 

max (f(x) / x E (0, JJ'j, with! (x) >()for allx, where£ is a (fixed) positive integer (1) 

When the schema theorem - a probabilistic inequality for estimating the expected 
number of offspring generated by an instance of a particular string-structure, established 
in (Holland, 1975), and consecutively revised (Uesaka, 1995), (Wright, 1999) - proved 
to be insufficient for analyzing the GAs, most of the theoretical approaches moved onto 
the convergence theorems of stochastic processes, and especially to the ergodic 
theorems from Markov chain (MC) theory. 

In this regard, the first attempts were concerning the theory of finite, homogenous 
MC only (Goldberg et al., 1987; Aarts et al., 1989; Eiben et al. 1990; Hom, 1993; 
Suzuki, 1993; Rudolph, 1994), but they evolved also to the study of inhomogeneous 
(Davis et al., 1993), or infinite models (Qi et al., 1994). Within this section we shall 
survey the main convergence results for the finite, homogenous algorithm (w.r.t. its MC 
model) on the optimization problem (1 ), indicating also the major flows of this theory 
and some future research directions. For an extensive tour d'horizon on finite MC 
results in Evolutionary Computation we recommend the recent paper of Rudolph ( 1998) 
and the references within. 

The hjstory of finite, homogeneous MC modeling of GAs originated in 1987, with 
the simple model introduc~d by Goldberg et al. (1987). Aarts et al. (1989) proved the 
first suffident condition for the GA convergence; despite its unpolished formalism 
(based on basic probability theory only) that result was holding the essence of all further 
convergence theorems. Nix et al. (1992) introduced a ~implified computational 



framework for the GA's model, relying on non-negative matrices and combinatorics, 
while, extrapolating the simulated annealing theory onto GAs, Davis et al. (1991, 1993) 
provided a complete formalization of the genetic operators, including both the 
homogeneous and inhomogeneous Markovian case. They made use of the Perron­
Frobenius and ergodicity theorems associated to non-negative matrices and finite MCs, 
but they could not avoid the primitive form for the transition matrix, yielding non­
convergence results only. This conclusion was independently drawn by Fogel (1994-
1995) - by proving the absorption of the canonical algorithm into the set of uniform 
populations. 

The matrix analysis of GAs came to a head when Rudolph (1994) proved that a 
canonical GA does not converge, but its elitist variant does (by 'elitist' we denote an 
algorithm which maintains inside the current population the best solution found so far, 
during its whole previous evolution). This result enlightened the ergodic theorem for 
reducible stochastic matrix, which made the difference between this paper and the 
previous similar works. This basic convergence theorem was revisited later - first by 
improving the accuracy and generality of the original approach (Rudolph, 1997), and 
second by relaxing the positive assumption on the mutation matrix (Agapie, 1998a). 
Finally, the convergence of a general GA modeled as a finite homogeneous MC showed 
to be equivalent to the condition below - satisfied in particular by elitist GAs, but not 
exclusively (Agapie, 1998b): 

Each sub-optimal state is inessential 

where 'sub-optimal' means 'worse than the global optima', and 'inessential' means that 
'there is at least an one-way path from that state to another' in the associated Markov 
transition matrix. 

Despite their indubitable correctness, we can not omit a major weakness of the 
homogeneous convergence results proved up to this moment: they are too general. 
Practically, these theorems make no difference between elitist GA and elitist random 
walk, for example. Both are convergent under the circumstances; but this does not 
correspond to the real case, where GA performs better. On the other hand, the 
Markovian models designed up to this moment were not handling the 'premature 
convergence' (that is, stagnation of the algorithm in local optima, with all chromosomes 
in the current population being copies of a single individual) of the GA, which still 
remains unsolved for common applications. The theoretical trick for surpassing this 
practical problem was relying on the mutation capability of escaping from uniform 
populations. Though correct in principle, the escape time from such a uniform 
population might be extremely large, yielding a non-convergent behavior for the GA on 
practical problems. 

Analyzing the GA's stagnation, one will see this occurring due to the small 
mutation rate (pm) commonly used in GA applications. Although, one would not 
recommend the usage of a large (initial) Pm - this would enhance the exploration 
capability of the algorithm, making stagnation impossible, but would also diminish its 
exploitation capability, making GA resemble to a simple random walk. One might 
suggest progressive decreasing Pm from a generation to another - from a theoretical 
point of view, this means passing to the inhomogeneous Markov model. But this 
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solution is not satisfactory either, as long as the generations index itself does not contain 
sufficient information in order to avoid stagnation. 

At this point it is worth noticing the analysis on premature convergence of 
canonical GA provided in (Leung et al., 1997). Building on the concept of 'degree of 
population diversity', the authors conclude their approach by proving that premature 
convergence at a chromosome position - that is, the probability for allele loss to occur at 

that position - decreases with the population size, and increases with I Pm - v~ . The 
suggestion is straightforward, even if it goes beyond the MC framework of the 
canonical GA: Use the population diversity as a quantitative measure to prevent 
premature convergence by adaptively varying mutation probability. 

However, this .is the case in practice, where many of the GA designers allow p,,. to 
be (self)-adaptive, related to the diversity of the current population or to the algorithm's 
stagnation during several generations. But these 'smart', adaptive GAs have not been 
modeled yet by means of stochastic processes - even if the adaptation principle receives 
a steadily growing attention in the Evolutionary Computation area, see e.g. (Back, 
1992). 

