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Summary

Working on the pre-attentive stage @, of perception by the human visual system (HVS), we
propose both a modelling of chromatic perception (1) by means of 4 attractors associated to a
mathematical symbolism induced by branching theory, and some structures for the shapes -or
coloured shapes- processing . This research involved by the computer graphics and neuro-
physiology results about recognition of optical signal processing circuits have necessitated to
reinvest the visual chain : object (emitter or re-emitter), light information vehicle, the colour
receiver, the processors of the SVH. The local physico-mathematical formula set very
developed about propagation, has brought solutions for monochromatic waves and for
obstacle with smooth edge reveal neither various curvatures (2) nor a fortiori the texture of re-
emitting object U (3). A resort to a formula-set about interaction matter radiation, extended to
a systemic approach, give an algorithmic stage to take account the spatial character (2) and
(3). Taking account on one side this scalar conjecture about visual information, and on
another side a retinal functional specialisation, we propose a modelling of C' occluding edge
detection of 3D-object. C' except in isolated points by envelop method. The elaboration of a
valuation table of morphemes associating the mathematical characteristics of curves with
their pregnance treat the more cognitive stage of processing, associating edge and colour.
Some pictures illustrate the abilities of curves family to suggest 3D-shape. The chromaticity
of delimited areas strengthen, or rather create, psycho-affective suggests associated to logos.
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I. Physical characteristics of visual information carrier: electromagnetic
waves v €[4. 28, 6.88] 10" Hz

1. Undulating/Geometric characters
A. In a point of a direct emitter, the Hertz’s experiments had justified a modelling of the

phenomenon by means of two vibrating vectors E(¢), B(t), superposition of @ sinusoidal
laws of n-arches. The classical propagation laws of each components E’ in a medium and

through some dispersive elements are set from the two coupled vectorial equations of
Maxwell of three conservative equations and behavioural relations:

. JB 5 oD - .
rot E(m,t):—gt-, rotH=j+E, divD=p,,divB=0,

- - . - . 0
D= fE), B= f,(H). ] = /,(B), div ], +57 =0

The various methods of resolution concatenate the tools elaborated from the scalar
transversal waves, initiated from the mechanics: phase, wave front, normal propagation
speed. The vectorial and random nature of £ imply an over-investment for which we have
evaluated the limits, in order to preserve the modelling faculty for the visual image processing
: (1) wave pulsation, (2) phase lag from the emitter, (3) wave front at (M,t), (4) position of
E in the wave plan.

The retinal photo-receptive layer of the Human Visual System (HVS) is sensitive to
pulsation interval categories, to the intensity of the vibrating vector, but neither to the
instantaneous phase nor the field direction.

The interferential optics, in a Linear, Homogeneous and Isotropic medium (LHI)
constrained to homogeneous wave, hides the point (4) above, and reduce the vectorial wave to
a scalar propagation function : W(AM,¢), progressive wave W(M,A(M,t)), where A(M, 1)
is the propagation term. This solution gives : (a) a positive point : luminance distribution on
the 2D-image with the discrete Fourier transform ; (b) a negative point : restriction to a 2D-
modelling, and complexity of the connection between chromaticity and geometry.

We will begin with a scalar t-sinusoidal wave : ¥(M,t)= A(M)cos(wt — p(M)), with the
prior hypothesis: A(Af) varies more slowly than @( M) in order to mix the wave surface and
the equi-phase surface.

The function W(M,¢), classically satisfying the same evolution equation spatio-temporal,
with the six field components (] £, ({J d’Alembertien), is split in:

¢ an informative equation on ¢,
2

- A4
orad ¢l1— K(M)= (D), with & =

@ _ Y
y, Tk V(M) = (s(M)p(M)) 2.

A AL - ~
For 7<<7, this equation is reduced to grad @(M,t)=k(M,t) ; this equation will

give the geometry of the equi-phase surface, by integrating three partial differential equations.
¢ acoupling equation,

2 - -
Ao+ Zgrad pgrad A(M)=0 ().
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This equation, associating the amplitude of the vibration to the wave vector k(M),
implies the conservation of the flux divk ACM)*=0. The identification of the vector

k A(M)* with a vector of energy needs to take into account the bi-vectorial structure of the
field.
At a microscopic scale and in the vacuum, 7 associates to £, B, the vectorial field normal

= B . . %ty .
to the wave 7(M,7)= E A—. At a sub-microscopic scale, and travelling in a LHI medium,
7]

—=e

the field of the wave is (M, 7)= E /\E , its velocity is conditioned by the interaction with
U

the medium.

