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Abstract
This paper deals with a general theory of synchronization of systems coupled by an

incursive connection. For systems with a time shift, the slave or driven system

anticipates the values of the master or driver system by a future time period giving rise

to an ànticipatory synchronization. Some extensions show the possibility to enhance the

anticipatory synchronization, what we call meta'anticipatory synchronization. An

application is shown in the case of an epidemic system represented by a chaotic delayed
pààrl-Verhulst map representing the incubation duration of infected susceptibles. A

slave model of the infected population is incursively synchronized to the infected

population master system, the simulation of which showing that the infected population

can be anticipated by a time duration equal to the incubation period'
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1 Introduction

Some years ago, Dubois and Resconi (1993) proposed an incursive system for

synchronizing systems with an application to two chaotic Pearl-Verhulst maps.

It was proposed that two disjoint recursions

x(n+ l )=px(n) [ l -x (n ) ]

y (n+1)=py(n) [ l -y (n ) l

can be connected by the following incursion

x(n+ 1) +D1(n)[x(n+ l)  -  y(n+ 1)]  =px(n)[ l  -x(n)]

y(n + l) + Ddn)[y(n + 1) - x(n + l)] = py(n[l - v(n)l

by which the recursive system is obtained

x(n + I ) = (1 + D2)px(n)[l - x(n)] + Drpy(nXl - v(n)ll(l + D1 + D2)

y(n + 1) = [(1 + Dr)py(nfl - y(n)] + Dzpx(nXl - x(n)ll/(l + D1 + D2)

( la )

( tb )

(2a)

(2b)

(3a)

(3b)
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Because the two independent recursions assume values in the interval between
zero and one, the two recursions joined by the incursion can be synchronized for
adequate values of Dr and Dz.

This paper will consider an extension of this incursive synchronization for a
master (driver) system and a slave (driven) system.

Let us point out that our incursive theory of synchronization is general and it will
be shown that some results are similar to synchronization models presented in the
scientific literature, as for example by Pyragas (1995) and Voss (2000).

2 Theory of Incursive Synchronization

Let us consider the two general disjoint recursions

x(t + Ât) = x(t) + Atf(x(t - r)) - Âtbx(t)

y(t + Ât) = y(t) + Âtf(y(t - r)) - Âtby(t)

that are the discrete system ofthe difierential equations

dx(tydr = f(x(t - r)) - bx(t)

dy(t/dt = f(y(t - t)) - by(t)

(4a)

(4b)

(5a)

(sb)

(6a)

which are retarded differential equations by the time shift r. When this system is
chaotic, the evolution of the two independent variables x(t) and y(t) are not
synchronized due to the sensitivity to initial conditions.

The purpose of this paper is to propose an incursive connection of these two
systems in view of synchronizing the second equation of y(t), considered as the slave or
driven system, with the first equation of x(t), considered as the master or driver system.

For that, let us generalize the incursive connection, given by Dubois and Resconi
(1993), with Dr = 0, and Dz = D 2 0, in the following way

x(t+ Ât) - x(t) + Âtbx(t) = At(x(t - r))

y(t+Ât)-y(t)+^tby(t)

+ D[(y(t + At) - yO + Atby(t)) - (x(t + r + At) - x(t + r) + Atx(t + r)] = Atf(y(t - r)) (6b)

This incursive system corresponds to the following differential equations

dx(t/dt + bx(t) = f(x(t - r) (7a)

dy(t/dt+by(t)+D[(dy(t/dt+by(t))- (dx(t+ t/dt+bx(t+ r))] = f(y(t- r) (7b)

The connection of the slave equation of x(t) to the master equation of y(t), is incursive
because, in the faclor depending ofD, the future value ofy(t + Ât) depends ofitselfat
the future time t + At and of x(t + r + At) at the future time t + t + Ât. Thus the
connection is anticipatory.

The second differential equation 7b canbe transformed in the following way:

dv(t/dt + Ddy(t/dt = (y(t - r)) - by(t) + Dt- bv(t)) + (dx(t + r)ldt+ bx(t + r))l

and with eq.7a, dx(tydt + bx(t) = f(x(t - r), we obtain



dv(t/dt = [(y(t - r)) - by(t) + ot- bv(t)) + (x(t))]l(l+D)

or
dy(t)/dt = [(1 + D)f(y(t - t) - (l + D)by(t) + D[(x(t)) - fu(t - t)]ll(1+D)

so the two equations system is

dx(tVdt= f(x(t- r))- bx(t) (8a)

rty(t/dr = f(y(r - r)) - by(t) + K[f(x(t)) - f(y(t - t))l (8b)

where K = D(l + D), is the coupling factor.
When r = 0, this synchronization is similar to the weak (K = 1/3) and strong (K = ll2)
synchronization presented by Fyragas (1995) for the chaos map f(x) = 441 - t;.
As D > 0. we have the interval of values for K, 0 à K > 1, so

