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Abstract. We first discuss the importance of making a controller interpretable and give 
an overview of the existing models and structures for that purpose. We then propose an 
approach to designing fuzzy controllers based on the B-spline model by learning. Unlike 
other normalised parameterised set functions for defining fuzzy sets, B-splines do not nec­
essarily span membership values from zero to one but possess the property of "partition of 
unity". B-splines can be automatically determined after each input is partitioned. Learning 
of a fuzzy controller based on B-splines is then equivalent to the adaptation of a B-spline 
interpolator. Parameters of the controller output of each rule can be rapidly adapted by 
gradient descent. Optimal placements of the non-uniform B-splines for specifying each 
input can be found by Genetic Algorithms. Through comparative examples of function 
approximation we show that training of such a fuzzy controller generally provides results 
with minimal error. The approach can be extended to the problems of high-dimensional 
input by combining neural networks with a fuzzy control model. 

Keywords: Neuro-fuzzy system, Genetic Algorithms (GAs) , interpretability, prediction, 
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1 Introduction 

Until recently, a large part of current science and technology was based on analytical 
methods which are usually specialised for pre-defined domains. For a human-being it is 
time-consuming to get acquainted with the model, to devise the model, even difficult to 
explain a model clearly to someone else. On this problem, physicist Richard P. Feynman 
mentioned "the way we have to describe nature is generally incomprehensible to us". 
Nevertheless Albert Einstein believed "it should be possible to explain the laws of physics 
to a barmaid" . 
Among the mechanisms to interprete the nature of a process like equations, tables, flow 
charts, stories, etc., fuzzy linguistic rules and relation descriptions are easy to understand. 
For building models with training data, certain types of fuzzy rule systems like the ANFIS­
Model [4] and the B-spline model [14] have been developed which can approximate any low­
dimensional input-output functions . There are good reasons for making such a controller 
model symbolically interpretable: 
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- Linguistic modelling provides a way of transferring skills from one human expert to 
other non-experts or to robots. The transfered rules and human knowledge can be used 
to accelerate the model-building and to patch the model in the case of data deficiency. 

- Automatic learning of transparent models makes the analysis, validation and super­
vision in the model/controller development easier. By this way, a large part of design 
expenses can be shifted from humans to the computer. 

- Transparent models will have wide applications in decision-support systems. In the 
next years, most of the control of complex systems will still be semi-autonomous. 
"Human-in-the-Loop" is based on compact and summarising descriptions of a system 
model. 

New control and modelling approaches are enjoying the rapid increasing of computation 
power and memory brought by the computer technology. Advances have been made in the 
t heory and applications of neural networks and fuzzy rule based systems to the control 
of physical systems which cannot be adequately modelled by linear differential equations. 
The fuzzy rule description of a system has the advantage over neural networks that it is not 
just a "black-box". Neuro-fuzzy models integrate automatic feature extraction and learn­
ing of membership functions into a fuzzy control structure. Together with optimisation 
algorithms, which deal with local minima, semi-automatic procedures can be designed for 
constructing non-linear models and controllers which can be understood by human users. 

2 State of the Art 

2.1 Structure of Interpretable Models 

Some variances of fuzzy rule system are: additive, multiplicative and hierarchical. Fig. 1 
and Fig. 2 illustrate these structures. The solution with hierarchical structure assumes 
that the input information can be classified into groups [12]. Within each group the inputs 
determine an intermediate variable, they can be decoupled from inputs of other groups. 
To realise such a grouping, usually heuristics based on the fusion of physical sensors have 
to be applied. 
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(a) Complete fuzzy 
system with 625 rules. 

(b) Additive fuzzy system with 
35 rules. 

(c) Multiplicative fuzzy sys­
tem with 35 rules. 

Fig. 1. Fuzzy system with 4 inputs and each with 5 linguistic terms. 
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(a) Hierarchical fuzzy system with four inputs, each 
with 5 linguistic terms - resulting in 75 rules. 

(b) Behaviour blending using a two-step 
hierarchy. "Situation Evaluation" uses 
rules to determine the weight of each 
monolithic controller [15]. 

Fig. 2. Hierarchical fuzzy systems. 

