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Abstract. This paper presents a backstepping procedure for the design of discontinuous time-

invariant state feedback controllers for the stabilization of nonholonomic systems in chained

Jorm. To highlight its effectiveness, our procedure is applied to two nonholonomic physical

systems, namely, a unicycle and a car-like mobile robots. It is worth noticing that this

approach may be considered as new systematic way to design time-invariant discontinuous
‘ controllers for nonholonomic systems.
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1. Introduction

The problem we are concerned with is the stabilization of the class of nonholonomic
systems in chained form described by
X, =u,

X, =u,

X; =Xx,u,

Xy =Xy U

where (xl,xz,u-,x,,)e D, denote the state variables and (ul, uz) € D, denote the input
variables, D, and D, are, respectively, open subsets of R" and R’, both containing the origin.

Such a class of nonholonomic systems was treated for the first time in (Murray et al.
1991), and sufficient conditions under which any mechanical system, with two inputs (e.g.
wheeled mobile robots), can be transformed via coordinate and feedback transformations into
the chained form (1) are given in ( Murray et al. 1993). One of the reasons for the interest in
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such systems is that they fall into the class of systems which cannot be stabilized via any
smooth time-invariant feedback, as pointed out in (Brocket 1983). This fact motivated the
search for stabilizers of another type. Among all, recall smooth time-varying feedback
resulting in oscillating trajectories (see Pomet 1992, Samson 1995, Tayebi et al. 1996A and
references therein), and discontinuous feedback resulting in exponential stability and yielding
to nonoscillating trajectories (see, for example, (Astolfi 1996), (Bloch et al 1994), (Canudas et
al 1992), (Canudas et al 1995), (Reyhanoglu 1995) and Tayebi et al. 1996B and 1997). The
backstepping approach introduced in (Krstic et al 1995), has also been used to derive time-
varying controllers as shown in (Jiang et al 1996) and (Jiang et al 1995). However, in this
paper, using the elegant backstepping technique, we propose a systematic way to design the
discontinuous time-invariant controllers for system (1).

For the sake of simplicity, two nonholonomic physical systems are studied instead of
system (1):
(i) the unicycle-like mobile robot described in the Cartesian space by

Ix: vcos©
y=vsinb 2)
0=0

which can be transformed into the following third order chained form
jxl =u,
% =u, (3)
[xs = XU
using the following transformations {xl =6, x, =xcos0+ y sinb, x; = xsin®— ycos B}and

{ul = U, =V —xaco}.
(ii) and the car-like mobile described, in the Cartesian space, by

($=vcosB
Y =vsinf
. 4
0= %Ian [} @
$=0
which can be transformed into a forth order chained system
X =u,
X, =u,
t)'g =X, U )
X, =X,
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using the following local transformations {xl =%, %5 =£Z—ﬁ€, x, =tan®, x, = y}and
it o .
u 3sin” ¢ sin@
v=—=— 0= gy, i cos® ¢ cos’ 6 U, [ defined over the subset
cosf Lcos™ 6

I‘={(x,y,9,¢)e R /0 #-;—modn',tp ¢%mod7r} of R

In section 2, we describe the procedure yielding in a systematic way to discontinuous time-
invariant controllers for nonholonomic systems in chained form and we suggest a solution for
the stabilization problem of a car-like vehicle (4) and a unicycle-like vehicle (2). Section 3
contains some simulation results. Section 4 concludes this paper.

2. Design Procedure

In order to apply the backstepping procedure, let us consider the following change of
coordinates
¥, =X, ;,; for 1<i < n. System (1), then becomes

N =t

Y =Y,

 Lagin

Y3 :J’4 ! 6)
yn-—l = u2

).)n = ul

To render the last coordinate y, exponentially stable, let us take a linear state feedback
u, =—k,y,, where k, is a strictly positive parameter.
System (6) then becomes

n=-kyy,

Y2 ==k ys¥,

Vs =—k\y, ¥,

y3 : 174 (7)
Vi =y

J}n b 1yn

Now, the problem consists in finding the control law u, for the stabilization of (7), using
the backstepping approach (Krstic 1995). The first step consists in finding an adequate
control Lyapunov function (clf) ¥V, for the first equation of (7) and a virtual control
¥, =V, (¥,,y, ) which stabilizes y,. In the next step, the previous clf is augmented to obtain
an adequate one ¥, which leads to the virtual control y, =V, (y,,y,,¥,) that stabilizes both
y, and (yz -V (Y, Y, )). Progressing in this way, we arrive to the (n—2 )-th step, where we
obtain the clf V,_, which leads to the virtual control y, , =V, ,(¥,V5,V3 """, Va2, YV, ) that
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stabilizes all of y; 1<i < n—2. Finally, we augment V,_, to obtain the final cIf V, , yielding to
the stabilizing control u, =, (¥, Y5, Y3, Yp2s Yn1» V) for the system (7).