B= E(M)| @)

- 1
NE = F(M,1)=—(
v vu

E(M)= EO(M Ycos(wr — p( M)) where EO(M ) is a non-homogeneous and non-polarised
wave.
The flow expression with a macro-local energetic variable implies to sum up N wave

e v(,@)# [ NE M| costa - o Mda -
2:1#0 HEO(M)MZU T sin2o(7 + NAT) +¢)...] ~
= 2
Ey(M )
ﬁﬂ_o(v_)”va = %e( ME, (M (i M) = % (MY M)

in which p; is the electromagnetic density of energy for a non-polarised wave.

Nar

7 (M0 = LE (M) (M) for a straight polarisation,

AAr

r,(M,t)y = %g(IIEIO(M)”2 +HEzO(M)”2)W(M) for an elliptic polarisation.

%
In a linear homogeneous isotropic medium (1, h, i) the collinearity between rAs,n and

—)
k (M.,1), therefore the tangency of their trajectories, associates energy transmission with those

of shape information correlative to shade, but lowers these of polychromatic radiation re-
emitted by AU itself. The modelling of wave front break caused by an opaque object,
superposed to the chromatic scatter by an interaction matter radiation, and so the going
through an anisotropic medium imply the bi-vectorial character of fields, and bring us the
choice through many methods of resolution.

=
For propagative equation : | E(M,7)|, with = d'Alembertien,

(IIT) in an isotropic medium, or A(X):dzEa + Ha(xa, GiEq,1)=0,
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3
(IV) in an anisotropic medium E(M,t)= ZEa €,
1

someone research the characteristic surfaces GS(xa,t) =0, (or r=g(x")) along which the

Cauchy's problem have no solution or no unicity. Their implicit equations satisfies :
[dG], AldG]= 0 (F),

() () _
ﬁxa} Kﬂ) =0 for (][]),

2
2 2N (&)
o Lval Za) ~\g)
The partial differential equation (F) of first order (PDE) is obtained from (7/1), and the PDE
of second order by concatenating the first order Maxwell's equations, using a Taylor's solving

that is to say v Z\

=0 for (7V) in a reducing base.

approach. We prefer to express, in extended Maxwell's equation the relations between spatial

- o
and temporal jumps for & E,JH resulting from propagation.

{rz[})}z—y[é’,H]z—/\Lﬁ, }=—,u{é,ﬁjl_rzt;;} 5{5, }3—/\{&,;} 5{0",2‘)}
[l |2 2-”— —g—| - > rl_.
:Lns -wvnjté’,ﬁ J=0 ns G E=05 = ump

if G(ta,... ,l): 0 is the equation of front wave (discontinuity surface) :
; VG v
A TR
val> ™"~ IVGII

. . o AA . . .
This equation (V) gives again the approximation (I') for (I), when = is a negligible quantity,

therefore [VGI - g;/(é}(z)z 0 (V).

and in the case of a t-sinusoidal wave (C). We have putted attention upon the significative
weight of discontinuity on the fine optic formulation. But the choice (C), in modelling
perception, bring us the equation (V) for its abilities to reach some framework shape. The
shape perception from a contour by the HVS begins in the cellular layers organize its process
through area V1, in the visual cortex, layer 4cb perhaps with a feed back toward
interchromatic clusters, than the action potential reach pale stripes of area V2 (cf. M.
Livingstone). This process seems at this level independent from stereo process (large stripes)
and chromatic process (thin stripes). Correlatively to an shape equation, the perception of
colours and more of these chromatic properties of the objects, must be modelled in the
following parts.

B. The geometry and the graphical art have brought out some key features for the modelling
of an opaque 3D object in two dimensions :

(1) the visible true or occluding edge (I') is the locus of points where the tangent plan of S

is parallel to direction view V I'=SNnS,. S. defined by VEV=0 if

F(x,y,z)=0 is implicit equation of S The projections y of such I' on to receiving
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surfaces give information for identify Q. The 7y singularities, stable through Q
movements, permit to detect significant convexity, or internal concavity on JQ.
(2) Some line family on JQ (crest line, thalweg) can be obtained by algorithms [cf. INSA-

RFV laboratory]
For sufficiently smooth surfaces (defined by parameters), we retain the lines of curvature,

LEzliNs | where [F]=|:ﬂ is

that is to say, the extremum of the normal curvature ¢,(7)=—
the contravariant components of 7 in a local basis M,,M,, and G is a matrix giving the