Classical fuzzy controller of the Mamdani type [6] is based on the idea of directly using 
symbolic rules for diverse control tasks. As application areas grow, the systematic design of 
an optimal fuzzy controller becomes more and more important . Another important type of 
fuzzy controllers is based on the TSK (Takagi-Sugeno-Kang) model [9]. Recently, TSK type 
fuzzy controllers have been used for function approximation and supervised learning [11]. 
However, it is pointed out that the TSK model is a black-box based on multi-local-model. 
In the following section, we describe an approach that can build membership functions 
(MFs) for linguistic terms of the IF-part systematically, then adapt the control actions of 
the THEN-part through learning and the shape and position of the IF-part MFs through 
genetic optimisation. Our approach is based on the B-spline model which can be classified 
as zero-order TSK model. However , we define linguistic terms for input variables with 
B-spline basis functions and for output variables with singletons. Such a method requires 
fewer parameters than other set functions such as trapezoid, Gaussian function, etc. The 
output computation is very simple and the interpolation process is transparent . We also 
achieved good approximation capabilities and rapid convergence of the B-spline controllers . 

2.2 Automatic Information Filtering 

The explosive amount of information can be efficiently utilised if the maximal information 
content is maintained while the dimension of the input data is reduced. The currently used 
methods for dealing with large systems are: 

Input Selection This concept uses an experimental method to find the most important 
input variables among a large number of them [4]. All the combinatorial possibilities of 
the low-dimensional fuzzy model are considered and approximately tested. The selected 
inputs which enable the best result are viewed as the most influential ones to build 
an exact neuro-fuzzy model. This concept is simple to implement and the generated 
model is interpretable. But there are two disadvantages with this concept. First, all 
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the other less influential inputs are discarded, which means an information loss for the 
controller. Secondly, the combinational number of lower-dimensional fuzzy controllers 
for a system with thousands or even millions of inputs is still too large to enumerate 
and to evaluate. 

Feature Extraction Features are extracted from signals and images and represent in­
formation of medium to high level. The selection of features should fulfil the following 
criteria: 

Computation should be fast enough for real-time control; 
Feature variables should be as independent as possible; 
The feature vector should contain adequate information for determining the system; 

- The features should be stably observable during the whole process. 
If a feature possesses any meanings like geometry, attributes, intermediate variables, 
scenario, etc., it can be associated with some symbols, frames , stories, etc . These fea­
tures are mostly selected manually from experience of human experts. Neural networks 
can be used as automatic methods for computing features , e.g. using linear combinators 
to determine output relevant features (ORFs) [18] . 

Scenario Based Subspace Projection Depending on how "local" the measuring data 
are and, therefore, how similar the observed sensor patterns appear during variations 
within a given situation, a more or less small number of eigenvectors calculated by 
a principal component analysis (PCA) can provide a sufficient summary of the state 
_of all input variables (see the left part of Fig. 3) . Our experimental results [18] show 
in the case of very high input dimensions, an effective dimension reduction can be 
achieved by projecting the original input space into the eigenspace [17]. The number of 
input variables in time series which possess in most cases a large degree of similarity, 
can be reduced using this method. Since this approach does not use any expensive 
computations for feature extraction, it can be called "appearance-based" or "scenario­
based" approach. Eigenvectors can be partitioned by covering them with linguistic 
terms (the right part of Fig. 3) . In our implementation, fuzzy controllers constructed 
according to the B-spline model are used [14]. 

pattem 
coding 

pottem 
matching 

eigenvectors principal 
components 

rules 

rule nring 
& synthesis 

Fig. 3. The task-based mapping can be interpreted as a neuro-fuzzy model. The input vector consists 
of all measurable system influential factors, e.g. many thousands pixels of an image. 
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3 Constructing Fuzzy Controllers with B-Splines 

3.1 Basis Concept 

Our B-spline model provides an ideal implementation of CMAC proposed by Albus [I]. 
B-spline models employ piecewise polynomials as MFs. The universe of discourse of each 
input is divided into a number of subintervals, where each subinterval is delimited by 
breakpoints called knots which determine the appearance and position of each B-spline 
(Fig. 4). 

' , ' , ' 
I ' 

I ' , ' 
I ' , ' , ' 

5 ,,. ...... 

Fig. 4. Nine B-splines of order 3 defined over 12 non-uniformly distributed knots (.>.1, ... , >. 12). 

Figure 5 illustrates the partition of a two-dimensional B-spline model with 8 MFs on each 
uniformly subdivided input interval and the activated B-splines (slightly shaded) for a 
given input. Since learning one new part of the input space affects only a given number 
of controller response values (darkly shaded area of figure 5), fast on-line learning can be 
devised. Due to these advantages, B-spline models are proposed to be applied in control 
systems and will be denoted as B-spline Fuzzy Controllers (BFC)[14]. By using the B-spline 
model the approximation ability is only limited by the number of knots distributed over the 
input intervals. Regarding that most observed data are disturbed to a certain degree, the 
over-fitting problem may occur. GA optimised B-spline models are a promising approach 
to find sparse models, which are able to bridge the gap between high bias and high variance 
of a model. 

