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Abstacl This paper presents a backstepping procedure for the design of discontinuous time-
invariant state feedback controllers for the stabilization of nonholonomic ry-Etems in clwined

form. To highlight its efectiveness, our procedure is applied to two nonholonomic physical

systems, namely, a unicycle and a cqrJilæ mobile robots. It is worth noticing that this
approach may be considered qs new systematic wq) to design time-iwariant discontinuous
contr ollers for nonholonomic sy stems.
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1. Introduction

The problem we are concemed with is the stabilization of the class of nonholonomic
systems in chained form described by

* t = u t

*z  =uz

*, = xrlt, ( l)

)cn = xÈtut

where (x,,rr,'..,r,). Q denote the state variables ̂ d Qr,!r)e Q denote the input
variables, D, and D, ate, respectively, open subsets of S' and S', both containing the origin.

Sr:ch a class of nonholonomic systems was treated for the fust time in (Murray et al.
1991), and suffrcient conditions under which any mechanical system, with two inputs (e.g.
wheeled mobile robots), can be transformed via coordinate and feedback transformations into
thechainedform(1)aregivenin ( Munay et al. 1993). One of the reasons for the interest in
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such systems is that they fall into the class of systems which cannot be stabilized via any
smooth time-invariant feedback, as pointed out in (Brocket 1983). This fact motivated the
search for stabilizers of another type. Among all, recall smooth time-varying feedback
resulting in oscillating trajectories (see Pomet 1992, Samson 1995, Tayebi et al. 1996A and
references therein), and discontinuous feedback resulting in exponential stability and yielding
to nonoscillating trajectories (see, for example, (Astolfi 1996), (Bloch et al 1994), (Canudas et
aI 1992), (Canudas et al 1995), (Reyhanoglu 1995) and Tayebi et al. 19968 and 1997). The
backstepping approach inûoduced in (Krstic et al 1995), has also been used to derive time-
varying controllers as shown in (Jiang et al 1996) and (Jiang et al 1995). However, in this
paper, using the elegant backstepping technique, we propose a systematic way to design the
discontinuous time-invariant controllers for system ( I ).

For the sake of simplicity, two nonholonomic physical systems are studied instead of
system (l):
(y' the unicyclelike mobile robot described in the Cartesian space by

which can be transformed into the following third order chained form

using the following transformations û, =Q .r, = xcos}+ y sing x, = xslnQ-ycosQ]and

{r,  =o, uz =v-x{ù}.

(ii) and the car-like mobile described, in the Cartesian space, by

u'hich can be transformed into a forth order chained svstem

f* 
= vcos0

l i t = v s i n g

l0=ro
(2)

(3)
Ir, =,,
1. *, = 21,

lrr=;*,

l * = v c o s l
I
l i t  =v sin9
I'1 v
l0  = ; tanQ
l L
l Q  = a

|  * , = u ,

l r ,=u,
1 -
| *^ = xru,

|.*, =rrr,

(4)
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using the following local transformations 
{r, 

= r, *r=ffi, xs = tdnl,r. =y}*a

I  u,  3sin2 o s ing I
1 v = - * , C ) = _ _ u , * L c o s - @ c o s . 0 u , | d e | r n e d o v e r t h e s u b s e tI  c o s O '  L c o s ' O  I  - l

t a l

r=i(4r,0,0)e X t e * lnodn,O *lnoanl of Sa.

In section 2, we describe the procedure yielding in a systematic way to discontinuous time-

invariant controllers for nonholonomic systems in chained form and we suggest a solution for

the stabilization problem of a car-like vehicle (a) and a unicycleJike vehicle (2). Section 3

contains some simulation results. Section 4 concludes this paper.

2. Design Procedure

In order to apply the backstepping procedure, let us consider the following change of

coordinates

li = xn-i+r for I < i < z. System (l)' then becomes

lr = lzur

lz = !$r

!s = ltut

!n- t= Uz

j ) n = u t

To render the last coordinate y, exponentially stable, let us take a linear state feedback

4 = -kr!n, where ,t, is a strictly positive parameter'

Systern (6) then becomes
j ) r= -k t !z /n

lz = -kJt!,

j's = -kr!t/n

!n t  =Uz

!, =-krYn

Now, the problem consists in finding the control law u, for the stabilization of (7), using

the backstepping approach (Krstic 1995). The first step consists in finding an adequate
control Lyapunov function (cl| ,', for the first equation of (7) and a virhral control

lz =Vr(yr,y, ) which stabilizes y,. In the next step, the previous clf is augmented to obtain
anadequate onel/, which leads to the virtual control !t=Yz(lplz,y,) that stabilizes both

h ffid (1, - V( y, y, )). Progressing in this way, we arrive to the ( n - 2)-th step, where we

obtain the clf V*, which leads to the virtual control l*r =v,-z(!r,/2,1t,..',!n-2,y,) that

(6)

(7)
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skbilizes all of y, | 3 i < n- 2. Finally, we augment V*, to obtain the final clf Y,_, yielding to
the stabilizing control uz = v ot( ! r, !2, lt,..,, ! nz, / a, !, ) for the system (7).