If the values of x(t) and y(t) are in the interval l0,lI in the disjoint systems, the resulting
values of y(t) in the coupling will remain in the same interval, due to the fact that K
plays the role of a weighting of (y(t - t) and (x(t)).
Let us notice that when D = 0, K = 0, the original disjoint system 5ab is obtained.
When D is very large, D >> 1, K tends to K = 1. In this limit case, one obtains

dx(tydt = (x(t - r)) - bx(t)

dy(t)/dt = (t - K)(y(t - r)) - by(t) + Kf(x(t)

dx(t/dt = f(x(t - t) - bx(t)

dy(t)/dt = - by(t) + f(x(t))

(ea)

(eb)

(1oa)

(10b)

This limit case is similar to the anticipating synchronization presented by Voss (2000).
Let us show that this system is stable by introducing a difference between x and y as

z( t )= ;11+t ) -y ( t )

The differential equation ofz(t) is then

dz(tydt = f(x(t)) - bx(t + r) + by(t) - f(x(t)) = - bz(t)

and it is clear that zO will tend to zero far b > 0. In this case, we obtain the anticipatory
relation

z(t) =;11 + t) - y(t) = 0

or

(13)

y(t) = x(t + t) (14)

This remarkable result means that the slave system y(t) is synchronized to the master

system x(t) at the future potential value of x(t + t), where t is the time shift of the
master equation of x(t).
More the time shift t is large, more the slave system anticipates the values of the master
system, even if it is chaotic, as we will show in the next section'
When the master system is without time shift, t = 0, the two systems are synchronized
in a normal way.

( l  r ;

(12)



A first extension to synchronize the two system at any time shift consists in
making the following modification of the synchronization system 8ab:

dx(t/dt = f(x(t - t)) - bx(t)

dy(t/dt = f(y(t - r)) - by(t) + Kff(x(t - ro)) - f(y(t - t)l

where te is a time shift the interval of which is given by r 2 t6 > 0.
'When 

6 = 0, we obtain an anticipatory synchronization.
When ts = t, the synchronization is normal, similarly to the time-delayed dissipative
coupling presented by Voss (2000).
So our general anticipatory synchronization is govemed by the anticipatory time shift tu

Î a = T - T 0 (16)

The discrete equation system ofthis differential synchronization is written as
x(t + Ât) = x(t) + Âtf(x(t - 1)) - Âtbx(t) (ua)

y(t+Ât)= y(t)+Âtf(y(t-r))-Âtby(r)+ÂtK[f(x(r-rs))-(y(t-r)) ]  (17b)

A second extension to the system 15ab is g1en by

(15a)

(15b)

(18a)

(18b)

( le)

(16a)

(20a)

(20b)

(20b)

(1ea)

(r6b)

where t1 is an additional anticipatory time of synchronization for which an anticipatory
synchronization is possible even ifr = ro = 0.
The discrete equations ofthis differential synchronization are written as

x(t + Ât) = x(t) + Âtf(x(t - r)) - Âtbx(t) (18c)

y(t+ Ât) = y(t) + Âtf(y(t- r))- Âtby(t) + ÂtK[ f(x(t- t6))- f(y(t- r - rr))l (18d)

When the two systems are synchronized, (x(t - to)) = f(V(t - r - rr)), which means that

dx(t/dt = f(x(t - t)) - bx(t)

dy(tVdt = f(y(t - r)) - by(t) + K[f(x(t - to)) - f(y(t - r - tr)l

y(t) = x(t * r * tl - to) = x(t + tu)
with

T a = T * T r - f o

A third extension consists is adding a second slave synchronization system which
will synchronize with the slave system in the following way

dx(t/dt = f(x(t - t)) - bx(t)

dy(t/dt = f(y(t - r)) - by(t) + K[f(x(t - to)) - f(y(t - t)l

dy1(t/dt = f(yr(t - r)) - by1(t) + K1[f(y(t - ror)) - f(y1(t - r)]
When the three systems are synchronized,

y1(1) = y(t + r - 161) = x(t + 2r - ts- tor) = x(t + tu)
with

7a= 27, - To - lot



so the anticipation is extended to two times the delay t. I will call this second order
ânticipatory synchronization, a meta-anticipatory synchronization.

