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Abstract

This paper deals with an introduction to computing anticipatory systems starting with Robert
Rosen's definition of anticipatory systems. Firstly, the internalist and externalist aspects of
anticipation will be explained at an intuitive point of view. Secondly, the concepts of incursion
and hyperincursion are proposed to model anticipatory systems. Thirdly, a simple example of a
computing anticipatory system will be simulated on computer from an incursive harmonic
oscillator. This oscillator includes an anticipatory model of itself in view of computing its
successive states.
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l. Introduction

In this introduction, I would like to define "computing anticipatory systems".
With computing power, systems are able to anticipate. Computation is not only related to
"artificial computers" like a personal computer but also to natural systems which perform
computations.

The verb "anticipate" comes from Latin word "anticipare" which means "to take before". "To
anticipate" means to realise beforehand, to foresee, to look forward to, to act in advance to
prevent, to forestall.

Robert Rosen (1985, p.341), in the famous book Anticipatory Systems'lentatively defined the
concept of an anticipatory system: a system containing a predictive model of itself and/or of its
environment, which allows it to state at an instant in accord with the model's predictions
pertaining to a later instant."

Robert Rosen considers that anticipatory systems are related to the final causation of Aristotle.
A future cause could produce an effect at the present time. Then the causality principle seems
reversed. Robert Rosen relates some anticipatory systems to feedforward loops.

So, for such anticipatory systems, it is perhaps better to speak ofa finality principle and to see
the process at a non-local or global point of view instead of seeing locally the causality
process. In rybernetics and control theory a goal and objective, defined at the present time by
an engineer, drives the future states ofa system by feedback loops.
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It is interesting to point out that in physics, recursive causal systems can be formally expresses
in a global and equivalent way from the principle of least action of Maupertuis.

An important class of anticipatory system is a system with multiple potential future states for
which the actualisation of one of these potential futures is determined by the wents at each
current time. Such an anticipatory system is thus a system without an explicit future objective.

An anticipatory system could be also a system which contains a set of possible responses to
any potential or, everL unpredictable external events. In this sense, the co-operative dynamics
of the immune systems, for example, is a selÊorganising system which can be considered as an
anticipatory system. Then all learning and evolutionary systems belong also to this class of
anticipatory system.

In this paper, I will begin to define anticipatory systems in considering the externalist and
internalist aspects of anticipation from two simple examples.

Then I introduce the concepts ofincursion and hyperincursion. An incursion is an inclusive or
implicit recursion for which the state of a syste,m is a function of past, present by also future
potential states. Hyperincursion is an incursion with multiple solutions.

Finally a simple example of a computing anticipatory system will be simulated on computer in
considering an incursive harmonic oscillator.

2. Externalist and Internalist Aspects of Anticipatory Systems

Externalist anticipation refers to external events which can be anticipated.

For example: I take my umbrella because I anticipate a wet weather today. This is related to
forecasting or prediction of the weather for the near future as a function of the configuration of
the sky at the present moment. So, we have created in our mind a model of the evolution of the
weather from an initial condition at the present time which permit us to extrapolate to the
future. So, we can say that the prevision of the bad weather in the future is the cause of a
present effect which consists in taking our umbrella. But, the prevision of the future is not a
certitude: perhaps the weather will be sunny. So the future is potentially multiple and the
realisation at each moment collapses all these possibilities to only one. The present and the past
are actually unique meanwhile the future is always potentially multiple. A priori, the future
states are potentially multiple and a posteriori, there is only one realised present state.

A paradox appears in the case of a sunny weather: indeed, the effect "to have the umbrella"
will have no more its cause "wet weathet'' a posteriori. In fact, the actual cause is the act of
prevision (a computation) which was performed before the effect 'to take the umbrella". The
result of the anticipatory computation is also memorised in our brain: so, three types of
memory must be defined: a direct memory for present events, a long term memory for past
events, and an anticipatory memory storing the future events. The future events can be
potentially multiple but their memorisation is actuafly real. With the evolution of the current
time, the multiple potential events in this mçmory of the future collapse to unique actual events
which will enlarge the long term memory.