In order to guarantee that the whole state is bounded and tends to zero when Z goes to
infinity, one must ensure that all of \, are bounded and vanishes when 7 tends to infinity. As
it will be shown later, the , functions are not defined for y, = 0. Therefore, the control law
u, is defined over the domain Q, = {y =y, %Y, )ER"/y, # 0}. Due to the exponential
convergence of y,,, the discontinuity manifold is not very restrictive since we have just to
avoid y,(0) =0.

2.1. The Car-like Mobile Robot Case

Let us consider system (5) written in the form (6) with u, = —k,y,, we obtain

==k,
):’2 i —k\y3y, ®)
{y 3 = U,
Vi =k,
Step 1. Let us take the following Lyapunov function candidate for the first equation of (8)
1
iy )=59 ©)
Under the following virtual control, defined over Q,,
Wl(yl,y4)—k—2—‘- (10)
4
the time derivative of (9) becomes
Vi(v)=—k, (11)

where £, is a positive parameter.

Step 2. Now, let us introduce a new variable z, =y, —,(y,,y,) which represents the
deviation between y, and the virtual control \, and consider the first two equations of ®
where y, is substituted by z, + y,(1,,,)

{yl =—ky,(z, +v,)

==ky;y, +kz, + (k, -k)y, (12)

Using the following Lyapunov function candidate
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1
VZ(J/1’22)=V1(J’1)+5222 > (13)

and the following virtual control defined over Q,

: 1
V3= (VY2 e) =N +E‘((k2 +k;)z, +(k, - k])Wl)’ (14)
1.4
leads to
V,01-2)=—kyi =k (15)
where £, is a positive parameter.

Step 3. As in step 2, let us introduce the new variable z; =y;—V,(¥,,,,),) and consider
system (12) augmented by z; = y; -,

j):)l =-ky,(z,+ )
zz=_kl(zs"'V/z)yA+k222+(kz_k1)wl (16)
=w -y,

where

] k.k; y k y

VW, =k, = (ky+ ks )y +(2k, +ky+ 12( 3)_2_27:—(]‘1 +k; )_;

1 W ] Vi

17

Consider the following Lyapunov function candidate

l 5
I/30’1722’23):Vz(ywzz)"'?zg (18)

Differentiating (18) with respect to time and using the following control law defined over Q,

k,k, y k y
Uy =k, ¥, —(ky+k3)y; +(2ky + ks + 2 - )y_z_zk_z(kl + ks)y_;‘ kyzy +ky,z,
1 4 1 4
(19)
yields
Vi(31:255235) = _kzy12 = k3222 - k4232 (20)

where k, is a positive parameter.

Now, one can easily conclude that y,,z, and z, are bounded and tend to zero when 7 tends
to infinity. Therefore,

ky Y, (ky+ks) y, k(ky=k)y, k(k+k)y,
——=—and y, 5 -y + + =~ —
o k, y, Y4 A k, Vs k, Vs k12 yf
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To guarantee the boundedness and the convergence to zero of y, and y,, one must ensure

the boundedness and the convergence to zero of h, y_; and y—z. So, when ¢ — oo, from (9)

s Va Y4
and (11) one can conclude that y, decays to zero as exp(—k,t ). Therefore, if we take k, > 2k,

the boundedness and the convergence to zero of o and y_; becomes obvious whenever

Ya Y4
¥4(0) # 0 , since y, decays to zero as exp(—k;t).