The discrete equation system of this differential synchronization is written as

x(t + Àt) = x(t) + Àtf(x(t - 1)) - Âtbx(t) (2la)

y(t + Ât) = y(t) + Ât(y(t - t) - Âtby(t) + ÂtK[ f(x(t - to)) - f(y(t - t))l (21b)

y1(t + Ât) = yr(t) + Âtf(yr(t - r)) - Âtby1(t) + ÂtK1[ f0(t - zor)) - f(yr(t - t))l (21c)

Further extensions can be made in adding more slave systems ydt), yl(t), ... Y"(t)
in cascade, giving a meta-anticipation of ru = (n + l)t.

3 Apptication of Incursive Synchronization to a Chaos Epidemic

An application of the incursive synchronization is now considered for an
epidemic system. ln a first subsection, we will build a model of epidemic as a delayed
Pearl-Verhulst system. In a second subsection, some properties of such a delayed Pearl-
Verhulst system will be pointed out by numerical simulations. In a third subsection, the

theory of incursive synchronization will be applied to such a delayed Pearl-Verhulst
system in view of simulating the anticipatory evolution of the epidemic.

3.1 A Mathematical Model of Epidemic as a Delayed Pearl-verhulst system

A rather simple model of epidemic is given by

where S(t) is the susceptible population and I(t) is the infectious population. The
parameter a is the contact rate between the susceptible and infectious populations and b

is the rate ofdecrease ofthe infected population which recovers as susceptible. In this

model, the total population S(t) + (0 is constant. Indeed

ds(tydr = -as(Î)I(r) + bl(t)

d(tydt = +aS(t)I(t) - b(0

d(S(tYdt+dl(tYdt=o

so

S( t )+ I ( t )=C

and the two equations reduce to the following equation

dl(tydt = +aI(tXC - (01 - b(0

This equation is similar to the Pearl-Verhulst equation. The discrete form

(22a)

(22b)

(23)

(24)

(25)
of this

equation is the well-known chaos map.
As pointed out by Dubois and Sabatier (1998), a time delay of the susceptible

population to become an infectious population is more adequate: it is not

instantaneously that the susceptibles become infected.



In general, susceptibles become
incubation. In taking into account such
generalized as

ds(tydt = -aS(t - rx(t - r) + bl(t)

dl(tydt = +aS(t - r)I(t - t) - bl(t)

Similarly to the original model, there
infected populations

ds(tydt+dl(t/dt=0

so

S ( t ) + ( t ) = ç

infected after a certain time period r of
a time shift, the equation system 22ab can be

(26a)

(26b)

is also the conservation of susceptible and

(27)

(28)
and the two eqs. 26ab are reduced to the following equation

dl(tydt = +al(t - r)[C - I(t - t)l - bl(t) (29,

which is a time delayed Pearl-Verhulst equation.

3.2 Some Simulations of the Delayed Pearl-Verhulst System

For simulating such a detayed Pearl-Verhulst system, eq. 29 is wrifien in the
following discrete equation

I ( t+Ât )=  I ( t )+Âta l ( t - rXC-( t - r ) l  -A tb l ( t )  (30)

Figure I shows the bifurcation diagram of eq. 30, with ^t = l, b = l, r = 0, C =
l, and the parameter a varying from 0 to 4: this is the well-known Pearl-Verhulst map.

0a4

Figure l: Bifurcation diagram of the Pearl-Verhulst map given by eq. 30.

| (t)



Figure 2 is the simulation of eq. 30, with At = 0.95, b = I, r = l, C = l, and the
parameter a varying from 0 to 4.

t( r)

Figure 2: Bifrrcation diagram of the delayed Pearl-Verhulst map,
withat imeshif tofr= l .

Figure 3 isthe simulation of eq. 30, with ̂ t = 0.95, b = 1, r =2,C = l, andthe
Wameter a varying from 0 to 4.

l(r)

Figure 3: Bifurcation diagram of the delayed Pearl-Verhulst map, with r = 2.
There are different bifurcation specs, similarly to those in Hénon's strange attractor.

So, this bifurcation diagram depends on initial conditions.



Figure 4 is the simulation ofeq. 30, with ^t = 0.95, b = 1, r = 50, C = I, and the
parameter a varying from 0 to 4. This is similar to the chaos map.

Figure 4: Bifurcation diagram of the delayed Pearl-Verhulst map,
with a time shift of t = 50, and Ât = 0.95.

