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Abstract

In the Kottler-Whittaker metric of the homogeneous gravitational field the spacetime
volume is conserved. The spacetime area is conserved, as well, if only the space
dimension parallel to the field is taken into account. The latter property leads to an
intuitive account of geodesic motion. Starting from the so-called Rindler hyperbolae,
which describe constant proper acceleration in special relativity, the coordinate
transformations for the equivalent homogeneous gravitational field are developed and
applied to some elementary gravitational scenarios. The geodesic equations of planar
fields are analyzed and compared for the two cases of volume conserving metrics and
“isotropic” metrics conserving spacetime areas. An isotropic counterpart of the
Schwarzschild metric is given by Broekaert’s “scalar gravitation model”, which is
shortly discussed.

Keywords: gravitation, Riemannian spacetime, homogeneous field, Kottler-Whittaker
metric

1 Introduction

In General Relativity Theory, Riemannian spacetime metrics conserving the
infinitesimal “volume element” are of special interest. As repeatedly stressed by
Einstein in his foundational article [1], such metrics lead to considerable mathematical
simplifications. The static solutions of the field equations which are volume conserving
metrics do not exhibit gravitational effects on lengths perpendicular to the field. For this
reason, spatially one-dimensional scenarios involving only motion parallel to the field
can be modeled by metrics conserving spacetime areas.

In the first part of this article it is shown that area-conserving metrics provide an
intuitive understanding of geodesic motion. This will be elaborated by the analysis of
the Rindler scenario of accelerated motion, which amounts to the so-called
homogeneous gravitational field after appropriate coordinate transformations: After
graphically reconstructing the Kottler-Whittaker metric [2, 3] of the homogeneous field
from the assumption of area conservation, two spacetime diagrams will be discussed
which enhance a qualitative understanding of gravitational effects.

The second part deals with two types of planar static field metrics. The geodesic
equations of volume conserving metrics are compared to the respective equations of a
class of “isotropic” metrics, which only conserve the spacetime area in the direction
parallel to the field, but not the volume.
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We conclude by relating the results for planar fields to the case of spherically
symmetric fields, where an isotropic alternative to the volume conserving
Schwarzschild metric is given by Jan Broekaert’s “scalar gravitation model”.

2 Rindler Hyperbolae and Spacetime Diagrams

The planar field solution of Einstein’s equations describes the so-called
homogeneous gravitational field, which is equivalent to a well-known special
relativistic scenario involving accelerated objects.

2.1 Accelerated Light Clocks

In special relativity, an object that is being accelerated at a constant rate (from its
own perspective) is described by a hyperbola in the spacetime diagram. The family of
Rindler hyperbolae (Rindler [4]) consists of such hyperbolae, whereby the proper
acceleration g of the objects depends on the location x=1/g at time ¢=0. Equation (1)
describes a Rindler hyperbola for a chosen proper acceleration g (the light speed c is set
to 1).

1
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Figure 1. Two objects following Rindler hyperbolaec form a “light clock” by
exchanging photons. The meetings of the photons take place on a third Rindler
hyperbola.

Fig. 1 shows the spacetime diagram of a light clock which is built of three Rindler
hyperbolae: At time ¢=0 two photons are emitted from the objects described by the left
and right hyperbolae and keep bouncing between the two objects. In this construction,
the meetings of the two photons are located on the “middle” hyperbola. A measure for
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the proper time of the light clock is given by the respective number of spacetime cells’,
which are formed by parts of the left and right hyperbolae and the respective lines of
simultaneity. As will become clear in the following, the spacetime cells have equal
spacetime areas. Another interesting property is the fact that the lines of simultaneity go
through the origin (c.f. Fig. 2). The 45° line describes the world line of a photon emitted
from the origin. An object following a Rindler hyperbola cannot interact with what is on
the left side of this line.

2.2 Coordinate Transformations

In this section it is outlined how the coordinate transformation from the Rindler
scenario depicted in Fig. 1 to the view of an accelerated light clock can be calculated
from geometrical considerations in Euclidean geometry - the special restriction of the
transformation being the conservation of spacetime areas.

Figure 2. A Rindler light clock before and after the area-conserving coordinate
transformation.

Figure 2 shows a spacetime cell of a Rindler light clock and the area-conserving
transformation (indicated by the gray areas) of the scenario. The following steps lead to
the transformation of some event P to the perspective of the Rindler light clock
(represented by the thick middle hyperbola):

a) The Rindler hyperbola on which Pis located follows from Eq. (1). The x-
coordinate of this hyperbola at time t=01is the provisional x-coordinate of Pin
the transformed diagram.

b) The line of simultaneity (sim) on which Pis located goes through the origin. The
intersection of this line with the middle hyperbola gives the event (), from which
the proper time coordinate is taken as the transformed time coordinate of P.