H[7]G[7])
metrics in the tangential plane. The local values Zc_,, are the eigenvalues of an

. . — 1 detD  det[d’f] . :
1p . - = = = - - g=
endomorphism G~ D : det{D-AG]=0, ¢,c, A detG [ fx2 fyz]’ if f(x,y)in

the referential (O, é,,é,)

D F E f
) det [D’ G] +det [F D"] Trace d*f
= (det G)* E
plane at point M.
If gnE, >0, M is an elliptic point (<0, an hyperbolic point). But mainly ¢, cn=0 imply
either an inflexion point on one of the both curvature line 1, crossing at M, or a rectitude of ..
The parametric equations of 1, in a curvilinear pattern is obtained by resolution of

, if (€,,é,)is parallel to tangent

dav dv,

surround a focal area I' as edge wavelets emitted by punctual source F, and their asymmetry
so that tangency at occluding contour suggest a scan with refection (see Fig. 1 ; 2). The two
families of geodesic curves (osculator plan orthogonal to S) seems informative only local
convexities. Their metric, built with extremal methods, give modelling of proximity from
colour A to colour B, on 3D pattern colorimetry.

du du i
det| D ,G =0. For an ellipsoid {IC} suggest very well a 3D shape: for they

2. Pre-quantum features : receiving a radiation
We adapt the balance equation of motion quantity for a gas of particles to a gas of photons

o . - 7
(E+ W,V IS, (F.B,,t)) = (%)C ; the collision term is difficult to express.
We integrate on the distribution of p,, :

S @y 4 op a dp
[8, 5= [ of 4015 rdp=2onF)<p, > 1 (57=0.V,P=0)
(07,9, pdp =7, [ pV,f(r.p.)dp =W, [V, pfdp =W,V ,n< p>

7 - o h 1

also —n<p>+WV,n<p>=5-t-[n<p>]C ; p=—cv-:>n<p>=%<hv>=—c-pE

ot
who is the radiative density of energy linked to macroscopic energetical intensity by
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17 = Jl
2 - - @
jlwdﬂchk. =cn<p> —a—tlw(r,a),t)n<p>+VV¢V’]¢ =(_0”7)C

As the retinal receptor level these energetical relations of radiative transfer base the
microscopic filiation of /, with the kinetics ¥, of photons and justify the reject of vectorial

character in visual information.

3. The colour solution for the polychromatic flux perception by the Human Visual
System (HVS)
The experiment on the trichromatic synthesis of a white reference stimulus, and of an any
stimulus C , are quantified on the visual luminance (lumen by steradian.m?):
L, = Lyg + Ly + Lyg , Le=Leg+ Lo+ Leg D
They lead:
e to a scalar modelling L, = R. Ly, +G.L,; + B.Ly, (I’) by means of three non-dimensional
numbers: R, G, B ; the chromatic components of the C stimulus shows the visual luminance

proportions of each of the three reference components which are necessary to the synthesis of
C;

e to a vector modelling O_E?= R.5LR +G.5LG +B.(7LB (II) in an oblique referential
(5LR ; 5LG 5 5L g)of &’ This vector JC has a length associated to the global information,
luminance of C: L. = 'fle(/l)v(/l)K 44, but II&CHZ is equal to L. only if C is one of the three
reference stimulus. Equation (II) induces on the g space the norm 1,
IIC;(H1 =IR.LWR[+[G.LWG]+‘RLWI, so L. if R,G,B are positive. The synthesis of (quasi)

monochromatic light by step of 10nm allows to build an open (relatively to JL B> 5L r)and
convex modelling cone X, limited to 4, =038um and A, =0.78m . The angular position

of OC relatively to the referential axes characterizes the chromaticity . We prefer to compare
the stimulus of the same global luminance L. = L , defining a plan I, and where W, is
white reference. The various chromaticities are modelled by the interior points of the curve
7, =2 NIl which is closed by the purple line BR which cannot be associated with
monochromatic light. The chromaticity diagram 7 =y, UBR experimentally build is
approached by a (rounded) triangle ; its vertices models the directing stimulus associated to
the maximum of the sensitivity of the three cone families ; its central region models the more
polychromatic stimulus. 7' is a very suggestive representation of the category perception of
the colours by means of four attractors. In an approach adapted from the bifurcation theory,
we induce a symbolisation of a leading strategy developed by this perception way.