In order to guarantee that the whole state is bounded and tends to zpro when /goes to
infinity, one must ensure that all of y, are bounded and vanishes when / tends to infrnity. As
it will be shown later, the y, functions arc not defined for yn= 0. Therefore, the contol law
zrisdef inedoverthedomaindr,=$=(lr , !2, . . . ,y,)e8n/yn*O].Ouetotheexponent ial
convergence of y,,, the discontinuity manifold is not very resfictive since we have just to
avoid y,(0) =Q.

2.1. The Csr-lihe Mobîle Robot Case

Let us consider system (5) written in the form (6) with t4 = -ktlq, we obtain

fi,r 
= -k,lzt o

]i'z 
= -klttt

l i ' t  
=uz

lj)r = -kJt

(8)

(e)

Step 1. Let us take the following Lyapunov fimction candidate for the first equation of (8)

v,(y)=Iy

Under the following virtual control, defined over (ln,

lz =Yr(Yr,Yo )=+i,

the time derivative of (9) becomes

v r ( y r )= -k rû ,

where Ë, is a positive paftlmeter.

Step 2. Now, let us introduce a new variable zz=!z-y(h,yq)
deviation between !r, ffid the virtual control Vr md consider the frst
where y, is substituted by 4+Vr(yr,yn)

) i , r=-kùrer+V)
| 4 = - ktyryo + Icrz, + (k, - kr)W

Using the following Lyapunov function candidate

(10)

( l  l )

which represents the
two equations of (8)
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VrQt,z2)=VtO)+14 ,

and the following virtual control defined over Ç),

(13)

leads to

(  l8 )

(20)

40ut)=-ky1-kr4 ,

(14)

(1 s)

where ,t, is a positive pararneter.

Step 3. As in step 2, let us introduce the new variable zt=lt-Yz(yuyz,yc) and consider

system (12) augmentedby 2t = i)t -\tz

I j,t = -t\yoQr+ ryr)

làz = -kr(zr+ V)Yo + krzr+ (kt - kr)Vt (16)

14= tk -V rz
where

k "k .  v .  k "  , ! ,\ltz = kJz! o - ( k, + k, )y, + (2k, + tcz + 
f 

);- 2 
t\ 

(k | + kt )i

(17)

Consider the following Lyapunov function candidate

Vr(y,, 22. z 3) = vt1y r. a1 * l 
11

Differentiating (18) with respect to time and using the following control law defined over Ç).

uz = kr lz !+-  (kr+kr)yr+ (2kr*r r+* lb-z$r t ,+  t r r ) \ -  koz '+k,yoz ' '
Kt lc Kt Y;

( l e )
vields

Vr1y, z, z.) = -kry? - kt4 - k ̂4

where ,to is a positive pararneter.

Now, one can easily conclude tltat yr,z, and z, are bounded and tend Ia zÊro when / tends

to infinity. Therefore,

k .  t ,  ( k r+k r )  h  k r ( k r -  k , )  y ,  k r ( k r+  k t )  y ,
Y, -Tl anciY, -  -Y,-T 

rr-T-rr-T rî
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To guarantee the boundedness and the convergence to zero of y, and ltt orre must ensure

the boundedness and the convergence to zero of +, * ^a3. to, when / + *, from (9)
lr Y; lt

and (l l) one can conclude that y, decays to zero us exp(-kr1 ) . Therefore, if we take k2 > 2kl

the boundedness and the convergence to zero of & and 4 b""o.", obvious whenever
lt yi

y+(0) * 0 , since y, decays to zero as exp(-krt).

Now, to seek for the boundedness and the convergence to zero of L,one must do some- l t

manipulations. So, from equation (13), one has

z1 =2vz-yl

Substituting the latter in (15) yields

v, =:2.krV, +(kr- kr)yf.

When / tends to infinity y, + y, (0) exp(-&rr) and the laner gives

v, = -2krv, + (frr - tr)yf (o)exp( ekrt)
which leads to

V, = qexp(-2krt ) + c, exp(lkrt )

where c, and c, are fwo constants depending on the initial conditions.
Returning to (21) with view of (24), we obtain

4 =2qexp(-2,t r)+ (2c,- yl(O))exp(-2kr)t

Deviding (25)W yl Mdassuming that yo(O) É 0, we obtain

(2r)

(22)

(23)

(24)

(2s)

4 (v, ft,./, J
î 

=lr:- 
tî ) 

=a' 
"*p(-z1t' 

- k)t)+ a'"*p(21r" - k)t) Q6)

where cL, and o, are constants depending on the initial conditions.