3.2 Definition of B-Splines 

The B-spline Ni,k+l of degree k is recursively defined with knots >.1 , ... , ,\i+k+l (see Fig. 6) . 
Therefore m knots >., ( i = 1, . . . , m) form l = m- k B-splines (Fig. 4). Using this l B-splines 
as linguistic terms, the minimum input value of a BFC is determined by a = >.k and the 
maximum input value by b = >-m-k+b constituting the valid input interval to (a, b]. Thus 
the required parameters to define the structure of a normal B-spline model are: 

n n 

Parameter(BFC) = L)m- 2+1) = ~)m-1) (1) 
j=l j=l 

The Term "-2" is needed since the two outermost knots does not influence the valid input 
interval [a;,b;] and the term "+1" is used because this parameter contains k;. 

209 



Fig. 5. The B-spline model - a two-dimensional illustration. 

The most important properties of B-splines, With respect to neuro-fuzzy modelling are: 

• Recursion: 

• Positivity: 

•Local support: 

N;,i(x) = {1, if x E (~;, .A;+i) 
0, otherwJSe 

N;,k 2: 0 for all x 

N;,k = 0 if x <f. [.A;, .A;+k] 

• Partition of unity: L:~=l N;,k(x) = 1 

Each n-dimensional rectangle (n > 1) of the lattice is covered by the lh multivariate 
B-spline Nk(x) which is formed by taking the tensor product of n univariate B-splines: 

n 

Nki (x) =IT N{ k (xj) 
J' J 

(2) 
j=l 

Therefore the shape of each B-spline, and thus the shape of multivariate ones (Fig. 7), is 
implicitly set by their order and their given knot distribution on each input interval. 

3.3 Use B-Splines as Fuzzy Controller 

In [14], we showed that under several slightly modified conditions, the computation of the 
output of such a fuzzy controller is equivalent to that of a general B-spline hypersurface. 
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piecewise constant piecewise linear piecewise quadratic piecewise cubic 

II( o .• )( o.• 

1 1 

input knots input knots input knots input knots 

(a) Order 1 (b) Order 2 (c) Order 3 (d) Order 4 

Fig. 6. Univariate B-splines of order 1- 4. 

(a) Formed by two, order 2 
univariate B-splines. 

>< 
""":< o.• 
=. 

(b ) Formed by one order 3 
and one order 2 univariate 
B-splines. 

~ 

< 0-• 
=. 

(c) Formed by two univari­
ate B-splines of order 3. 

Fig. 7. Bivariate B-splines formed by taking the tensor product of two univariate B-splines. 

The output of a Single Input Single Output (SISO) BFC is simply the unique representa­
tion of a B-spline s(x), x E [a, b] : 

l 

y = LCiN;,k(x) (3) 
i= l 

in which c; are called B-spline coefficients of s(x) (also denoted as weights, control points 
or de Boor points) and l denotes the number of B-splines. 
The output of a Multiple Input Single Output (MISO) B-spline network can be computed 
straightforward by merging (2) and (3): 

(4) 

where: 
- Xj: the jth input (j = 1, ... , n), 
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, ----- - - -

I 

- k1 : the order of the B-splines used for Xj, 

- Nj. k . : the ith linguistic term of x1 defined by B-splines, 
,,, J 

- i; = 1, ... , l;: represents how fine the jth input is partitioned, 
- Ci1 ,;2 ,. • .,in: the coefficients of Rule (ii, i2, .. . , in) · 

3.4 Generating the THEN-Part 

Determining optimal coefficients of a B-spline model with fixed knot vector is generally 
more simple than finding the optimal knot vectors. Applying methods of B-spline theory 
in CAGD (Computer Aided Graphic Design), the coefficients can be estimated by solving 
an overdetermined linear system. Another method based on gradient descent can also be 
used . Although an iterative solution, this learning method is conceptually more easily 
understandable. Based on this learning method, unsupervised learning procedure of B­
spline coefficients can also derived. 
In the gradient descent approach, fuzzy singletons represented by control points can be 
initialised with the values acquired from expert knowledge. These parameters will be fine­
tuned by a learning algorithm. 
For supervised learning, we show in the following that the squared errors with respect to 
control points are convex functions. Therefore, rapid convergence for supervised learning 
is guaranteed. The control space changes locally due to the "local support" property of 
B-f~nctions while the control points are modified. Based on this feature , the control points 
can be optimised gradually, area-by-area. 
Assume that (xl, .. . , x~, Yaesired) is a set of training data. The output value computed by 
a BFC is denoted with Y~amputed ' By defining the Mean-Square Error (MSE) criterion as : 

1 2 -
E = 2 · (Ycamputed - Ydesired) =MIN, (5) 

the derivation of each coefficient Ci1 , .. .,ik is: 

(6) 

where € denotes the learning rate. Since the second partial derivation of c!, .. . , c;; is always 
positive, the error function (5) is convex in weight space. If the inputs (xl, ... , x~) are 
linearly independent there exists, due to the convexity of the MSE performance surface, 
only one global minimum and no local minima. On the other hand, if the autocorrelation 
matrix is singular, which occurs when the inputs Xr are linearly dependent, there exists an 
infinite number of global minima (Fig. 8), but still no local minima, in weight space. 