The trichromatic synthesis of the monochromatic stimulus of equal energetic luminance
[,(A)=constant have allowed the determination of the mean spectral sensitivity

7(4),8(1),b(A) related to the trans-spectral sensitivity of the cones in diurnal vision v(1) by
the energetic equation equality /,(AW(A)K, AL =F(A)LzAL+ (AL, AL+ b (AL AL,
ie. F(A)+4.5907g(1)+0.06015(1) = v, . The graph of these three colour matching functions

have shapes and relative positions very near to the ones giving the photon number absorbed
by a cone of each sort [Nathan]. The macro-curves 7(1),5(4) (mainly 7(1)) have a zone of
negative values which makes a problem with the energetic relation (equation I above).

32



The mathematics transformations (changes of the main stimulus basis) throw out the above
difficulty, but we move away from the experimental support. We still have a cone and a
colorimetric ‘triangle’ in the space X,Y,Z (CIE). On this triangle, we deduce usually more
synthetic information than the one obtained from the luminance curve /(1) of a
polychromatic stimulus C,C ¢ WBR (purple triangle).

1) The C dominant wavelength (tint) 4, = CW Ny, is more directly obtained by cutting out

of regions under the / (1) curve, then taking their barycentre.

ii) The global luminance L, =J‘l‘,(/‘{)d2=Km‘.‘vlle(/1)d/1 is an energetic information; it

influence the tint perception.

iii) The purity P, or saturation determination use some numerical information taken from i)
point (or by direct measuring colorimetric purity P, = Zd /Lp , Zdis obtained by adjusting
the A,and white luminance to fit the relation Londy =l

-=L<*‘Ld ¥ L, _Yd VT Vu
ke Ly~L, Y: Ya=Du

If CeWBR, then C is a purple and have no dominant wavelength, but have a

complementary colour, and a ‘dominant purple’ p=WC N BR. We define the purple purity

by Zp /LC , with Zp being adjusted from Zp + ZW = L.

The colorimetric analytic experiments have allowed the building of colour matching
functions implied in the integral formulation of the trichromatic vision, thanks to the spectral
slices obtained by means of filters and thanks to the experimental codified tests. But the SVH
at the retinal level, does not know all the details of spectral reflectance laws proper to each
object of the scene. At first glance, the SVH gets access to global information of LTS type,
and by interactive information exchange with the other information processing systems, the
SVH improve its perception progressively.

We focus principally on the interactions between colour and pattern perception. The
luminance of the direct sources (1) and the reflectance R of the re-emitting objects (2)
depend of the direction of the irradiation and of the wavelength; more, (2) also depends of re-
emitting direction D, captured by the retina. The dependency of D, relatively to R(D,,D,A)
allows to reach the 3D perception in the monocular vision. A sufficient understanding of the
physical phenomenon occurring in the radiation/matter interactions lead us to make choice
through a formula set associating microscopic theory and macroscopic functions.

1. Retro-diffused fluxes, 3D pattern recognition

The perception of a bright blob inside a circular contour strongly suggests the spherical
property of a bowl Q, illuminated in a given direction. Moreover, only the re-emissions out
of the blob bring information about the Q colour. So, the pattern and the colour perception
seems separated at this level.

The modelling of these facts in image synthesis (ray tracing) have brought out a formula tree.

A source emits a field (£,B), that we assume to be a plane wave; its Poynting vector is:

P(r,M)= EnH = J&o Jugny|[ECz, M) ¥ (1)
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b
For a spherical wave, we keep (I), but we choose for |..| the law “Tcos(wt —kr).
o
The generated flux by the Poynting field is:
- = ‘V 80 lu() 'bz 2
dg,(z, M) = p(r,M).N,dZ = nM.'||_)—2.COS (wt—kr).dZ
T____(N+l)r=t
By temporal means, we obtain:  dg, =deg(t, M ) which is the captured flux at a

ny ,/a
macroscopic scale, that is to say: d¢(s, M)=—— > . ﬂo dZ Let a= 1/80/ b,
()

To obtain the macroscopic formula, we must satisfy the two following point:
e put a macroscopic time dependence to «, that is to say, a(?),

e put 5> =dQ, the solid angle in which we see the patch dZ from the source O.

So, we can write the classical macroscopic result: dg = 7 dQ, where;

e dQ is the solid angle in which we see a geometric contour of capture, non necessary
orthogonal to the beam axis (we notice that the 1/ r’ physical dependency is taken into
account by the geometrical term dQQ),

e [ is the intensity, that is to say a macroscopic entity, @ priori defined, and for which the
dependency from the emitting direction / (Z,/l)has been experimentally confirmed. This

dependency results from the macroscopic structure of the source O, by a subtle process
which is not necessary to take into account in this paper.