1 Light clocks and spacetime cells have been suggested as useful means to explain most of special
relativity (Winkler [5]). The concepts are quite naturally extended to the case of accelerated motion in this
place.
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¢) Using a standard formula, the area of the “triangle” OXP is calculated.

d) In the transformed diagram, the area of the rectangle OXPT is calculated.

e) It turns out that the two areas are not identical. Therefore the provisional x-
coordinate in the transformed diagram has to be rescaled.

f) The rescaled x-coordinate and the already calculated time coordinate give the
required area-conserving transformation.

g) An appropriate shift of the transformed x-coordinate brings the middle of the
light clock to the location x=0 (this is not drawn in the diagram, but is necessary
to finally derive the Kottler-Whittaker metric).

h) The Kottler-Whittaker metric follows after calculating the differentials for space
and time extensions leading to the metric coefficients.

Performing steps (a) to (f) gives the following coordinate transformation to the
perspective of the accelerated observer located at x=1/a with proper acceleration a.

Vardd 7 t'=—1—Log[X+t] )
2a x—1

2

This is the basis of the spacetime diagrams Fig. 2 to 4 showing Rindler scenarios

from the “gravitational perspective”. The metric given by the differentials for the

lengths and time extensions in the “gravitational field” follows from these
transformation formulae. The scaling function A (x) for space distances is

A=2ax. 3)
The Kottler-Whittaker metric takes the location where proper acceleration is a to be

at x=0, and the light speed to be c at x=0. This changes the scaling function for space
distances to

A=,/1+2ax 4)
and consequently the scaling function for time intervals to
A=A"=1/\1+2ax 5)

Under the assumption that there is no gravitational effect on the perpendicular
extensions, the line element of the Kottler-Whittaker metric follows.

ds’ = A7 df — AdY - dy - dZ

6
ds’ = (1+2ax)c*df —(1+2ax)" d¥ ~dy’ — d7’ ©)

2.3 Two Gravitational Scenarios

Fig. 3 shows two accelerated light clocks in the Rindler scenario which each send
two photons in the direction of the other light clock. The emission time interval is one
“tick” from the perspective of the emitting light clock. The transformed diagram shows
both light clocks at rest and makes clear why the right light clock measures a redshift
and why the left clock measures a blueshift.

The right hand side of Fig. 4 shows a resting light clock and a light clock in constant
motion from the perspective of a Rindler light clock. Depending on speed and location,
gravitational attraction becomes “gravitational repulsion”. This phenomenon has been
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analyzed in the context of the Schwarzschild metric? and will be derived later from the
geodesic equations (Eq. (20)).

Figure 3. Two Rindler light clocks exchange photons. In the transformed diagram
the measured time distances explain the effect of gravitational redshift.

Figure 4. A resting and an identical moving light clock are transformed to the
perspective of a Rindler light clock. Area conservation is indicated by the gray
patches.

2 A comprehensive analysis can be found in McGruder [6]; an early calculation has been performed by
Hilbert [7].
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3 Geodesic Analysis

For a deeper understanding of geodesic motion we derive two forms of the geodesic
equations for a class of static area-conserving metrics (in the direction parallel to the
field). The following calculations are restricted to planar fields. The property of area
conservation is given by the inverse scaling of space and time extensions (parallel to the
field).

The class of metrics under investigation is described by the line element
ds’ = A**df — A*d¥ - B?dy’ — B? d7Z. (7
The scaling function B in the line element will be set to identity for volume
conserving metrics and will be set equal to A for isotropic metrics. In the following, we
assume that motion takes place in the (x, y)-plane, which allows us to omit the z
coordinate.

