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Abstract
Since the introduction of strong anticipation by D.Dubois the numerous investigations
of concrete systems had been proposed. Discrete dynamical systems with anticipation
constitute one of such system class. But not very many investigations of such objects
exist recently. More intensive investigations of counterparts to properties of common
systems need - namely to stability of solutions, bifurcation diagrams, chaotic behavior.
So the investigation of one modification of well known logistic equation by anticipatory
property is considered. One of the most interesting properties in such systems is
presumable multivaluednes of the solutions. The next issues are described: the
examples of periodic and complex solutions, attractoros properties, and dependence on
the parameters.
Keywords: Discrete maps, strong anticipation, multivalued solutions, chaos, attractors

1. Introduction

Since the introduction by D. Dubois the definitions and first examples of strong
anticipation [-4] many aspects of strong anticipation have been investigated, especially
for discrete models for socio-economical and systems, traffic problems, biology-
inspired models (game 'Al,ife') 

[1-8]. Many interesting properties and interpretations
have been discussed. But now more vide investigations of anticipative systems behavior
is necessary. Of course some general theoretical mathematical results exist which
concemed the equations with anticipation. First of all we may remark some theoretical
results on retarded-advanced differential and difference equations (with some names of
researchers: C. Corduneanu, V. Lakshmicantamn L. Elsgoltz, S. Norkin, R. Bellman, K.
Cooke). Also some examples of simple discrete equations with anticipation have been
considered in papers from CASYS conferences (see the names D. Dubois, G. Weber, P.
Beda, M. Burke, E. Otlacan, L. Leydesdorff, S. Holmberg). But such investigations
have been implemented with some simple equations and with relatively simple
behavior.
Further development of the theory and applications of strongly anticipative systems
depends partially on searching of new kind of anticipation manifestation, on more
detailed analysis of possible behavior, on fi.rther development of mathematical tools for
complex multivalued solutions investigation and on development of recognitions and
interpretations of solutions peculiarities.
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So, any investigations of new equations with anticipation are interesting. Because of
this we describe in proposed paper the investigation of complex behavior of one
difference equation with anticipation. V/e propose the equation, computer investigations
of solutions behavior and results of corresponding periodic solution investigations,
including long-periods circles.

2. One dimensional discrete time equations with anticipation.

2.1 Analytical investigations of equation

Let us consider the discrete dynamics equation with anticipation which is the
modification of well-known logistic equations. The proposed equation has the form:

xn+t  =  l '  * r ' ( r  -  * r ) -  a '  x l * r

where a + 0 (for a =0 we have a classical logistic map) is an anticipatory factor.
So, our anticipatory equation is reduced to the two-branch evolution operator

( l )

(2)

First of all we would like to get the fixed points of our anticipatory equation. Obviously,
there axe exist two fixed points satisfying the following equation

x = ) . . x . ( l - r ) - o . x t .  T h e y a r e  x i  = 0  a n d  t ; = # .

Now, when will they be stable? To answer this question we have to get the derivations

x*r=e(xn)=ry

ofeachbranch: 
dx'*' - A(l-Zx') =t-%.thatis
dxn 2a . xn*, +7 .ll + M,a . x,(1- x,) 

'

l,p'(*l=MlY'\-4 
I+ TffiFA

As we well know the fixed point will be stable when its multiplicator is in(- l; 1). In this

w a y , t h e f i x e d p o i n t x i i s s t a b l e i f _ # < | e ) ' . ( _ u ) a n d t h e o n e x j i f

lç'(il< r elzn + nu - rl. @ o

e (1 - l)(^ - | t 3)(a + D(G - ̂ #7).,
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So, resolving this inequality, we can say that there are the different areas of the pair-

wise stability of xi and xl.
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Figure l. The stability arca of xi

Let's consider the conditions (on a and/ ) under which x does not leave (ti; 
";;

interval or leaves it using only one of the branches or both of them.

Denote yr(",)=)x,(l-x,\ andyo(.r,r)= æ1*r+x,a1, so our equation (1) becomes

y"(x*r)= y^(*,). Having obtained y^ fromxn, we get )c,*, fromyo = uln*r+ x,*r. Our

iterations are following x; -+ (xi;r,')- (xi;xi;x);x) *...

Consider a<A,2>0 case (because of existing of the areas of hyperincursion in this

part of Q., a) plane, we will concentrate on the strict inequality). Considering other

cases  is  s im i la r .  The roo ts  o f  y t=0  (a tx=0, r= l )  and lo=0 (a tx=  0 ,x=-Aa)

will be useful for our investigation.
The map y,(r) trur maximum value -lf 4a atx = -ll\a. And as we know yr(x) tas

maximum value )"f 4 atx =12.

So, depending on

l) the location of the maximums of y^and y"

2) the location of the roots lf - a and I

3) the derivation of yr' (0)=2 (under or over l)

we divide a <A,),> 0case on 8 (23) sub-cases.
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J -1<a<0
r1 JZe(o;r) In this case and x, >0 the sequences {x,} will stay in ("i;ri) it't

l 1< t f -a
explained by the stability ofthe both fixed points. Ifxl <0, there exists the sequences

/  .  - \
witch start from (xi; xr) and leave it (Figure 2a).