Internalist anticipation deals with this memory of the future. But also with the anticipation of
events we create ourselves,

For example, the organisation of this conference CASYS'97, August ll-15, 1997, was
planned one year ago. The cause "the conference" leaded to many effects in the past, that is to
say during the year before its practical realisation. Each participant and author had managed to
prepare their travel and also to write their papers. During one year, all the participants ofthis
conference have had memorised in their memory of the future, the potential future event "the
conference CASYS'97". There is a difference between the act to take an umbrella and to
manage for attending a conference. In the first case, the anticipation is based on an external
event "the weather", and in the second case, the anticipatory events are constructed by the
actors themselves (the men). This is the internalist anticipation. In the first case, the externalist
anticipation is dependent ofthe environment and in the second case, the internalist anticipation
creates its own future events and manages to meet these anticipated events. [n the internalist
anticipation, there are one or several future potential objectives. the realisation of one of which
being practically a certitude. I assume that each ofthe readers have an agenda and practically
all the appointments written by anticipation in this agenda become actual realisations. The
content of the agenda can be dynamically separated in three parts at each current time. The
past events are a memory of the realised appointments. At the current time, the appointment
are realising positively or not. The future appointments are potential memorised events.

In general, any human action at each current time takes into account the past events, the
current situation in the environment, and the future anticipated events.
The anticipation in human actions deals with conscious and intentionality, a selÊreferential
finality.

Anticipatory systems deal with the question'WHY ?" related to a finality: "Why did you take
your umbrella, the weather is so sunny?", "Because I thought that the weather will be bad".
Anticipatory computation deals with potential final conditions. This is the basis of the
intelligence and comprehension: "to comprehend" which means also "to include as a whole" .

Robert Rosen tried in his book anticipatory systems to build a logico-mathematical framework
for taking into account explicitly the "why ?" in the reasoning task of intelligence. Until now, iÎ
seems that no formalism exists to explicit the why. This belongs only to the language.

Classical systems deal essentially with the question "HOW ?". Recursive computation is related
to a current computation as a function of past computations. The explanation is to be found in
the past memory of the system and for Newtonian Systems, in the actual initial conditions.

What means computing anticipatory systems for systems without a conscious and
intentionality? The why does no more exists. The *how' is the subject of science in explaining
natural systems by using mathematical models, for example. But the question "why" is the
subject of philosophy. Science transforms the "why'' into "hod' by recursive arguments. Until
now, only recursive functions are computable by artificial devices, the computers.

Robert Rosen in his book anticipatory systems says that what differentiates living systems and
inorganic systems is anticipation. He considers the learning processes, for example in neuronal

systems, as anticipatory systems. More, he proposes the same model for learning processes and

evolutionary processes, based both on anticipation.



Many Biologists would prefer Lamarckian comprehension of evolution answering the "why''
rather than Darwinian explanation answering the "how" question.

At my point of view, Darwinian and Lamarkian systems are two complementary models of
evolutionary natural systems, similarly to the lwo descriptions of physical systems, on one
hand, from a causal principle and, on the other hand, from a least action principle.

In the neo-Darwinism, random mutations create different species which are then selected by
the environment. Thus a neo-Darwinian system is an anticipatory system with mutiple potential
mutations which are selected by the environment.

In the Lamarckism, species possess organs with multiple potential functions which are then
selected by the environment. Consequently, the function actualises particular functions for each
organ. Thus a Lamarkian system is an anticipatory system with multiple potential functions and
the selection by the environment actualises some of these.

3. The Concepts of Incursion and Hyperincursion.

Classically, dynamical discrete systems are defined in a recursive way of the type

x ( t +  I  ) = f t  , x ( t -  I  ) . x ( t  ) . p l ( l )

where x is the state variable of the system, t the time and p the control parameter. The future
state of the vanable x at time t+l is a function f of this variable at past andlor present times.

An incursion is an inclusive or implicit recursion (Dubois, l996ab):

x ( t + l  ) : f t  x ( t - 2 ) , x ( t - l  ) , x ( t ) , x ( t + 1  ) ,  . p 1 (2)

is an extension of recursion. An incursive system computes the future state of the variable x as
a function f of this variable at past and/or present times but also at future times.