3.5 Adaptive Modelling of the IF-Part 

Based on the granularity of the input space and the distribution of extrema in the control 
space (if known) , the fuzzy sets can be initialised using the recursive computation of B­
splines. These fuzzy sets based on non-uniform B-splines can be further adapted during 
the generation of the whole system by using GAs. 
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Fig. 8. A singular MSE performance surface. 

By freeing the knots, the task of finding control points and accurate knot vectors to fit 
training data becomes a non-linear minimisation problem. To solve this problem we follow 
a strategy of problem splitting. We first consider the underlying model 8(>.) of the con­
troller and then compute the control points to minimise 8 ( c). Instead of using constrained 
least-square methods (constrained because of avoiding to "ride" on the gradient edge of 
coincident knots [5]), we try to estimate the knots by using GAs, because GAs are both 
theoretically and empirically proven to provide the means for efficient search, even in com­
plex spaces [2]. Therefore each individual, in the example each B-spline controller with its 
special knot distribution, represents one point in search space. 

The Genetic Algorithms We applied the basic GA introduced by Holland [3] with 
some modifications as follows (Fig. 9): 

Fig. 9. Flowchart of the applied genetic algorithm. 
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• We used gray coding instead of standard binary code while representing coded chro­
mosomes, a common modification. 

• To bypass the undesirable effect of the increasing probability along the descendent 
chromosome-string to receive a changed allele (bit) (thus the conjointly heredity of 
genes decreases when the distance of their position increases) while using n-point 
crossover, we used uniform crossover. This kind of crossover has no positional and a 
high distributional bias, so that a high blending rate between participant chromosomes 
is granted. This leads to an algorithm producing permanently solutions which explore 
new locations by bridging even great distances of the search space. 

• Instead of using fitness-proportional selection it is advantageous to use tournament 
selection. This selection schema draws e individuals (2 $ e $ µ) with a probability k 
from the current population and copies the individual with the best fitness into the 
mating pool. Besides saving computational power as a result of no need to sort the 
population (as in ranking based selection schemes), it is easier to bias the takeover 
time. 

Chromosome Encoding for Knot Placement To minimise 6(.A) each individual 
consists of n knot vectors, where n is the problem dimension. Each encoded knot vector 
consists of 32 knots and a so-called activation string of 32 bit length. Which knots are in 
use to define the current model is encoded through the activation string. Activated knots 
are represented by 1 and inactivated knots are represented by 0. 

Fig. 10. Encoded B-spline model. 

Encoded 
Knot 31 

Every knot is encoded by 16 bit (see figure 10) and therefore each knot can be placed on its 
respective input interval [a, b] with an accuracy of ~ x ( b - a). The fitness values for each 
individual are simply computed by determining the control points of the controller. Using 
these control points the mean square error is evaluated and the fitness for one individual 
is set equal to MkE· 
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Fig.11. One dimensional functions and their encountered B-spline model. 

3.6 Numerical Results 

For comparison the above described GA was applied on one and two-dimensional func­
tions also used in [8] (for function definitions see [8]) . These one-dimensional and two­
dimensional functions are depicted in Fig. 11 and 12 respectively. 
In these examples, parameter settings were chosen as crossover_probability=O. 75, muta­
tion_probability=0.0005, µ = 40 and ~ = 3. A maximum generation index of 200 was us~d 
as stop criterion. The MSE of each adapted BFC represents the average MSE of 3 runs. 
The comparative results are summarised in Tab. 1. 
By searching for an optimal configuration of B-splines in two or more dimensions , it is 
important to consider how many B-splines are used for each input . In the examined two­
dimensional cases we used the simple constraint of allowing no more then 64 rules. By 
using more input dimensions, the problem of finding (sub)optimal knot numbers becomes 
more relevant because of the exponentially increasing combination possibilities and thus 
an exponentially increasing search space. 

