
Problem solving based on error minimization in cellular
systems with phase fields instead of connections

Abstract

Philip Van Loocke
Lab Applied Epistemology, University of Ghent

Blandijnberg 2, 9000 Ghent, Belgium
philip.vanloocke@rug.ac. be

It is explained how a cellular automaton can grow patterns that correspond to trained
networks. Since a pattern corresponds to a map between an n-dimensional and an m­
dimensional space, such a pattern can be called a 'meta-pattern'. The problems solved
by connectionist multi-layered networks can be solved by the automaton too. In
addition, it allows for a straightforward representation of patterns with internal
bindings, even if such bindings are organized at several, hierarchically related levels.
Further, if a problem has symmetry, then the form corresponding to its solution usually
is aesthetically attractive. This contrasts with the black-box nature attributed to the
classical connectionist approach. Since problems with symmetry are often called
'beautiful problems', the present system gives beautiful solutions for beautiful
problems.
Keywords: Cellular automaton, binding problem, connectionism, growth, visualization

1. Introduction

Fractals and cellular automata enjoyed a pretty large amount of scientific attention
during the past two decades (Gutowitz, 1991). They showed beautiful patterns to a
relatively wide audience, and the mathematical as well as numerical analysis of these
patterns has been eagerly developed. In case of fractals, the relation with chaos theory
resulted also in a link with physical, social, ecological, and other types of complex
systems. However, in artificial intelligence, the influence of fractals and even of
cellular automata has remained relatively weak. Other approaches, such as
connectionism, or fuzzy rule systems, have been applied much more often. But in this
paper, the following claims are put forward:

a. Growth processes in cellular automata are able to carry out complex learning
tasks, comparable to the ones carried out by the famous backpropagation algorithm.

b. The solution of a complex learning task that is found by the cellular automaton is a
pattern with fractal properties. Hence, a pattern plays the role of a trained network.
If the task has symmetry, then the pattern is often ofa special aesthetic quality.

International Journal of Computing Anticipatory Systems, Volume 7, 2000
Edited by D. M. Dubois, CHAOS, Liege, Belgium, ISSN 1373-5411 ISBN 2-9600179-9-4

c. This pattern, in turn, can be memorized in a connectionist way. Since information
with arbitrarily complex internal structure can be mapped on a network, the
automaton can memorize structured information in a content addressable way.

These points show that cellular automata and fractals do have to offer something to
cognitive science, in special because connectionism is still struggling with point c.

The paper is organized as follows. In section 2, we introduce the basic concepts of the
automaton. Section 3 shows the resulting forms for a familiar non-linear problem.
Finally, section 4 applies the method to a problem in which a system has to learn
information with complex inner structure.

2. Phase fields and growth in cellular automata

In a connectionist network, some cells are input units, some are output units, and some
are none of this, the so-called hidden units. The parameters that are adapted during a
learning process are the connections between the cells. In the popular backpropagation
algorithm, the learning process does not recruit new cells, but the connection matrix
between the cells is adapted in its entirety at each step during the learning process
(Rumelhart and Mc Clelland, 1986). These properties contrast with the cellular
automaton approach of the present paper. All cells of the automaton are input as well as
output cells. They all receive the same input, but their outputs are usually different. A
simple operation turns the outputs of the individual cells into the output of the total
network There are no weights to be adapted. Rather, every cell in the automaton
corresponds to a fixed combination of weights, and a growth process determines if a
cell is included in the solution of a problem. Phase fields determine the weight
parameters in the cells.

A phase field is a scalar field that has a value in every cell of the automaton. Suppose
that the network has to solve a learning task in which an m-dimensional space is
mapped on an m-dimensional one. Then, there are n+m phase fields defined over the
automaton, one for every input dimension, and one for every output dimension. The i-th
phase field corresponding to an input dimension is denoted fi(x,y), where (x,y) are the
coordinates of a cell. A phase field has an origin. If (xi,Yi) is the origin of ii, then the
explicit expression for fi is given by: fi(x,y)=cos(d27t/c), where d is the Euclidean
distance between (xi,Yi) and (x,y). Similarly, the j-th output phase field is given by
gj(x,y)=cos(d27t/e), where d is the Euclidean distance between (x,y) and the origin of
the field (Xj,Yj); c and e are system parameters. The fields fi and gi are called phase
fields because they are not modulated by an amplitude that decays with distance.