For an expanded source ds, we define two properties :
6
d2¢[ ,dQ)
- 1. Intensity through ¥’ by dI (dSe, De, 1) dI(dS,, Dy, 1) = ———

I/ —>l

) d*¢

6
- 2. Radiance (energetic luminance) L ( A =
VTS RIMEEPER S| o ) 0,.dS.c05

Whatever the shape of irradiative wave, we define from a macroscopic point of view the
Y L . dg(A
irradiation of the surface ds under an over-directional flux d¢: dE(4)= %

If dS' is irradiated by :

1. a punctual emitter, the mtenéity of which is /,

dg = I(2). dQ _I(A)M E(A)=12) 25
0

—4ds'
2. an expending emitter ds with luminance towards D; .
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fo K
L(Di)___dz_qj_-g_-—) \
""" de.dS.cos @, ’ I—LNS’ERJ’
—1
The partial irradiance from dS will be

d*¢ L(D,A)

dE(p;) = }E" = T.i&}.ds.cosﬁl
dS.cos 6, . dS.cos 6,
dE(pyy = L(Dj A) ——5— .05 6, with &2 =—r24

The object U (surface SU) behave like a re-emitter (emitting source).

We can define its radiance (luminance) but here upon particular conditions of radiation

dL,(D;,D;,2;,Einc); with D; : direction of re-emission. Inducing the linear density of L we

define R(Di,D,,ﬂ ,-)=—A—WL) , that is the bi-directional distribution function of radiance
dE(D;, 1))

emitted in D-. The radiative diagram of R(D;,D,,4;) correlated with D; has for usual

emitter two parts : /7 a semi-circular lobe center O ; /2 a maximum for D; symmetric of D,

_)
with respect to the normal Ng surrounded with a normal lobe /.

The functional types of R relatively to its attributes, their relations with macro-experimental
lobes result from fine interaction radiation-matter process through upper layers of JU. The
successive experiments have drawn three reflections process :

(P1). the strict specular emission (reflection) - early geometrically characterised by the Snell-
Descartes’s laws, and the Fresnel's wave field model for the photometric properties. This rate
denote the reflected flux under (-¢;) / the incident flux for a monochromatic unpolarised
wave). R=1/2 (R/ J+ R )= 7 where,

ncos 6; — cos 6, .
By | =~ et iRy =
ncos g; — cos &,

2
cos §; —ncos @ . . s
-—’——’) obtained with continuity of fields
ncos @; —ncos 6,

- > .
components ( £, B) through the first atomic layer C1 excited at incidence frequency v; = %

V4
and imply a low dependence of R with the optical properties of U. The independence of

- K , g i . .
r= —1;}'- relatively to v; corroborate this result : for incident light with spectral law /(1) :
i

those of specular emission will be homothetic.

(P2). excitations of middle layers, starting up an emission with directional structure, revealed
by the specular lobe. This process disrupt lightly /(1). Numerical formulation must be
developed.

(P3). diffused re-emissions with deep layers. The modelling initially designed with a
differential balance, has been made precise with a diffusion approach (Chandrasekar, Silvy,
Ballian). In this study, the classic pattern of (P3), the resonance between vibratory fields and
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atomic oscillators, will constitute an explication base for the strong disruption of /(1) by re-
emission. This one is macro-schematised with a reflection spectral curve : R(1) characteristic
of deep colour, and little affected by incident direction.

According to process developed in systemic we extend the independence between (P1), (P2),
(P3) and the linear equation in a point : R(Dj, Dy) = sRs+dRg, with splitting some variables.
We propose the following equation (M) :
R(Di, Dy, lj, lrm) = sRs(Di, Dy, lj,)+myRs(Dj, Dy, I;,)+dRdp(Dy, lrm)
=7 + 1 + 1T
A characteristical (wave length) re-emitted by U ;
Dy : collimated re-emitting direction.
sRs, myRg] take into account the geometry of AU relatively to incident light, and
direction of view, so the convexity of JU and the texture (in case of a rough surface). They

are /(1) dependant,

de is a little variable compared with Dy, and assume the colour of U :

The empirical equation of Phong. (Per, 1988),
1+11 = [(sR(4)+m,R,(A))dA, = k,cos(6, - )" ,

with b €[1,...,200 Jwhich measured the thickness of specular pick, treat smooth surface, but

occult convexity and chromaticity.
A multiplicative modelling of (P1)U(P2) (out of spectral property) given by Horn (Cook,

1982).
| — —>\ b+1[ = —)\b I
d! reemitted™= Lk N.L.} +(1- k)—?- E.V.) Jp. E;j (r albedo of S constant on [/lb,l;}

This equation, computed by Baron (1991), has given the specular reflection direction, by
means of iso-intensity contours in an focal plan.