‘ 3.1 Two Forms of the Geodesic Equations

| For the analysis of timelike geodesics we use the Langrangian
1ot e

S 8

2594 4t dr &

which leads us to

- _1d8 1f o CZ(ﬂT _ A (L‘E)Z _B? (ﬂ]z )
T 2y 2 dr dr dr

Equation (9) represents a first conservation law for geodesics. The variables ¢ and y
are cyclic which allows us to calculate two more conservation laws (the notations

t= dt/dr and y = dy/dr being used).

p,=%=CZAZ%=COHS[ (10)
_ oL 1 dy

=—=———2 = const 11
Exposing the derivatives of the two cyclic variables leads to
dt P d.y 2
. ., —~ =—p B*. 12
dr A ar Dy ()
The differentiation of the three conservation laws with respect to 7 leads to the
geodesic equations.
Deriving p, with respect to 7 gives
d’t A dx dt
et e . 13
dr’ A dr dr (13)
Deriving p, with respect to 7 gives
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d’y B dxdy

L i (14)
dt B dr dr
Deriving L with respect to 7and inserting from Egs. (13) and (14) gives
T deY  A(dx)' AB ( )2
=-CAA + 15
dr* (dr) A (drj B \dr &)

The geodesic equations (13) to (15) are formulated with respect to the proper time 7
of an object in free fall. In order to be applicable to the spacetime diagrams of the
presented kind, however, they have to be reformulated with respect to coordinate time .

We write
a& B Ay dydt _ _p dy dx dxﬂ_ p. dx (16)
dar A dr didr GAdi’ dr didr GA dt’
and get from Egs. (10) and (11)

dy g By oy p_ Iy

——=-p B =—-—, =——"t_— 17

dr. 7 TR A P T RE d (17
Differentiating p, with respect to ¢ leads to

d’y A B)\dxdy
Gl S HORGE 18
dt* (A Bj dt dt 7
According to Eq. (16) L can be written as
2 2 2 2
L=== gt i 214(2) ___2_1_2__(@) x (19)
2. 24 cAN\dt) CJCAB\ dt
| Differentiating with respect to ¢ and substituting Eq. (18) for d’y/df* leads to
2 2 2
L S 3/‘("") 272 20)
dr’ A\ dt B \at

We call the representation of the geodesic equations given by Egs. (18) and (20) the
“t-form” as opposed to the usual “zform”.

3.2 Speed Dependence of Acceleration

A well-known result for the #form of the geodesic equations in the Schwarzschild
metric, which is an area conserving metric in the spatially one-dimensional case, is the
fact that gravitational acceleration for mere radial motion does not depend on the speed
of the falling body. This result will be reconstructed for the Kottler-Whittaker metric
and will be extended for isotropic metrics. The dependence on the perpendicular speed
will be made explicit. For this purpose we have to reformulate Eq. (15).

The Lagrangian (9) allows us to write

2 2
(dt ) AT+ A -2( d"] + A—ZBZC—Z(QJ . @1)
dr dr dar
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Inserting into Eq. (15) gives an expression for the gravitational acceleration that is
free of dt/ dr and consequently makes the dependence of gravitational acceleration on
the speed components explicit.

Gy o dy)z AX AFB
i e e W ] +— 22
i - (dr . -F (22)
For volume conserving metrics (B=1) the dependence on the perpendicular speed
component is given by
d*x dy
—=-AA|+|=| |. 23
dr? ( (drj ] )
For isotropic metrics (B=A) the dependence is even stronger.
d*x dy Y
——=—AA| F+2| =
dr’ ( (drj j (24)

Given the secondary meaning of coordinate systems in general relativity, the present
analysis of the 7forms of the geodesic equations may not seem very relevant. There is,
however, a significant difference between the volume conserving metrics and the
isotropic metrics which can now be formulated: If and only if A=B the radial motion
equation can be derived from a kind of energy conservation law including potentials.

In the following definitions, P(x) can be regarded as the “potential of the linear
momentum perpendicular to the field” which is invariant in Newtonian physics. V(x)
represents the “potential of the gravitational force”.

2
P(x)= B4pf, = (g’;—/) , V(x)= A (25)

Using these definitions, an energy expression can be formulated.

EE( d")z + (QJZ V()= (%)2 + P(x)+ V(%) (26)

Fz_' dr

Assuming FE to be constant and deriving Eq. (26) with respect to 7leads to Eq. (24) in
the case of B=A, but not to Eq. (23) in the case B=1.

3.3 The Kottler-Whittaker Metric

The results can now be applied to the Kottler Whittaker metric.

A=(+2ax)"?, A=a(l+2ax)"?, B=1, B=0 (27)
The geodesic equations follow from Egs. (13), (14) and (15).
¢ 2a dt d
gt a dtdx (28)

dr*  1+2axdr dr
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2 2 2
-d—x=—cza(l+Zax)[ﬂj Foes (dxj =

dr’ dr 1+2ax\ dr
0 (29)
=—ac’ - a(—y]
dr
d’y
=0 30
yr (30)
The #form of these equations follows from Egs. (18) and (20).
2 2
I T R (i"j 31)
dt 1+2ax\ dt
d’ 2a dxd
F=—— (32)

d°  1+2axd df

The world lines of the free falling objects in Fig. 4 and all the world lines for light in
the transformed diagrams follow after using the scaling function from Eq. (3).