A simple example of incursion is the following inclusive (or implicit) recursion which is an
extension of the recursion in the following way

x ( t +  I  ) : f l x ( t  ) ,  x (  t +  I  ) ,  p l ( l )

where the value of the variable at each instant t + I is a function of the value of this variable at
the preceding time step t, but also at time t + l. This defines a self-referential system which is
an anticipatory system of itself. The function f describing the dynamics of a system contains a
model of itself; indeed x( t + I ) in the function f can be replaced in the following way:

x ( t +  I  ) = f  [ x ( t ) ,  f  [ x ( t  ) ,  x ( t +  I  ) ,  p ] ,  p l  ( 4 )

where the system explicitly contains a prediitive model of itself.

There is a paradox which in fact is easy to understand. If an anticipatory system contains a
model of itself, this means that the model of itself must include also the model of itself and so
on until infinity. There are an infinity of embedded models in each other. Mathematically, there
is a way to solve such a paradox. Such an anticipatory system has fixed points which
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represents its implicit finality or teleonomy. The goal or objective of this anticipatory system is
not explicitly imposed from outside the system like in control theory but is determined by the
system itself

Let us give the simple example of the well-known chaotic map given by the discrete Pearl-
Verhulst equation

x( t+ l ) :ax( t )  [  I  -x( t ) ]  (5)

where x is the population variable, t the time and a the gowth rate of the population with a
saturation effect given bV s() = t I - x(t)1. For a varying from 0 to 4, this system shows fixed
points, bifurcations and then chaos.

Let us construct an anticipatory Pearl-Verhulst system in considering an anticipatory saturation
effect given by s(t+l) = [ I - x(t+l) ]. Eq 5 becomes then

x( t+t ; :ax( t ) [  I  -x( t+ l ) ]  (6]

This incursive equation can be transformed to the following recursive equation

x( t+ l )=ax( t ) / [  I  +x( t )  ]  (7)

where chaos is no more oresent.

In some caseg there are multiple potential future states at each time steps: this is what I
defined by hyperincursion. A simple example is given by the following hyperincursive equation

x(t) : a x(t+l) [ I - x(t+l) ]

which can be transformed to the hyper-recursive system

x ( t + l ) =  |  / 2 l r  t . / t  I  - 4 x ( t ) / a l I

(8)

where there are two solutions given by the sign pluVminus at each time steps. Such an
anticipatory system shows successive biflrrcations. Each bifurcation presents two potential
future branches and if the system selects itself a branch of the bifircation" a self-organising
anticipatory system is defined. lfthe system possesses a selection rule at each current time, the
set of potential solutions collapses to one realised solution. This is selected by environment for
externalist evolutionary systems, and by the system itself for internalist self-organising systems.
Without selectioq this system will cumulate in itself all the potential solutions. This is similar
to the immune system.

The selection process could be explicitly related to objectives to be reached by the state
variable of this system. This is important to point out that the selections do not influence the
dynamics ofthe system but only guide the system which creates itself the potential futures.

This hyperincursive anticipatory system was proposed as a model of a stack memory in neural
networks @ubois, I 996p).

(e)



in defining by x@ the position and v(t) the velocity of a particle in a harmonic potential, where t is
thetime and o the pulsation. The analytrcal solution ofthis system is

4. Hyperincursive Discrete Harmonic Oscillator

Let us consider the classical ditrerential equations of a harmonic oscillator

dx(t)/dt= v(t)
dv(|/dt=-ro2.x(t)

x(t)=x(0) sin(ot+ô)
v(t): o. x(O).cos( ot + { )

dx(t) / dt = [ x(t+Â$ - x(t) ] / ̂ r
dv(| i dt = [ v(t+Ât) - v(t) ] i At

x(t+Ât) =(1) + Ât.v(t)
v(t+Ât) = v(t) - .Ât.n2.x(t)

x(t+Ât) =;(1) + Ât.v(t)
v(t+Ât) = (0 - .^t.CI2.x(t+Ât)

v(t+40 : v(0 - .At.o'.x(t)
x(t+Àt) = x(t) + ̂ t.v(t+Âg

(l0a)
(lob)

(l la)
(1rb)

(rza)
(l2b)

(l3a)
(l3b)

(laa)
(l4b)

(15a)
(lsb)

which is given by oscillations of period T :2 nla, the amplitude of which being determined by the
initial position and velocity x(0) and v(o) at time t = 0. This system slnws an oôital stâbilify.

Numerical simulations on computer of this systan is only possible from a discrete model of these
eqs. lOab.

