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The concept of information is not yet perfectly integrated into our modern science. As a 
tentative approach the concept of information space is proposed here. An information 
space consists of elementary semantically meaningful statements (or interpretable 
structures) together with specific relations between these elements. Relations can either 
be seen in analogy to the links known from hypertext systems, or they are defined by 
similarity relations between the elements. Both the elements and the relations can be 
modified in the course of time, and possible paths through such a space (navigation) are 
discussed together with their effects on the underlying structures. The mathematics of 
similarity relations and their context dependence are studied in some detail. The 
structures proposed here can be modeled on a standard PC; possible applications are 
sketched. 

Keywords: Information space, information dynamics, similarity metric, information 
retrieval, polymetric space. 

1 Are our Fundamental Sciences up to the ,,Age of Information"? 

Every day we hear and read that we are living in the ,,age of information". Is this really 
true in that general form? Are our central and basic fields of science up to this claim? A 
closer look at physics will reveal that this discipline is still centered around the concepts 
of matter and energy, whereas information still plays a marginal role and has not yet 
received full civil rights in physics. 

The so-called ,,information theory", created mainly by Shannon and Weaver, was 
originally intended as a theory of information transmission. The floppy and misleading 
terms ,,theory of information" and ,,information theory" emerged only later and do not 
at all reflect the real capacities of that theory. Shannon himself advanced a passionate 
pleading against the overestimation of the theory essentially originated by himself. 
More and more - albeit still reluctantly - the idea is gaining broader acceptance that a 
theory of information which really deserves this name must also account for the 
semantic and pragmatic aspects of information (for details see Shannon (1956), Gernert 
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2 A Proposed Change of Perspective 

For heuristic purposes a total reversal of perspective is proposed here. We will start 
from the concept of .. information space" - rather intuitive in the beginning, but to be 
given a stronger specification as the work will proceed. 

In the ideal case, the result of such an inverted perspective may be a description of our 
world such that information can be handled in a natural and comfortable manner -
whereas the integration of matter and energy into that theory will make trouble. It 
would be a partial success to find a theory involving ,,mirror-symmetric complications" 
when compared with our present situation. This would be an intermediate step towards 
a unified theory, which in this moment seems to be out of reach (at least in the author's 
view). 

3 Basic Properties of an Information Space 

For the present purpose it will be reasonable to start from a rather comprehensive 
concept of information: 

Information is everything that was, or is, or possibly may be useful or interesting to 
some receiving system or interpretant. 

Such an interpretant may be a human individual, a team, an organization, an animal, or 
a technical device; the special case of an ,,autonomous information space" is to follow 
(Section 4.4). 

This tentative definition emphasizes the semantic and pragmatic aspects of information 
from the very beginning. At least some ,,minimum semantic contents" (with respect to 
at least one real or hypothetical interpretant) will be required; only in exotic cases we 
can have to do with bits and bytes (if e.g. the arrival of ,,O" or ,, 1" decisively alters a 
receiving system). On the other hand, the physical representation is considered less 
important. 

Possible types of information covered by that definition include: 

1. ,,Information on the way ": A sequence of signals just being transmitted in a channel 
has a chance to reach its addressee, and hence is information in the present sense. It 
can be valuated under the aspects of telecommunication engineers, and hence the 
classical Shannon-Weaver theory is included here as a special case. Also any kind of 
information stored in books, data bases, etc. is subsumed here. 

2. The concept of pragmatic information defines information by the impact upon the 
receiving system. Information begins when the channel has ended; information is 
anything which alters the state or the behaviour of the receiving system. The 
connection with the definition given above is evident. 
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3. We also must envisage potential information (structural information), e.g. the 
information represented by the structure of a crystal, which enables interpretations 
by crystalographers. 

The term ,,space" as such is not defined in mathematics. Mathematical dictionaries only 
give references to more specific terms that are formed by combining the word ,,space" 
with an adjective or a proper name, e.g. ,,vector space" or ,,Ba·nach space" . A 
mathematical dictionary (Naas and Schmid 1961, vol. II, p. 455) presents about 40 such 
references. An ,,encyclopedic dictionary of mathematics" gives a circumscription which 
can hardly be considered a definition: ,,The term space is used in mathematics for any 
set when certain types of properties are to be discussed or when it is intended to use 
some sort of geometrical terminology." (Sneddon 1976, p. 616) 

Accordingly, we define an information space by a set consisting of elements (of a 
special kind), together with possible relations between these element; both the elements 
and the relations may vary in the course of time. 