[ - t <a  <o

2)111 1 In this case, according to the Figure I xi fixed point is unstable but the

l tst l -  a
other one may be stable or unstable. So, there is exists a sequence {r,} ttrat leaves

ûi, r;) (e.g., started from a negativexo).

f - t<a<o
3) I A > I In this case, according to the Figure I both of fixed points are unstable.

lnrr l -"

So, the sequences {x,} of each branch from the equation (Z) leave(xi; ri). More ouer,

there are the sequences {x,} witch do not have the real solutions of (2) (see Figure 2b).

f - t<a  <o
4) J2 € (0J) There is not existing of solutions.

lA> l -a

Ia<-1
tlj 2 t l In this case, according to the fig.l, xi is not stable. So, there is exists a

lx>r l -a

sequence {r,} ttrat teaves(ri; rl). uo." over, there is the sequen"" {r,} witch does not

have the real solutions ofequation (2) (Figure. 2c).

l a  < - l
t .

6)J/ e (0;l) According to the fig.1, both of fixed points are stable, so the sequences

lt" <rl-a
/  .  " \

l.r,j don't leave(xi;xr). Always there are roots (2) (Figure.2d) (important that this

area is interested cause ofpotential existing ofthe fractal structures).
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Figure 2. Lamerei's diagrams: we denote the iterations of our
equation y" (r"* ,) = y ̂ (r,) by the dotted lines, y, (x, ) is denoted as the thick solid lines,

y"(x*r) is denoted as the thin solid lines.

fo<- l
7 ),1"e(01) eccorCing to the Figure 1, xi is always stable. There is exists a sequence

l t  >r l-a

{x,} ttrat leanes(xi; rj). uot" over, there is the sequence {:r,} witch does not have the

real solutions ofequation (2).

P =-t
8) 11r l There are not the real solutions of (2).

lÂ"<rl-a
Now, (2) will have both roots when I + M"æc,(l- n, ) > 0

4Â.æ2 -4)"m-r<0

These roots are xi. = 11 I 
./1*l

Let's consider three ,i; iïr,!f*" nru. both roots of anticipatory equation (1)

lû.> o
\  /  . \
1x, e (xi; xi ,|

- - - - -ç ' -
- - - - - T T

- - - - - - t - t -
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{û"  < - l
1  r  , \  /  ,  \
[x,  e (-oo; x i  )w\xi :+æ)
( - r < a . l < o
{
lx, e rR

It is simple to show that:
a) in case of a)">0 we have (*1; rj)= (o; r);

b) in case af a)" <- 1 we trave (t/ ; tf ) - (o; r) ;
Now, we are interested in that when each anticipatory solution branch (2) will
contractive. Each branch of (2) will be contractive on x if

l,p,(r'., o {lr(t 
-2*1. {.11*T:;)

l ' \ ' /r 
| + +1"æ(t- 

")> 
o

Consider fitst Mx2 (L + d)- 4Ax(2 + a)+ t - I < 0

+,r(A+ a)t
, ! t -7q^*o1= 

xt 'zx =
1 ,1

=  - T -

2 -2st(Â.+ a)

It will have the roots when 4o 
*1 

,, O .
) .11+ a)

The above inequality implies 8 cases (four couple of the similar cases)

Figure 3. The division of parameter space
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( l ) :  ( 5 )

if:don,t'""".[;_;Fæ'+-;ml,.n*thisintervalwillbe

contractive one for all x from l+ U,æc(l- xl> 0 .

(2) : (6)

For all x for I + 4,1æ(l- x)> 0 th" equation (2) will be contractive.

(3) = (7)

This interval will be contractive one for all x froml +4^æ(l-x\>0 .

(4) = (8)

There isn't a contraction.

2.2 Results of computer investigations of solutions

Finally, lçt's sow a behavior of the dynamical system given by anticipatory equation.
The Figure 4 presents the atlases of the charts of the dynamical regimes. This figure
obtained by computing modeling of the dynamical behavior of the anticipatory equation
(  1 ) .
For each parametric point (2;a) we start few trajectories (as rule, not more than 10)
from different initial points. At some instantn, we have the set of points
(rl',"jt',...,r1'') ms2"achievable from initial point ro after n iteration of (2). After

next instant r + I , some branches of (xf ),xf t,. ..,*y') leave the initial defined interval,

and some of them may have not the following points of the trajectory branch.
At our figure, distinguish regions corresponds to the different periods of found
trajectory orbits.
So, first region corresponds to one-periodic trajectory orbit (the area is denoted by (l)),
second implies fwo-periodic orbit (denoted by (2)), third - 4 (denoted by (4)), forth - 8
(denoted by (8)), fifth - 3, sixth - 5 and so forth ...
As we see in this case, periodic-doubling leads to chaotic regime. Periodic-doubling
starts after A leaves the interval of stability (l;3) (in the simple cased:0 ). So the most
interesting in our computer investigations are may be two things. First is that in
proposed modification of logistic equation we have the manifestation of period -

doubling scenarios of transitions for regimes which may be recognized multi-valued
chaos. Second is founded stabilizing role of anticipation which is seen from Figure 4.
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Of course many question are interesting for investigation conceming the definitions of
multi-valued regimes and their development (see for example [9, l0]).

Atlas of charb of dynamical regimes
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Figure 4. Atlas of charts of dynamic regimes

3. Conclusions

Thus in given paper we propose one simple equation with anticipation. Period-doubling
mechanism of transition to multivalued analog of chaotic behavior had been found.
Such investigation af,e one of the steps in understanding of multi-valued counterparts of
single-valued objects such as periodic and chaotic solutions; scenarios of tansition to
chaos etc. Also interesting is the stabilizing role of anticipation (that is suppressing the
development of complex behavior in common logistic equation).
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