From the classical definition ofthe discrete time derivative

where At is a finite time interval, eqs. l0 ab can be written in the following finite difference equation
system

Unforn-rnately, with such a discretisatioq the harmonic oscillator does no more show an oôital
stability. This recursive systun is unstable in preserrting oscillations with growing amplitudes.

In view of keeping the sarne stability prop€rty of the original harmonic oscillator, I have proposed to
compute the discrete equations in a sequential order from the following model

where the value of the position x(t+AQ is propagated to the equation of the velocity. This is what I

called an incursive systerq because the value of the velocity at the future time st€p v(t+^t depends
on the future value of the position x(t+Ât). This is an inclusive recursio4 called incursion. Such an
incursive harmonic oscillator shows an oôital stability.

In fact, there is a second incursive harmonic oscillator in propagating the value of the velocity to the
equaton ofthe position in the following way



This second incursive harmonic oscillator shows also an orbital stability. So we define such
incursive systems, a hyperincr.usive system hause there are two solutions.

There are some remarkable properties ofthese hyperincursive eqs. 14 ab and l5 ab.

Firstly, in rçlacing At by - Ât in eqs. l4ab, eqs. 15ab are obtained. The two incursive systems l4ab
and l5 ab are time invertible of each other.

Secondly, the incursive system corresponds also to an implicit recursion in using forward and
backward discrete derivatives.
Eqs. l2ab define forward discrete derivatives. Backward discrete derivatives are defined by

in replacing Ât by - At in eqs. l2ab. eqs. 16ab are obtained.
In making a time translation - At in eq. l4b, eqs. l4ab become

x(t+At) = x(t) + At.v(t) (l7a)
(t):v(t-Ât)-.Ât.rrr2.x(t) (l7b)

where we recognize the forward derivative in eq. l7a and the backward derivative in eq. 17b.
Similarly in making a time translation - Ât in eq. l5b, eqs. l5ab become

v(t+^t)=v(t)-.4t.02x(t) (lSa)
x(t) = x(-40 + Ât.v(t) (18b)

where we recognize the backward derivative in eq. l8a and the forward derivative in eq. 18b.
So these hyperincursive systems mix forward and backward discre*e derivatives.

Thirdly, in replacing v(tlofeq. lTamq- l7b, we obtain

dx(t) / dt : I x(t) - x(t-Ât) ] / at
d(0 i dt = [ v(t) - v(t-ÀO ] / Ât

x(t+Ât) - 2.x(t) + x(t-ÀÎ) : - At'.o-.x(t)

which is the discrete model of the differential harmonic oscillator.

d2x(t) / dt2: .- r,l2.x(t)

In replacing v(t) of eq l8b in eq. 174 we obtain

x(t+At) - 2 x(t) + x(t-Ât) : - Ât2.o:.x(t)

(l6a)
(l6b)

( lea)

(20)

(leb)

which is the same equation as eq. l9a. This eq. 19 is time invertible in replacing Ât by - Ât.
As a conclusioq when only one variable is taken into account, the position for examplg the two
differert incursive eqs. lTab and l8ab give the same eq. 19. If we like to know at the same time the
position and the velocity of the particlq there is an uncertainty due to the two t)?es of incursive
equations. But when we tke to know the wolution of only one variablg the position or the velocity,
there is no more uncertainty.



Fourthly, the hyperincursive models are computing anticipatory systems. hdee4 in eqs. l4ab, the
velocrty is computed as a function of the position at a later time step. In eqs. l5ab, the position is
computed as a fi.rnction ofvelocity at a later time stç.

Fifthly, a constant of movernent can be defined in relation with the enerry.
In adding eq. l4a multiplied by crr2.x(t+Ât/2 and eq. l4b multiplied by v(t)/2, the following equation
is obtained:

where C is a constânt of movement. At the limit of Ât tending to zero, this constant is the total
enerry E ofthe particle that is the kinetic energy T plus the potential enerry V:

a2.x21t+Lty2 + v(t+Ât).v(t) lz: a2 .11t7/z + v(t).v(t-Ât)/2
or

a' .*ç+ntyz + i1t+Lt)/2 + ̂ t.o:.x(t+Ar) v(t+Lt)/2 :