An element is understood as an irreducible unit which still carries some semantic 
contents, and particularly has the character of a statement or proposition - no matter 
whether its physical representation is built up from bits, bytes, characters, words, pixels, 
or other small parts whatsoever. Examples may be the items of a knowledge base or 
single mathematical formulas . In both cases there are smaller constituents symbolizing 
something, but without the quality of a statement. 

The mathematical structure of an information space, which is given by the relations 
existing between the elements, may also depend on the interpretant, and, furthermore, 
vary with time. Details are the topic of the next sections. Practical applications, which . 
also supply permanent illustrations for most of the mathematical specifications to 
follow, are given by modem hypertext and information-retrieval systems, where the 
user is guided from one element to the next one as governed by a link, or from one 
element rated as useful to a ,,similar" one. IJ These two examples show that information 
spaces are already ,,implemented"; but since it is the purpose of this paper to study 
information spaces under more general aspects, these analogies should not be 
overemphasized. 

1 In information-retrieval systems rather frequently a measure of the similarity 
between the search statement and an item of the document file is used. Some more 
advanced systems also make use of the similarity between two items: those items will 
be additionally displayed to the user which have a sufficient similarity with other items 
judged as useful before (see e.g. Kowalski, 1997, p. 152-157). This technique, termed 
,,similarity retrieval·" (.,similarity-based retrieval", ,,similarity search'"), is widespread in 
applications to chemistry and to image data analysis. 

255 



r---- - - - - -

1 

I 

I 4. Mathematical Structure of an Information Space 

4.1 Link Structure 

Any element of an infonnation space may carry ,,pointers", each of which leads to a 
certain other element; as customary we use the tenn link. With the link structure of the 
space we have arrived at the simplest case of a navigation in an information space, 
which is simply enabled by following sequences of links. 

Since a link has a direction, the set of all elements together with all links fonns a 
directed graph, whose mathematical structure will be regarded later. If links can be 
inserted, altered, and deleted, the link structure will be time-dependent. Links can be 
given different weights resulting e.g. from ratings assigned to their targets or from the 
frequency of previous passages. For special applications we may distinguish between 
two types oflinks: 

1. Standard links lead to a predefined target, without checking side conditions. 
2. Non-standard links may guide a navigator to one or another target depending on 

parameters - e.g. the user of a hypertext or retrieval system should not be directed to 
an element already visited before. 

4.2 Cluster Structure 

As a consequence of the link structure, there are subsets whose elements are closely 
interrelated (mathematical fonnulations are possible, e.g. by use of the tools outlined in 
Section 5); these subsets will be called clusters. In the context of information retrieval, 
tenns like ,,association domains" are used. Clusters can partially overlap, and they can 
be combined to ,,clusters of clusters", and so on, until finally a multi-stage part-whole 
hierarchy is built up. The cluster structure can vary with time, too; for processes of 
stabilization or decay of clusters see Section 4.4. 

4.3 A First Look on Similarity Metrics 

The space of our everyday experience is a polymetric space: there are different metrics 
for pedestrians, for cyclists, etc. Both the optimal path and the time needed to get from 
a starting-point to a destination are different. Although this is scarcely made explicit in 
physics, we have multiple metrics also here, as defined e.g. by the propagation of light 
and of sound within the the same region. 

In an infonnation space a metric can be introduced by a dissimilarity function or 
distance function d(.r:,_v) which is defined for any two elements x and y and which has 
the usual properties of a metric, as specified by a well-known system of axioms: 

MI : non-negativity: d(.r:,y) ~ 0 
M2: d(.r:,y) = 0 if and only if x = y 
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M3: symmetry: d(x,y) = d(y,x) 
M4: triangle inequality: d(x,y) S d(x,z) + d(=.x) 

If these axioms are fulfilled then d(x,y) is a symmetric metric; if axiom M3 (symmetry) 
is not valid then d(x,y) is an asymmetric metric. The latter case can be relevant here: as 
a consequence of the link structure, the distance defined by a series of links showing the 
optimal route from x to y generally will be different from the distance defined by a 
counterpart leading from y to x. 

It is often easier to speak in terms of the similarity s(x,y) between x and y - a large 
distance or dissimilarity corresponds to a low similarity, and vice versa; the 
mathematical transitions in both directions are trivial. 

It is always possible to define a similarity function s(x,y) which accounts for the internal 
structure of the elements x andy (for details see Section 5). Inevitably, ,,similarity" is a 
perspective notion; its meaning depends on the interpretant, the historical context, and 
the purpose pursued with each individual similarity measurement. The procedure which 
leads to a mathematical formulation of s(x,y) necessarily takes that context into 
consideration. 