Suppose that a problem has a single-dimensional output space (so that m=l), and
suppose that an input vector is denoted (a1,a2, .. . ,an). This input vector is presented to all
units of the automaton. In every unit, an output value is determined in accordance with
the expressions:

180

net= Lti.a; (1)

and

o = -1+2/(l+exp(-a.net)) (2)

These expressions are familiar from connectionism. They mean that every unit
performs a linear operation on the input, followed by a strongly non-linear squashing
operation that draws the output between -1 and + 1. A cell can be active or not active. In
both cases, the output is determined by eq. 2, but only active cells contribute to the
output of the entire automaton. In order to obtain this output, the outputs of the cells
that are active are multiplied with a constant number w, and subsequently summed. The
collection of active cells is called a form 'F' . Hence, the output of the entire automaton
is:

(3)

If the output space has m dimensions, with m> 1, then the quantity o in a unit is
multiplied with all fields gj, so that m outputs become associated with an active cell .
The j-th output value associated with a form F is given by

(4)

These elementary concepts are sufficient to explain how the automaton carries out its
learning processes. Consider, like in connectionism, a supervised learning task.
Suppose that a training set has N input-output pairs, and that there is a test set with M
such couples. The learning process in the automaton corresponds to the growth of a
form. The form starts in a singe cell . This ce11 is included in the form, and the effective
outputs produced for the training couples determine the initial value of the error
function associated with the form. Like in connectionism, the error function can be
determined as the summed squared differences between effective and target outputs for
all training couples and for all output dimensions. Then, the square outside boundary of
the starting cell is considered. The cells of this outside boundary are examined one after
another. If the inclusion of a cell in the form leads to a lower value for the error
function, the cell is effectively included in F. Subsequently, the outward boundary of
the square with side 3 is considered, and so on. Gradually, the square with inspected
cells grows, and so does F. Like in connectionism, the growth is stopped when further
inclusion of cells in F leads to an increase or stagnation of the value for the error on the
test set.

181

3. Application of the method to a concrete problem

Consider the I 0-dimensional parity problem. This problem defines a mapping from a
JO-dimensional space to a I-dimensional space. The input-vectors considered are
confined to vectors with binary components with values 0 and I . The output generated
by an input vector is equal to I if it has an odd number of I's; else the output is 0. The
problem is highly non-linear, since vectors that differ by a single value only are mapped
on opposite outputs. For this reason, it is a tedious affair to get a neural net trained for
parity problems with high-dimensional input spaces.

The first step in the application of the method of section 2 is to put the origins of the
phase fields on the plane in which the form is grown. Suppose that the origins of the
phase fields are put on the edges of a pentagon with a side of 750 cells, and that the
following system parameters are chosen: a=IO, c=45 and w=0.0002. Then, after 70 I
single-cell increases of the side of the square of inspected cells, the form of Figure I
results. This form is a perfect solution of the parity problem. The error function decays
from an initial value of 5I2 to a value of 9, and all inputs are mapped on the correct
outputs.

The procedure of algorithmic growth can be subject to a number of variations. For
instance, instead of inspecting new cells only, old cells can be reexamined at any stage
in order to inspect if a change of their activation would lead to a decrease in the error
function. This way, one usually obtains smaller forms that solve a problem. For
instance, suppose that, every time the square has extended its side with a size of 20
cells, the older cells are reexamined, and that all other parameters are the same as in
case of Figure 1. Then, one obtains the series of forms of Figure 2 after the square has a
side of I 0 I, 20 I and 40 I cells. The latter form is a perfect solution of the problem.