Now, to seek for the boundedness and the convergence to zero of 2/-2-, one must do some

Y4
manipulations. So, from equation (13), one has
z =2W,-y 21
Substituting the latter in (15) yields
V,==2kV, +(k,—k,)p}. (22)
When 7 tends to infinity y, — y,(0) exp(-k,¢) and the latter gives
Vz ==2kV; + (ks - k2)y12 (0)exp(-2k,t) (23)
which leads to
V, = ¢ exp(=2kit ) +c, exp(-2k,t) 24)
where ¢, and c, are two constants depending on the initial conditions.
Returning to (21) with view of (24), we obtain
2 =2 exp(-2kyt)+ (2c, - ¥(0)) exp(—2k,)t (25)

Deviding (25) by y; and assuming that y,(0) # 0, we obtain

\2
= __—_ZJ = a, exp(-2(k — k) 1)+ o, exp(-2(k, —k)t)  (26)
4

where o, and a., are constants depending on the initial conditions.

: . Y
As we have seen previously, the choice k, > 2k, ensures the convergence to zero of —;-, hence
Ya

one must take k; > k, to guarantee the boundedness and the convergence to zero of 22—.
Y

The previous results can be summarized in the following theorem.

Theorem 1. Consider the following control law defined over Q, ={(y,, VoY )€ Ry, # 0}
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u =-ky,
k k,(k+k k kk, k(k,+
u, =2ky,y, —(ky + b, +k,)y, — k(1 +_4)y_1_u(2+ _4.)y_‘+ Qk, +k, gty M)_J’_z
k" ys k 1 Va k k Ya

(27)
with y, = X,_,,,,1<i<4, k,>0, k, > 2k, ky >k, and k, >0,

Then,
(i) the whole state remains in Q, provided that y,(0) # 0,

(ii) the closed loop system (5)-(27) is exponentially stable over Q,,
(iii)the control law is bounded and well defined over Q.

u
2.2. The Unicycle-like Mobile Robot Case
Let us consider system (3) written under the form (6) with u, = —k,y,
j ==k,
V=14 (28)
l.)"3 =k,

Proceeding as in section 2.1, one can find the control law u, which stabilizes system (28), and
the following theorem can be stated.

Theorem 2. Consider the following control law defined over Q, ={(y,,y,.y,) € ®* / y,# 0}

U ==Ky '
y
luz =k —(ky+k )y, +k, (1+f‘);l' 2
1

3

withy, =x,_,,,,1<i<3, k,>0, k;, >0and k, > k,.

Then

(i) the whole state remains in Q,., provided that y,(0) # 0,

(ii) the closed loop system (3)-(29) is exponentially stable over Q..,
(iii) the control law is bounded and well defined over Q..

3. Simulation Results

In this section we present some simulation results carried out using MATLAB.
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3.1 A Car-like Mobile Robot Case

In this example, the car-like mobile robot is asked to reach the origin starting from the
following initial conditions (x, =-2,y,,=2,08,=0,0, =0). See Figure 1 for the plots of the
system state evolution, and Figure 2 for the plots of the control variables v and ®. Figure 3
shows the vehicle motion, in the parking maneuver, under the proposed controller.
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Figure 2. Time plots of the control variables V(— ).and ®(-.-.)

164




i i i : ; P
2 a. ; ]

Figure 3. Steering the vehicle to the origin, stating from (x,=-2,y,,=2,6,=0,¢,=0)
3.2. A Unicycle-like Mobile Robot Case

In this example, the unicycle-like mobile robot is asked to reach the origin starting from the
n
following initial conditions in Cartesian space (x,=2,y,=2,6, =-2—). See figure 4 for the

plots of the state variables and generated trajectory in the Cartesian plane. See figure 5 for the
time evolution of the control variables V and ®. Figure 6 shows the vehicle motion, in the
parking maneuver, under the proposed controller.
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Figure 4. Time plots of states variables and the generated trajectory, starting from
(xg=2,y9=26p=m/2)
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Figure S. Time plots of the control variables V(-.-.-)and ®(— ).
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Figure 6. Steering the vehicle to the origin, starting from (X9 =2y, =2,6, =§)

4. Conclusion

In this paper, we have proposed a backstepping-based procedure for the design of
discontinuous time-invariant controllers for the stabilization of nonholonomic systems in
chained form. This procedure is then applied for the stabilization of a car-like mobile robot
and a unicycle-like mobile robot. The discontinuity surface, for the control, is not very
restrictive since we have just to avoid it at ¢ = 0. Finally, it worth noticing that this work may
be considered as a new way to systematically design time-invariant discontinuous controllers
for nonholonomic systems.
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