Hata (1992) use a set of monochromatic lights r, o, y, g, b, p surrounding a smooth test object
U, to mark chromatically the tilt angle ¢ of specular normal in convex area on U. Then by
computing a Sobel’s gradient detector on the iso-¢ family give out the polar angle 8. He
access to the difference of deepness on JU, by means of normal direction of specular
reflection areas, well oriented for the geometry (source, camera) and distance calibration.
Then he deduce the shape of U. A formula for Ry including the scattering role of micro-
geometry by Cook and Torrance (82) and implemented by computer graphics (Per, 1988) gift
good results. The surfaces was characterised by smooth area near textured one :
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D.G

1
Rg= EF(gi,ﬂi) SN(=o
N.L)| NV
o o
F : Fresnel's factor linking the geometry of incidence, and the spectral law of the source
A3

DL]—G ;J measure of facet distribution following the macroscopic normal

()
D=———73—e¢ * ™’ , mroughness factor
m c(os a
-\ > > -9\ >
| V)(N.B.) (N.L)(N.B)\' & {a--Y
G =Min| 1,2 e ,2 o . B.= Bisector] 7>
L V.B V.B J bkl

In visual perception, the first detected property is the global shape (with 3D occluding
contour) then internal convexity area, well suggested by specular upper radiance (achromatic
for white source). The 3D micro-geometrical details are not perceived straightly, but by a
decreased reflectance, and a softened dominant wave length. So we suggest a condensed
matter modelling of R with two chromatic components.

R(D,, Dy Ay A )= [é(Dv — D= JaF +cos(6, - Hi)b(l—a)F}?s(/l,-)+ 1y (Leg) cp(zmil) with :
[ nay (A Fron~'y

i=| 22| e=|>2>2] . iz| >
L,N|’ V,L|’ L,V

Cs with flat variation in /; (constant in NIR pattern) my, geometrical factor of deep diffusion
following flat law.

The eye and usual captors detect collimated power fluxes, therefore the density :

=dL, = R(D,,D,,A;,..). dE(D; ;) :

dQ.dSy

Dj : incidence direction upon U, R, its bi-directional reflectance
dE : illuminance upon U.

R; : part of | reflected by dS (bi-directional reflectance )

-

L : direction of the illuminance

_—)

V : direction of the eyesight

b : quantification of the narrowness of the peak of specularity
E . received energy

d . part of the diffuse luminous reflectance

37




The local instantaneous physical modelling, at the macroscopic scale, must be corrected to
assume the three usual temporal constraints :

(CI) response lapse of a retinal network ;

(C2) saturation of such a circuit

(C3) colour remanance, and permit for U/ to access at his shape in this formulation ... of re-
emitted radiation. The separation of local geometry of JU from the chromatic properties of
U, is an approximation necessitated by limitations of time computation. Otherwise among the
three or forth visual treating system drawn in neuro-physiology, and experimental physiology
to detect separately shapes from colours. But Zeky have conceived a circuit initialized in
parvo-cellular layers ; crossing V1, the inter-blobs spaces, then in folds of V2, than reach the
specialised area V4 who associate processing shapes and those of colour. V4 will be
correlated with a less analytical area (L.O) proceeding to the shape detection upon fuzzy
contours, or coloured picture with interaction to a nearby specific memory area. The
identification of object in a scene is activated in the infero-temporal cortex that is the general
area of visual memory (Buser, Imbert, 1986)

These two parts have bring out the main physico-mathematical frameworks, used in the
modelling of objective, or sub-objectives, properties of human vision phenomenon (e.g.
colorimetry). The third part, waiting a possible synthesis, add to these equations, propositions
in modelling first level phenomenon of perception act. The temporal dependence will only be
implicit. A more explicit approach will find its basis in the systemic theory, and the
dynamical systems. Vallée (1979, 1995), working on the evolutional model
dXf, = —A()X(1) + V(1) (S) has

- in one hand revealed fine conditions on the resolvant F, convolution kernel of solutions,

- and in another hand quantified the perception by (S) of external influences, with functional

S ¢
shapes for V()= L > B, (t).U,(k), Iﬁk(t, r).U((l;))er
k=0 —0

Perceptual interpretation have permitted to bring out the mathematics of their axiomatic
neutrality. The adaptation to spatio-temporal dependencies in visual perception, will set up
dynamical links through a very diversified formula set.