It is not indispensable to make recourse to a growth process in order to solve a problem
with a form. One can also select a single cell randomly at every time step, and decide to
include this cell if it leads to a decrease of the error function. A form that solves the 9-
parity problem and that is generated in this way is given in Figure 3. Grown forms,
however, have an important advantage in cognitive contexts. Suppose that one wants to
save the patterns obtained for a series of problems in a connectionist network. This is
easily realized by using, for instance, the Hebbian learning rule. In case of a growth
procedure, forms have two relevant properties: i) they are deterministic and ii) related
problems are solved by forms with large overlap. The latter property is important, since
it allows that typical connectionist properties like prototype formation and content
addressability can be put at work. Suppose that a set of problems is solved by forms
with overlap. Suppose that a related problem is given to the network. Then, it can grow
a form on basis of the set of input-output pairs corresponding to the problem, but it can
also constrain the form corresponding to the problem by making recourse to forms that
have been memorized. Connectionist prototype effects entail in this situation that
common cores of forms will have an inclination to be present in solutions of related

182

problems. This may be of help, for instance, when a particular problem has to be solved
for which the number of input-output pairs is relatively low (For more examples, for
different field definitions, as well as applications of the method of section 2 to function
approximation problems, I refer to Van Loocke, 1999a,b,c,d,e).

Fig. 1: Gray-scale values indicate the reduce in error by inclusion of an active cell in
the form, or increase in error if a non-active cell would be included in the form

4. On the representation of information with complex inner structure

Consider a domain in which patterns have internal structure, such as grammar, or
hierarchically organized visual systems. Whatever the inner structure of a pattern, it can
always be mapped on a function. If the form corresponding to the function is grown,

183

then this form can be taken as the pattern that corresponds to the hierarchical structure,
and it can be stored in the usual connectionist way in a network.

Fig. 2: Same conditions as in Fig. I, but for reexamination of older parts

Suppose, for instance, that patterns have a tree-like hierarchical inner structure, and that
this hierarchy is organized on k layers. For simplicity, it is assumed that every layer in

184

Fig. 3: Solution of9-parity problem for random growth condition. Gray-scale values
indicate ifthe cell is in the form or not

this hierarchy has q nodes that can have representational function. Then, a structure that
is represented by a set of trees defined over these layers can always be mapped on a
function with q.(k-1) couples. The first element of such a couple specifies a node; all
nodes, except the ones of the top layer, correspond to a couple. The second element
specifies the nodes of the next layer that receive a branch from the former node. More
specifically, the first element of a couple is a vector with q+(k-1) components, and the
second element is a q-dimensional vector. If p<=q, then the first vector has a
component equal to 1 on the p-th and on the q+ 1-th dimension; all other components
are equal to zero. If 2q>=p>q, then the first vector has value one on the dimensions p-q
and q+2, and so on. The second vector is zero, except at the places that correspond to
the nodes of the next layer that receive a branch from the unit identified by the first
vector. Once the function has been identified, the method of the previous section can be

185

used in order to grow a form that approximates the function. Then, this form can be
stored in the automaton in the usual connectionist way.

Consider, for example, the tree in Figure 4a. It has S layers of 9 elements, so that it can
be mapped on a function with 36.(S-1)=36 couples. The first element of such a couple
has 13 components ; the second element is a vector with 9 components. Hence, for this
function, the input space has 13, and the output space with 9 dimensions. In the
illustration that led to the form of Figure Sa, the phase fields corresponding to the first 9
input dimensions were put on a horizontal line 100 cells above the starting cell. The
next four input dimensions were put at SO and 1 SO cells above the starting cell, and SO
and 1 SO cells below the starting cell, respectively. The origins of the nine phase fields
corresponding to the output dimensions were also put on a horizontal line. This time,
the line was 100 cells below the starting cell. After the form had grown until it covered
a square of 479 cells, the error had decreased form 38 to 2.1. Similarly, Figure Sb
shows the form corresponding to the hierarchical structure in Figure 4b. We notice that
these forms have high overlap (more exactly, their have an overlap of 0.77,
notwithstanding their relatively low density). Hence, we observe that related
hierarchical structures are mapped on forms with large overlap. Since, in
connectionism, overlap between patterns is the basis of prototype effects, as well as of
the formation of abstract cores or of conceptual taxonomies (Van Loocke, 1994;
Rumelhart and Smolensky, 1986; Bechtel and Abrahamson, 1984), we see that the
present method allows such effects to be created for patterns with complex
hierarchically organized internal structure. This may mean, for instance, that sub-trees
that are often present in a particular context have especially strong tendency to
influence the flow of activation that relates to the inner structure of new patterns.