Metrics based upon similarity or dissimilarity have proved their utility in modem 
information-retrieval systems, where the user can receive hints to entries which are 
,,similar'' to those rated as useful before, although the underlying similarity definition 
generally is rather simple and not well adapted to the individual context.2l 

4.4 Structures Emerging in Dynamical Processes 

Navigating in an information space leaves marks and traces. We can distinguish two 
principal forms of dynamical processes: 

I. There is an external user or external observer who travels from one element of the 
space to another, guided mainly by links, clusters, and similarity measures, and 
regularly modifying the state of the space by new weights assigned to links, revised 
definitions of similarity, etc. 

2. In the case of an autonomous information space there is no intervention from 
outside. Nevertheless, there are interactions between elements, and the contents of 
elements, the strengths of links, and the cluster structure can vary with time, as well 
as the similarity measures that are permanently adapted to new situations. 

Some esssential emerging structures and processes connected '"ith them can be 
characterized as follows: 

2 For two fundamental strategies, a similarity measurement based on feature vectors 
or an underlying structure (described by graphs etc.), see Section 5.2. 
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1. Cluster formation: New clusters or cluster hierarchies can be fonned, e.g. through 
increased weights assigned to elements or through revised similarity measures. 

2. Path formation: Frequently used routes may be ,,stabilized" - where branching is 
possible, one of the alternative continuations is given a higher preference; shortcuts 
can be fonned. 

3. Representation tuning: The style ofinfonnation representation may be adapted to 
new requirements. 

4. Information tracing: There is a chance to reconstruct along which way some 
infonnation has arrived. 

Paths and clusters may win or loose relevance in the course of time, and accordingly 
they can be stabilized or destabilized. A sufficiently complex substructure of an 
infonnation space can take over the role of an interpretant and hence govern the 
interpretation of entries stored elsewhere or rule the fonnulation of similarity measures. 

5 The Mathematics of Similarity Metrics 

5.1 Internal and External Similarity 

In mathematics the tenn ,,similarity" can have two distinct meanings depending on the 
context. No mentioning of this fact could be found in literature, nor a distinction in 
tenninology. Therefore the new tenns 

.. internal similarity" and ,, external similarity" 
are proposed here. Later on, it will be found that the two disparate meanings can be 
reconciled under a unifying concept. 

Examples for internal similarity are given by similar triangles and by similar matrices. 
Fonnally, we have a decomposition of a set A into a family of non-empty, pairwise 
disjoint subsets (such that their join is exactly A); these subsets are the equivalence 
classes defined by an equivalence relation S with the following properties (for all 
a, b,c EA): 

IS 1: reflexivity: aSa 
IS2: 5ymmetry: aSb implies bSa 
IS3 : transitivity: aSb /\ bSc implies aSc 

By way of contrast, external similarity can be illustrated by a series of comparisons 
between patterns. If xSy stands for the fact that the two patterns x and y are rated as 
,,similar", then we can have aSb and bSc, but aSc does not necessarily hold. To give 
another example, a,b, c, .. . may denote alternatives for human actions (in mathematical 
utility theory), such that two of them may be judged as similar or dissimilar with respect 
to their expected utility. Fonnally, a distance function d(x,y) is required, and x and y are 

258 



regarded as similar if the distance between x and y stays below a certain upper bound: 
d(x,y) S' U (where U is a fixed positive number). 

In the case of external similarity, S is reflexive and symmetric, but not a transitive 
relation. For some triples transitivity may hold, but that is not the general case. The 
crucial point is the existence of a distance or dissimilarity function d(x,y) defined for 
every pair {x,y}. 

A synopsis of internal and external similarity may be possible in the following way. We 
presuppose that exactly one relation of internal similarity, Ri, is defined for a given 
finite set A. Then A is decomposed into a finite family of subsets Ei. E2, . .. En,, such 
that each subset is an equivalence class of objects similar with respect to Ri. Next, a 
distance function d(x,y) must be defined (for all x, y E A) with the additional property: 

If x and x' belong to the same subset Ek 
then d(x,y) = d(x' .Y) (for all x, x', y E A). 

Under this condition the internal similarity defined by Ri and the external similarity 
induced by d(x,y) are compatible; d(x,y) measures the distance or dissimiliarity between 
equivalence classes, too. 