II1. Retinal image : modelling of the treatment by the Human Visual System
(HVS)

The numerous steps of the analytical process of simulation, of some 130 o photoreceivers

have bee well modelled by neural networks, whose synaptic weights elaborates through fine
electro-physiologic experiences and psychological tests. But, perception by the HSV don't
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systematically active all these process. For temporal, energetical, and intellectual economy
they reduced the feed-back, in culling for primal visual experiences, and conditioned reflex.
This work purpose some holistic visual strategy, induced by the retinal functional vision for
the fast perception of coloured objects, and of their spatial structures, this after learning stages
of writing and elementary geometry. We remind the functional abilities of retinal areas and

suggest some subdivisions.

(1) zy, foveal area, scanning area, angular field Q; 6= £2°, exclusively populate with great

acute cones, distributed among three families S.M.L. with spectral sensibilities
15(A)1g (A1), (1) : I;...nearby ,. The foveal cones, have distinct connections with ganglions
fibres, but also intra-lateral connections, and extra-lateral cell which permit pre-processing of
chromatic contrast then by superposing signals, those of luminance (Walraven model).

(2) zg, first supervision area, {(6= i8°)—Ql}Uz + with : 9 [-2,-1]u1,2]. Ge.

z4 ©zyf). 251 Uz p participate in the colour vision, associated w1th those of shape, by means

S
of more dense lateral connections between cones and macular rods linked with horizontal and
amacrine cells.

(3) We conjecture that the photoreceptors located in the part of the area zg2 (for 8 €£[8,15])
and those of the induce sensitive area zy (for @ €[15°,30°]) are dedicated to the shape

processing system : detection of the contours JU (edge contour, or occluding contour upon a
punctual lighting) ; valuation of the convexities inside the view cone, by the use of the
luminance singularities (specular over-reflectance, extinction scattering in hollow or textured
area) also using the acute abilities of the fovea.

For an object having C! border, we suggest a preliminary phase of visual exploration based
on a scanning of the shape by spherical wavelet and by the re-construction of the contour as
an envelop. This expanding process of covering must be compared with the morpho-
mathematical operation (dilatation), but the objectives are inverted. Optically, the front wave
family, reflected by the observed object U, carrying the geometrical information upon U, is

= kor(M)

__)
theoretically obtained by resolving the boundary problem : Igrady/(M,t)

OYy(AU) =y, or in homogenous medium : (‘Z} [2//’) ( o"w) 2

constant "slope" surfaces, in space (x, 3, z, ). If we have working out the complex :
Hx,y,z,u;A,u,v)= o(I) of a complete integral, we deduce the various kind of solutions, by

. Equation of

forming implicit equation of envelopes of each subset of surfaces included in (I). We have
used envelope method to study mirror caustic. The most classical, the semi-cylindrical mirror
lighted with a beam from the infinite in its plan of symmetry, have a caustic : the nephroid.
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This caustic is built with a minimum of three geometrical process : envelop of reflected ray
{é‘a} calculated upon a parametrical equation of J,; epicycloid with two turning cusp

points, by implicit method introducing a Thom's potential of 4th degree, at last as a chryzode.

We propose a mathematical structure which synthesises this quick process of the first
chromatic perception from four attractors, Red, Green, Blue, and the White, which
correspond to the three retinal categories and to the one of the solar illuminance. In the
framework of the bifurcation theory, we can find the simplest potential F(x,y,u,v,w) such as

(C1) F generate four critical points : dF(s)=0

(C2) F is hyperbolic [sz (s)] with a spectrum A (x,3) hetero-signed on three points (Sj) in
the neighbouring of the fourth (Sg), and mono-signed on this last point (in order to categorize
the direction S,-_.)S’j in relation to S,-_Sto eigen-vector of [sz (s)]

(C3) A(S;j) is equi-valued on the circle centred on S¢ (a kind of propagation of the influence
of Sp on the critical points).