Fig. 4: Two trees to be transformed in activation patterns

186

Fig. 5: Patterns of activation corresponding to the tree structures of Fig. 4

5. Discussion

The method explained shows that growth in cellular automata does have cogmtlve
relevance. Not only can such growth solve problems that are traditionally presented to
multi-layered neural networks, one of its striking features of is that a pattern of
activation plays the role of a connection matrix in a connectionist context. Such a
pattern of activation, in tum, can be stored. In this sense, a pattern of activation grown
by the automaton is a meta-pattern : it is a pattern that defines a mapping between an n­
dimensional and an m-dimensional space. Since information with arbitrarily complex
inner structure can be represented as a mapping, the present method allows a network to
store such information. Hence, the familiar connectionist properties of associative
reasoning, prototype formation, pattern completion, and so on, can be realized for
patterns with complex inner structure.

In addition, the present method gives aesthetic solutions for problems that have
symmetry. Such problems are often called "beautiful" problems. This means that
beautiful problems have beautiful solutions. The link between concrete art and problem
solving has been explored also for different field definitions, such as fields based on
iterated function systems, and fields based on Mandelbrot transformations (Van
Loocke, 1999b,e). The method described is open to other variations, each of which
gives raise to its own aesthetics. For instance, phase fields may be defined in three
dimensions, so-called teleological variations of the algorithm can be designed, and so
on (Van Loocke 1999d).

References

Bechtel, W. Abrahamsen, A. (1994), Connectionism and the mind, Oxford: Blackwell

187

Gutowitz, H. (1991), Cellular automata: theory and experiment, Cambridge: Cambridge

University Press

Personnaz, L., Guyon, I. , Dreyfus, G., (1986), Collective computational properties of

neural networks: new learning mechanisms, Physical Review A, 34, 4217- 4228

Rumelhart, D., Mc Clelland, J. (1986), Parallel Distributed Processing, 2 Volumes,

MIT Press

Rumelhart, D. Smolensky, P ., Hinton, G. (1986), Schemata and sequential thought, in:

Rumelhart, D. Mc Clelland, J. (eds), Parallel Distributed Processing: explorations in the

microstructure of cognition, Volume 2: Psychological and biological models,

Cambridge: MIT Press, pp. 423-461

Van Loocke, Ph. (1994), The dynamics of concepts, Berlin: Springer

Van Loocke, Ph. (1999a), Properties of conscious systems and teleology: a cellular

automaton perspective, Journal oflntelligent Systems, (accepted, to appear)

Van Loocke, Ph. (l 999b), The art of growth and the solution of cognitive problems, in

C. Soddu, proceedings of the 2-nd International Generative Art Congress, Milan, to

appear

Van Loocke, Ph. (1999c), Function approximation in cellular automata. Fields and

meta-patterns as methods for the representation of structural information, submitted

Van Loocke, Ph. (1999d), Problem solving in cellular automata and the problems of

consciousness, in: Van Loocke, Ph. (ed.) The nature of consciousness, Amsterdam, Jon

Benjamins, to appear

Van Loocke, Ph. (1999e), Fractals generated in cellular automata as solutions for

benchmark problems in connectionism, Fractals (accepted)

188