Figure 1: Three different classes of triangles as a demonstration 
of internal and external similarity 

Figure I shows three rectangular triangles (in the middle circle), which are similar in 
the sense of elementary geometry, as representatives of the class of all triangles similar 
to them (in the same sense), and correspondingly three obtuse and three acute-angled 
triangles. This particular case is an instance of internal similarity. The equivalence 
classes induced in this way are symbolized by the circles in Figure 1, whereas the 
connecting straight-lines are to demonstrate external similarity: there are smaller and 
larger distances between equivalence classes (and between two triangles belonging to 
different classes). 
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In some cases, an underlying internal similarity together with its equivalence classes 
may become invisible. Some early authors of graph theory started with a distinction 
between geometric graphs and abstracts graphs. A geometric graph is a special drawing 
(where also curved connecting lines are allowed); an abstract graph stands for an 
equivalence class of isomorphic graphs, such that only the incidence properties count, 
whereas the kind of drawing becomes irrelevant. In modern texts, generally the concept 
of abstracts graphs - simply called ,,graphs" - is tacitly assumed, and ,,similarity 
between graphs" always means external similarity. 

5.2 Quantification of External Similarity 

In the sequel, the term ,,similarity" always means external similarity. Apparently, 
,,similarity" is closer to human intuition, whereas the terms ,,distance'" or ,,dissimilarity" 
are more convenient for mathematical treatment. Given a finite set of objects, it is the 
present task to set up a distance function such that the distance attributed to any pair of 
objects will account for their internal structure, too. 

In some techniques from information retrieval, but also in cluster analysis, each object 
is characterized by a finite vector, called ,,feature vector". It may be difficult to extract 
such a feature vector from complex real-world objects, and this may imply a significant 
los~ of information. As a rule, the entries of a feature vector represent global and 
external aspects, whereas the internal structure of an objects is scarcely represented. 
Therefore it is proposed here to represent each object by a finite connected graph with 
vertex labels; these vertex labels will be allowed to have the form of graphs themselves, 
and by recursion we arrive at the concept of ,,hierarchical graphs". 

In the easiest case, a finite set G = {Gi,G2, ... G0 } of finite connected graphs is 
presupposed. The ideal tool for defining a function d(G;,Gk) with the required 
properties is supplied by graph grammars. A graph grammar is given by a startgraph 
and a finite number of production rules. Each production rule permits the generation of 
a new graph from one of the already existing graphs. This is done by replacing a 
subgraph of the given graph - where the subgraph fulfills a condition in the production 
rule - by another graph. For the technical details and for hierarchical graphs only 
references can be given here. J) 

For the present application a graph grammar r is required which generates at least all 
graphs in the given set G. If r has been fixed, then the requested distance function can 
be defined by 

d(G;, Gk) = min L(G;, Gk), 

where L(G;,Gk) is the length of a ,,path" that leads from G; to Gk by applying 

See Gernert ( 1996, 1997), with diagrams and references. 
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production rules from r and the inverse transformations; each step of these kinds 
contributes I to the length L (L corresponds to the number of steps ,,upward" and 
,,downward" in a tree-like diagram representing f). 

For any given set G of graphs a graph grammar r can always be found such that at least 
all graphs in G are generated by r . But, apart from trivial cases, a graph grammar 
specified in this way cannot be unique. Rather, there is a multitude of graph grammars 
which all are suited to represent G. The reason behind this fact has been shortly 
mentioned before (Section 4.3): ,,similarity" is a perspective notion, and no definition of 
similarity or distance can be formulated without a reference to the purp<>se (or goal etc.) 
pursued with the individual measurement. Similarity between structures is never a 
property of the structures alone; rather, it comes into existence through an interpretation 
by an observer. Fortunately, the method working with graph grammars opens an 
approach to a mathematical treatment of those factors which go beyond the mere 
properties of the objects themselves. 

5.3 External similarity and dynamical change 

Since the elements of an information space can be modified in the course of time, also 
the equivalence classes defined by internal similarity may undergo changes. Some 
equivalence classes may be united when certain disparate features of their elements 
have disappeared; or an equivalence class may be split into several subclasses after 
significant differences between its elements have emerged. It may depend on the 
individual implementation what will happen to external similarity as a consequence of 
such a modification of the internal structure. Remarkable phenomena may be: 

I. a persistence of the earlier external similarity for a certain time interval, or, in other 
words, a time-lag in its updating, 

2. a ,,hereditary character" of some features of the earlier state that persist in spite of 
the change, 

3. a co-existence of the old and the new external similarity - in the sense of a 
polymetric space - such that in each situation it may depend upon parameters which 
of the competing distance measures will become effective. 

6 Concluding Remarks 

Information spaces in the sense outlined here can be easily modeled on an ordinary PC. 
Such experimenting, as well as theory-building, may contribute to a better 
understanding of various processes of information handling. Possible applications refer 
to information retrieval, data and knowledge bases, information management, Artificial 
Life, and the theory of self-organizing systems. Fruitful analogies \\<ith informational 
processes in living organisms, but also with processes in physics can be expected. 
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