At a closer look, the previous MC-based approaches owe their deficits to the very 
definition of the MC: transition at time n+ I is conditioned by the chain's position at 
time n, alone. Referring to GA, this means that evolution from a population to another is 
conditioned by the current population only - in the homogeneous case, with the 
unpredictable (thus useless) aid of time changes - in the inhomogeneous case. Such a 
model seems to offer insufficient information for avoiding stagnation in sub-optimal 
points; consequently, one can expect no new results to the convergence issue from MCs. 
Making a step further in the theory of stochastic processes, we expect better theoretical 
results from the random systems with complete connections, a non-trivial extension of 
the Markovian dependence, accounting for a complete, rather than recent, history of a 
stochastic evolution (losifescu et al., 1990). 

3 Applications 

3.1 Solving Systems of Fuzzy Relational Equations 

Following (Agapie et al., 1997b), we illustrate first the efficiency of GAs on the 
problem of solving a system of fuzzy relational equations. 

The basic assumptions are the following: each equation has at least a solution, but the 
entire system has none. Solving this kind of systems is of real interest - on one hand 
because of their wide applicability (e.g. in fuzzy logic inference, in modelling fuzzy 
control systems) and on the _other hand because of the lack of exact solutions in most 
real applications. 

Let us consider a set of pairs of fuzzy sets (Xk, Yk), for k= 1, 6 
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x = [ 1.0 0.4 0.3 0.1 
0.4 1.0 0.6 0.4 
0.5 0.5 0.8 0.9 
0.6 0.4 0.7 1.0 
0.9 0.6 0.4 0.3 
0.5 0.6 0.8 1.0 J 

y = [ 0.5 0.5 0.7 1.0 
0.3 0.3 1.0 0.9 
0.4 0.2 0.2 0.6 
0.5 0.6 1.0 0.3 
0.4 0.3 0.5 0. 7 
1.0 0.6 0.3 0.2 J 

We examine the system of induced equations {Xk o R=Yk . k=l,6}. One can easily 
check that each equation, treated separately, has a solution, yet the whole system has no 
solution. Applying a classical (probabilistic) algorithm for obtaining an approximate 
solution for the system, the following fuzzy relation has been obtained: 

R = [ 0.40 0.30 0. 70 0. 70 
0.40 0.30 1.00 0.90 

0.40 0.30 1.00 0.60 
0.40 0.60 1.00 0.60 l 

with the performance index calculated like an averaged Hamming distance between 
fuzzy sets Q = 0. 70. Applying a GA - for each column of the matrix R - we obtained, 
after a relative small number of iterations (-10

3 
, while the size of the searching space is 

-10
7

) the following matrix, with a better performance index: Q= 0.60. 

R = [ 0.40 0.37 0.70 1.00 
0.37 0.30 J.00 0.90 
0.35 0.00 0.25 0.37 
0.50 0.60 0.25 0.60 l 

3.2 Economic Forecasting 

The second GAs' application presented here is from a more difficult area: the one of 
time series forecasting, with case study of an economic time series (Agapie et al., 
1997a). 

When one deals with short-length, non-stationary time series with seasonal 
components, the statistical procedures or even the neural networks approaches may 
prove to be unsatisfactory. We present in this section an alternative method, based on 
Genetic Algorithms, stressing their applicability on prediction tasks, especially on those 
requireing a large number of parameters. 

Without introducing the specific forecasting methodology (we only notice that the 
prediction methods we used are usually appealed as Holt, and Holt-Winters), we confine 
ourselves to illustrate the GAs' performance in economic forecasting by two examples 
of micro-economic time series. 

In fig. I is depicted a GA-forecast on a classical example, while in fig.2 is 
represented a concrete example from an Airlines company, with data corresponding to 
the year 1995. In both cases, the data was split in two parts: a training set and a test set -
as is the standard procedure in machine learning, neural networks etc. 
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Fig. 1: GA forecast on a classical time series - © 1997 IEEE, reprinted by permission. 
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Fig. 2: GA forecast for an Airlines company - © 1997 IEEE, reprinted by permission. 
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4 Conclusions 

We conclude this paper by stating that Genetic Algorithms perform well on multi­
parameter optimization, especially when other (classical) methods fail due to the 
complexity I unknown character of the fitness function. 

However, considering the recent 'No free lunch theorem/or optimization' paradigm 
- introduced by Wolpert et al. (1997), one cannot expect a single algorithm to work well 
on any problem. This is why, from a practical point of view, several optimization 
algorithms must be considered when facing a specific task. They could be used in 
combination (and there is a lot of experimental work on hybrid GAs), or they could be 
modified in order to gain better behaviour on some problem class (and there is a history 
for adaptive EAs as well). 

On the other hand, we must admit that the GAs theory is still far from the real 
demands, the theoretical outputs onto practical applications being insignificant for the 
time being. Yet, some steps toward a consistent theory of Genetic (or, even more 
general, Evolutionary) Algorithms have been already made, and we provided a brief 
review of this theory, confining ourselves to the finite, homogeneous Markov chain 
modeling. 

The extension of this theory to the case of continuous-space, homogeneous Markov 
chains has been done by Rudolph (1997; Back et al., 1997), providing sufficient 
convergence conditions in terms of 'irreducible kernels' (Nummelin, 1984). 

Not far from the Markov theory, new results could come by introducing the 'random 
systems with complete connections' (losifescu et al., 1990) as a new analysis tool for 
GAs; some results in this directions have been obtained, up to a close model and 
sufficient convergence condition for a mutation-adaptive GA (Agapie, 1999a, 1999b). 

The more practical problems of computing convergence rates and rigorous hitting 
times for Evolutionary Algorithms have also been approached, by means of statistical 
(Beyer. 1995), respectively stochastic analysis (Garnier et al.. 1999), to give only two 
representative examples. 

Nevertheless, one should expect from an 'algorithmic' theory to provide certain 
function classification and indicate which type of algorithm should be applied for each 
class. We may anticipate that this will be the main effort of future research in Genetic 
Algorithms. 
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