Ê.*()tz + i(t)/z + Àt.co:.x(t).v(t)12 = C

cot.x2(t+l0lz + l1t+lt/2.: <,r:.x21t;/2 + 'l1t1tz = T + v = E

So, the constant of movement of the incursive system l4ab is

C = T + V + I : E + I : E + Ât.ro:.x(r).v(r)/2

(20a)

(2ob)

(2t )

(22)

and the constant of movement of the second incursive system l5ab is found in replacing Ât by - Ât
nq.22

C : T + V - I = E - I : E - ̂ r.@r.x(r).v(r)/2 (22a1

where I, an interaction energJ, is related to the product of the position x(t) and the velocity v(t) of
the discrete particle. This interaction enerry measures the deviation between the energy of a
continuous particle and the discrete hyperincursive particle. The average value of the constant of
movement is equal to the energy ofthe continuous particle because the interaction energies are of
opposite signs. The frequency of oscillation of this interaction enerry is the double of the eigen
frequancy ofthe harmonic oscillator 2.01. The temporal average ofthis interaction enerry is zero.

Finally, let us point out a rernarkable property of these hyperincursive systems. The successive
iterates ofthe incursive system 14ab can be interpreted in two different ways. Indeed on one hand,
one can plot in the phase space v(t+40 as a function of x(t+Ât), shown in Figure l. In this
simulatiorq ro2 = 0.054, Àt = I and the initial conditions are x(0) = 25, v(0) = 0.
On the other hand, one can plot vO as a function of x(t+Ât), shown in Figure 2 with the same
conditions as in Fig. 1 . In fact, this represents the simulation of eqs. 15 ab if v(t+At) is plot as a
function of x(t+Ât). This can be easily demonstrated: in recoding v(t) by v(t+Ât) in eqs. l7ab, eqs.
15 ab are obtaind that is the second incursive system.
In Figs. I and 2, the curves are not syrnmetrical due to the interaction term I.
Symmetricat solutions can be obtained in plotting the mean value of the velocity [v(t) + v(t+^0y2
as a function of x(t+At), given in Figle 3, or in plotting v(t+At) as a fundion of the mean position

ffi) + x(t+At)/2, given in Figure 4 Figure 5 gives the superposition ofthe 4 Figures 1, 2, 3, 4.
In Figure 6, the same srperposition as in Figure 5 in uking a smaller time interval ̂ t = 0.05.
All these solutions tend to the continuous soluton ofthe harmonic oscillator for Àt turding to zero.

l 0



Figure 5 Figure 6



Figures 7,8 afi 9 give the numerical simulations ofthe time evolution ofx(t) and v(t) of eqs. 14ab,
with ^t = l, at ttree diferent pulsations oz = 0.(X)54, rrr2 = 0.054 and or2 = 0.54, respectively with
the initial conditions x(0):25, v(0):0.
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ln these Figs. 7, 8 and 9, time steps are the horizontal axis and x(t), dt) are the vertical axis. At low
frequency, the curves are continuous and at high frequency, the pattem is complex.
Figures l0 and I I give the numerical simulation of eqs. 14ab for zuccessive values of the frequency:

r'12 = 0.54 + r/105, n = 1 to 340 with Ât : 1. In Figure 10, the horizontal axis gives the iterates of the
position x(t) as a function of the frequency given by the vertical axis, from top to bottom. Figure I 1
gives the corresponding iterates ofthe velocity v(t).
It can be seen a well organized pattem with selÊsimilar properties. An enlargement of a part of the
pattern in Figure l0 is given in Figure 12 which shows a similar pattem.

Figurc l0

Figurc ll

I J



Figure 12

5. Conclusion

This paper shows some remarkable properties of a simple anticipatory system given by
hyperincursive discrete harmonic oscillators. The position or the velocity of a particle in a
harmonic potential is a function of the velocity or the position of this particle at a later future
time step. The same hyperincursive system gives the dynamics of the discrete harmonic
oscillator in plotting v(t+^t) as a function of x(t+Ât) and its time inverse in plotting v(r) as a
function of x(t+Ât) in the phase space. With small intervals of time, the continuous harmonic
oscillator is obtained. For the interval of time tending to zero, the discrete hyperincursive
harmonic oscillators tend to the classical differential equation, where the anticipatory
hyperincursive property disappears.
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