4 Examples of Linguistic Interpretation 

4.1 Approximation of a One-Dimensional Function 

Intuitively, the basis functions can be efficiently used if they are placed at the positions 
where the corresponding system output changes dramatically. Depending on the smooth­
ness of the original system input-output function and the demands on modelling precision, 
different orders of B-splines can be chosen. Optimal placements of the non-uniform B­
splines for specifying each input can be found by genetic algorithms described above (16]. 
Fig. 13 illustrates a one-dimensional function and the generated membership functions 
for interpretation. Tab. 4.1 shows the rule table. Our method works in multi-dimensional 
cases as well. 
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Fig. 12. Two dimensional functions and their encountered B-spline model. 

4.2 Minimising the Number of Rules 

Too large number of rules will not only result in the over-fitting problem, but also the lost 
of interpretability of the model. A psychological survey revealed that the number seven 
(plus or. minus 2) is the human capacity limit for information processing [7]. By using 
linguistic modificators like "between", "at most", "at least", etc. and using an optimal 
partition algorithm [10], the rule base can be reduced to the minimum number, see the 
example shown in Tab. 3. 

4.3 Using Scenario Data 

One main advantage of the neuro-fuzzy system in comparison with other adaptive systems 
like the multi-layer perceptron is the interpretability of the controller's function. Since we 
can transform the projections in the eigenspace back into the original input image space, 
the control rules can be given an interpretation as IF-THEN rules, where the Antecedent 
is a back-transformed scenario image and the Consequent is controller output [17] . 
The following example illustrates the rules for a two-dimensional controller, whose task is 
to guide the robot hand using hand-camera images to the optimal grasping position over 
a screw. Each input variable with four linguistic terms. Therefore there are 4 · 4 = 16 rules 
altogether. Two of these 16 automatically learned rotation control rules look as follows: 
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Function Rules Used Membership Function 
Equidistant B-splines Adapted B-splines Best of [5] Worst of [5] 

Ji 12 0.02 0.007 0.08 0.7 

h 12 0.0005 0.00003 0.02 0.3 

fa 12 0.0008 0.000048 0.002 0.03 
/4 12 4.9 0.04 0.1 10 
/5 12 0.04 0.0002 0.01 1 
le 12 0.6 0.012 0.1 0.4 

91 64 766 26.36 ( 60 rules) 9 26 
92 64 10.91 2.8 (60 rules) 7 19 
93 64 5.78 0.01 ( 60 rules) 1.2 6 

Table 1. MSE results from [8] in comparison to results of an equidistant distributed BFC and results 
of a GA modified BFC. 

IF x IS VT T VS S L VL H VH 
THEN y IS -13 12 -1 11 -15 15 -17 16 

Table 2. Rules for system modelling - VT: "very tiny", T: "tiny", VS: "very small", S: "small", L: 
"large", VL: "very large", H: "huge", VH: "very huge". 

IF the scenario is • 

IF the scenario is • 

THEN rotate the gripper -5° 

THEN rotate the gripper 4° 

5 Future Research Themes 

Integration of neural networks, fuzzy systems, genetic algorithms, chaos theory with the 
classical probability theory and control methods will play a central role in the future 
research. Among many topics, we list some important ones: 

- Optimal input selection: factor analysis/synthesis, tracking focus of interests. 

y\x vs SIM L f VL 
vs 1 2 2 3 3 
s 2 2 2 3 3 
M 5 2 I 3 3 3 
L 5 5 5 7 7 -VL 5 5 5 7 7 

Table 3. (2D) Rule table after the automatic optimal partition with the approach in [10] . 
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(a) The input-output profile. 

,~~---
0.2 
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-1 ~ 0 ~5 1 

(b) The generating non-uniform B-splines as linguis­
tic terms. 

Fig. 13. Automatic model building using B-splines - a one-dimensional example function . 

- Extention of sensor capability by using upto-date information technologies: software 
robots in WWW, linguistic modelling of human perception and sensor fusion so that 
information which is difficult to measure, incomplete or noisy can be perceived. 

- Increasing the capability and quality of reinforcement signals and fitness evaluation of 
the learning system. 

- Integrating symbolic sparse coding, granular computing, fuzzy set, rough set to enable 
the arbitrary transition between digital measurements and concepts. 

- Learning from analytical models and generalise. 

We believe that by solving the above problems properly we can 

- find reliable models for traffic control, biological process, climate prediction, environ­
ment evolution. 

- equip large amount of industrial machines and consumer products with higher Machine 
Intelligence Quotient (MIQ [13]) to make them easier to use, more adaptable in new 
environments, to show higher performance and to save resources. 

- build robots which can program themselves using complex sensor patterns in the way 
a human will do. 
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