(C1) implicate a polynomial of the 31d degree :
f(xy)=dsx° +dy 3y +dy 1x7y+ dy 2y +ay g% + agoy” +ay xy+bygx+bg1y

which can produce, by section of two conics, four critical points.
Forb] 0 = b0,1 =0, So = (0,0). Then to satisfy (C3), it is necessary that :

Mx,y)= g%+ %) (C'3)

The characteristic polynomial can be wrote with the Bocher’s formula :

Cy(A)= 2Trd(x ) + Y, [TrA(x, WY - (4 y))]with :

(U(x,y)=3ds 0x +dy 1y
m(x,y)=dy1x+d 2y
n(x,y) = dy x +3dg 3y

(C'3) implicate that : TrA(x,y)= @y(x +y7)=> I(x,v)+ n(x%,y) =0 ;
the choice aj; =ay; = u,a2 =0 conduit a :

detA4 =(2a220 -’ +m2))= (1%0 ¥ Kd122 +d§1sz +y2)}: @(fzﬂ/z

dy 1
f(x,y)=- 12x3 +dy1x y+ a, zxy +d(x +y ) —3‘—y which verify (C3) and have a

@y +U(xy) apy+m(x,y)]
-_— 2 = ’ ’
4= P f(X,J/)]‘ Lal,l +m(_x,y) ao’z +n(x,}’)J

difficult stralght processing.

(C2) can be realized if : f(x,y)=U x (x2 + y2 )+ H(x,y) ; H(x,y) is an harmonical function,
well-known to have harmonical critical points. The subspace P3 of polynomials of 314 degree,
with 2 variables agree the base : x(x*-3y%), y(*-3x°).
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The final result is f, ,(x,y)= L 3ch2 + u(x2 + y2)+ vx +wy. This is one of the seven
u,v

potential elaborate by René Thom : the elliptic ombilic. This polynomial is generated by a
spreading of the singularity x(x2 -3 y2) A discuss on values of control parameter (%,v) have

permit to identify the stable states near the critical point Sg.

Morever the experimental verifications of diffraction figures, calculated with approximation
of phases in intensity integral, by means of seven Thom's singularities (cf. Fig. 5 : elliptical
ombilic) confirm the modelling abilities of the potentials in geometry as well as in physics.
However the bringing near, between the front wave genesis by envelop and the ondulatory
property of radiation have to receive most developments, reading collaboration through
mathematicians, physicists and computer graphics scientists. The well leading of this plan
conduct us to restructure the analytic process to characterize curves, surfaces defined with
implicit equations : research of critical points center, branch or isolated point, determination
of connex parts, bounded or not, limit curve ; type of curvature are qualified with their
topologic or metric properties. Beside these dense sets, the needs of computer graphics have
leaded to search features for finite pixel subset, developing a discrete geometry (Chassery,
1989) and also a pretopology (Emptoz, 1983). Symmetrically, guided by the cognitive part of
perception (already evoked in part II) developed by the psychological studies (Moles, A A,
Bonnet, C.). We are constructing a branch table developing the scale [0,8], of 40
morphomeres of Moles, including the oriented arcs of Malik and the 36 "geons" of
Biedermann.

Many forms are likewise registered in short-term memory (5), and have limited effect on the
behaviour of the subject (saillance). But the situation is quite different when forms carry a
biological significance. These forms gives rise very ample reaction in the subject
(pregnance). Besides the static suggestion of these forms, we exhibit a dynamical suggestion
by an optical illusion of a motion (cf. figures).

The concentric rings family (Fig. 5) induce dynamically a conical depth by angular
restrictions on circular explorations, result of anisotropical receiver fields. The pattern of
secant circles (Fig. 6) iso-angular on a ring, suggest statically the specular super-reflectance of
a smooth torus. The same pattern, but less dense (Fig. 7), with alternate filling, and masking
the covering arc, give the suggestion of toboggan in slow motion, induced by ambiguity upon
the depth. Reaction tests, with alternate filling, chose in a hue scale or a saturation one, have
developed pregnance scales toward more cognitive suggestion of psycho-affective entity by
means of logos.
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For static shapes perception system, the abilities to extrapolate, are prime externalised with
radiance contrast between picture back ground. The first phase of reading text, activate
correlatively to this system the memory area of wrote words, developed from the real- life of
the reader (culture). The rhythm of this reading, depending on syntactical eases, and edition
flow, is often accelerated by a contextual anticipation on the significant, that will may be
confirmed with a second reading.

Keywords :
Flow, energy, spectrum, edge, forms, convexity, envelope, retinal specialisation, bases 3D
learning frames.
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