A= B=(2ax)"*

? : (33)
d—f =-2ca’x+ -3—(2]
dt x\ dt

3.4 An Isotropic Metric for the Planar Field

A possible isotropic metric with some similarity to the homogeneous gravitational
field of GRT is given by setting

A=B=¢"*, A=PB=ae". 34
The geodesic equations follow from Egs. (13), (14), and (15).
2
dat__,, dt dx (35)

T a
dt dr dt

2 2 2 2
—d—lz,_(=—-02¢3\1f94"”"(—(—1£ +a(ﬂ) —a(ﬂ) =
dr dr dr dr

L (36)
=—c’ae’®* - Za(—yj
dr
2
L8P 4 37)
ar dr dt
The t-form of these equations follows from Egs. (18) and (20).
2 2 2
IX_ _ae+ 3,{3 = a(ﬂj . (38)
dr’ dt dt
2
d—zy P (39)
dt dt dt

133




4 Schwarzschild Metric Versus Broekaert Metric

The calculations of the preceding section refer to planar fields, only. We would like
to mention, though, that the results apply to the case of spherically symmetric fields, as
well. It has been shown by the author (Winkler [8]) that the so-called “scalar gravitation
model” suggested by Jan Broekaert [9] is a metric model in Riemannian spacetime.
Broekaert’s model fits the present definition of area conserving isotropic metrics and it
explains the experimental tests of GRT: gravitational redshift, precession of orbital
perihelia, radar echo delay, and light deflection (Broekaert [9]).

For the following comparison of Schwarzschild and Broekaert metrics we use the
functions A and B for radial and tangential differential lengths.

The Schwarzschild metric is given by setting

172 -1/2
ek A=(1—£) ; A’=£2(1——2-’5J . By Een e
¢ r r r

Performing calculations analogous to those in sections 3.1 and 3.2, the geodesic

equations lead to the radial acceleration in zform.

d'r o 3 dqo)z
=— +{r-3x) — 41
dr? ¥ ( )( dr £
The t-form of this equation is
d’r x(r-2x) 3x (dr)z (dqo)z
=- + — | +(r-2x)| —=| . 42
df’ r r(r-2x)\ dt ( ) dt 42
The Broekaert metric is given by setting
x=%ﬂ1, A=B=¢e"'" A’=B'=;K§—e"‘”, (43)
leading to the radial acceleration in 7form
L e>*" 4+ (r- 2x)(ﬂ’i)2 (44)
de* & o dr)
The t-form of this equation is
sk R -5 i 31(( dr]2 (dqp]z
— ="t —| +lr—-x)|— | . 45
dr ' r’ dt ) dt A5

For the #forms of radial equations, the analysis of the potentials leads to the same
difference between volume conserving and isotropic metrics as in the planar case. P(r)
stands now for the “potential of the angular momentum” and the “potential of the
gravitational force” is written as V(r).

. pj, _ 2[dy i L 1 ad
A)= B2 ﬁ(dr)  V()=¢ 4 (46)
Differentiating the energy expression

B= (ET + R(QJZ +V(r)= (%T + P(r)+ V(r) (47)

dr dr
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leads to the radial acceleration (Eq. (44)) for the Broekaert metric, but not to Eq. (41)
for the Schwarzschild metric.

5 Conclusions

The intuitive power of area conserving metrics has been revealed by transforming
Rindler scenarios involving accelerated light clocks to equivalent gravitational
scenarios. A distinction between volume conserving and area conserving isotropic
metrics has been made and two forms of the geodesic equations for the two classes have
been derived. Both representations have their merits: The coordinate space formulation
provides the basis for spacetime diagrams and the proper time formulation exhibits a
classical energy law including potentials for the isotropic metrics.

The relevance of the present results is given by the applicability to the spherically
symmetric field, where an isotropic counterpart to the Schwarzschild exists in the form
of Broekaert’s “scalar gravitation model”, which explains the known experimental
evidence for GRT. While in full agreement with the Riemannian view of spacetime
provided by GRT, the assumption of area conserving isotropic metrics might lead to the
formulation of a new set of field equations. The planar field from section 3.4 and the
spherically symmetric Broekaert metric would appear as simple solutions.
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