As we have seen previously, the choice k2 > zkt ensures the convergence to zero of à, , henc"
v;

c,ne must tuk" fr, > t, to guarantee the boundedness and the convergence to zero of 
#.

The previous results can be summarized in Lhe following theorem.

Theorem I. Consider thefollowing control law defined over dln =kyuy,y,yo) e îa / yn +0j
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14 = -k,yo

j,, = z *,y y, - ( k, + k, + k ) t, - k,(t .Lù * 
- o ̂ o 

ii 
o' r,. 7)#. (2 k 2 + k 3 * ** ry, +

(221

wi th y ,  = x ; - i * t , l  < i  < 4,  kr> 0,  kr>zkv h > kr ,  and ko> 0,

Then,

(i) the whole state remoins in d2o provided thot yo(0) + 0,

(ii) the closed loop system (5)427) is exponentially stable over Ç20,

(iii)the control low is bounded andwell defined over Clo.

2.2. The Unîcycle-like Mobile Robot Case

Let us consider system (3) wriûen under the form (6) with t, = -krlt

li', 
= -k,trt,

1 ù . = u .

l'i, = jo,r,
(28)

Proceeding as in section 2.1, one can find the control law z, which stabilizes system (28), and

the following theorem can be stated.

Theorem 2. Consider the following control low defined over {2r = fty,lz,!:) e 83 / y r+ 0)

l  r, =-hy,
i  k , . t ,

iu ,  
=  kry , ,yr - (kr+kr)y ,  +kr( l+Ë)-

with yi = x3-i*t, l <i < 3, kr> 0, k, > 0 and k, > kt.

Then
(i) the whole stste remains in f,Jr., provided that yr(0) + 0,
(ii) the closed loop system (3)-(29) is exponentially stable over C2r.,
(iii) the control law is bounded andwell defined over d)'

3. Simulation Results

In this section we present some simulation results carried out using MATLAB.

(2e)
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3.1A Car-like Mobile Robot Case

In this example, the car-like mobile robot is asked to reach the origin starting from the
following initial conditions (xo = -2,!zo = Z0o = 0,00 = 0). S€e Figrue I for the plots of the
system state evolution, and Figure 2 for the plots ofthe control variables V and O. Figgre 3
shows the vehicle motion, in the parking maneuver, under the proposed contoller.

x  - 1

1 Ê

.2t

-t uo'

> 1

oo'

2

1

5 1 0 1 5
time(s)

5 1 0 1 5
lime(s)

5 1 0 1 5
time(s)

5 1 0 1 5
time(s)

-0€

- - - - - - i -  -  -  - - - - + - - - - - -

- - -  - - t - - - -  - - +  - - - -  - .

-- /- - --:-\-- - -i -- ----
i \ l

_ _ - - _ - 1 _ _ - - - - - ï - - - - - -

Figure 1. State variables evolution for the initial conditions (xo =1,!zo=2,00-0,00-0/

ll}=;*
I

I
oà

1 5

-30o.
1 5

Ime(s)

Figure 2. Time plots of the control variables V(- ).and OC.-.)
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2.5

-2

i  i \

Figure 3. Steering the vebicle to the origin' stating from (xo =1,!zo=2,00 =0,00 =0.)

3.2. A Unicycle-like Mobile Robot Csse

In this example, the unicycle-like mobile robot is asked to reach the origin starting from the

following initial conditions in Cartesian space (xo=2,y0=2,g0=l). See figure 4 for the
L

plots ofthe state variables and generated trajectory in the Cartesian plane. See figure 5 for the

time evolution of the control variables y and rl. Figure 6 shows the vehicle motion, in the
parking maneuver, under the proposed controller.
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1
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- 1

2

'1 5
G
5 1g

0 .5

0

2

1

û

- 1
1 0 0 5  1 0

trme(s)
15

2

1

0
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Â  1 ô

time(s)

nme(s)

.\""".i.""... ' i"".... '

1 t /

|---ai

Figure 4. Time plots of states variables and the generated trajectory, starting from
(xs= 2 ,ys= ZOs= v121
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Figure 5" Time plots of the control variables V(-.-.-)and O(- ).
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Figure 6. Steering the vehicle to the origin, stârtitrg from (4 =Z,yo=Z,eo=!1

4. Conclusion

In this paper, we have proposed a backstepping-based procedure for the design of
discontinuous time-invariant controllers for the stabilization of nonholonomic systems in
chained form. This procedure.is then applied for the stabilization of a carlike mobile robot
and a unicyclelike mobile robot. The discontinuity surface, for the control, is not very
restrictive since we have just to avoid it at / = 0. Finally, it worth noticing that this work may
be considered as a new way to systematically design time-invariant discontinuous contollers
for nonholonomic systems.
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