Figure 5 is the simulation of eq. 30, with ̂ t = 0.1, b = l, | = 50, C = I, and the
pammeter a varying from 0 to 4. With such a lower value of Ât = 0. l, chaos ûansforms
to a strange attractor, as shown in fig. 5a.

Figure 5: Bifurcation diagram of the delayed Pearl-Verhulst map,
with a time shift of r = 50. and Ât = 0.1.

10



Figure 5aisthesimulat ionofeq.30, with^t=0.1,b= l ,  r= 50, C = I ,anda=4,
corresponding to the bifrrcation diagram of fig. 5. This is the diagram of I(t + t) versus
I ( t ) , fo r t=0 to5000.

l ( t  + r)

Itr)

Figure 5a: Diagram of I(t + t) versus I(t).

Figure 5b is the simulation of eq. 30, with ̂ t =0.062,b = l, t = 50, C = 1, and a =

4. This is the diagram of I(t + r) versus I(t). In comparing with fig. 5a, for which Ât =

0. l, it is pointed out that the system is very sensitive to the value ofÂt.

l ( t  + r )

Figure 5b: Diagram of I(t + t) versus I(t).

l l



Figure 6a is the diagram of I(t + r) versus I(t), for eq. 30, with ^t = 0.068, b =
0.97,t= 64,C = l, and a = 4, with the initial conditions,I(0) = 9.99 and I(t) = 0 for t =
I to 64.

This case is interesting because this strange attractor can give rise to a periodic
attactor with the different initial conditions, I(0) = 0.99 and (t) = 0 for t = I to 64, as
shown in Fig. 6b (due to the value of b = 0.97, a slight negative value of I(t) occurs).

l(t + r)

t(r )

Figure 6a: Diagram of I(t + r) versus I(t), showing a strange attractor.

l ( t  + t)

l(r )

Figure 6b: Diagram of I(t + t) versus I(t), showing a periodic attractor, with different
initial conditions from those of Fis. 6a.

t2



3.3 Simuhtions of Anticipatory Synchronization of Delayed Pearl-Verhulst Map

Let us now apply the incursive synchronization theory to the delayed Pearl-
Verhulst system in view of anticipating the evolution of the such a system.

Let us consider the equation 30 as the master or driver system and let us construct
a slave or driven system.

In applying eqs. lTab to the eq. 30 system, the synchronization system is given by

I(t +Ât) = I(t) +^tal(t - r)[C - I(t - r)] - Atbl(t)

I*(t + Ât) = I*(t) + Âral*(r - rXC - I*(t - r)l - Âtbl*(t)

(3 1a)

+^tlD(l +D)llal(t-zo)[c -I(r-ro)] -I*(r-rxc -I*(r* r)l (3lb)
where eq. 3la is the master system (Q and eq. 3lb the slave system I*(t).

Figure 7a is the simulation of eq. 31a for At = 0.95, a = 4, C = l, ro = 0, r = 50,
and b = 1. This gives the time evolution of I(t) as a function of time t = 0 to 5000. This
is a typical chaos pattern. The initial conditions of I(t) are generated by a random
generator, I(t) = 0.0t + random(98/100, for t = 0 to 51, and the initial conditions for
I*(t) being equal to zero.

Figure 7b is the simulation of eq. 31b, with D = l. This gives the time evolution of
I*(0 as a function of the time t. After a transient time, the two systems (t) and I*(t - r)
are synchronized, meaning that the slave system I*(t) anticipates the master system I(t)
in the following way, I*(t) = I(t + t). This means that the slave system I*(t) anticipates
the master system (0 by an anticipatory duration equal to the delay t.

In view of showing the anticipatory synchronization, figure 7c gives the time
evolution of the difference between the values of I(t + t) - I*(t). So, this confirms that
chaos is anticipated by a time duration equal to the delay time.

Figures 8ab are the simulation of eqs. 31ab for Ât = 0. l, a = 4, C = 1, rç = 0, tr =
50, and b = 1. This gives the time evolution of I(t) and I*(t) as a function of time t = 0
to 1000. It is well-seen that I*(t) is synch,ronized to I(t) with an anticipation ra = r - 50.

Figures 9ab are the simulation of eqs. 3 lab for Àt = 0. l, a = 4, C = l, r0 = 25, r =
50, and b = l. This gives the time evolution of I(t) and I*(t) as a function of time t = 0 to
I 000. So, I*(t) is synchronized to I(t) with an anticipation ru = r - rs = JQ.

In applying eqs. 18cd to the eq. 30, the synchronization system is given by

I( t+Ât)= I( t )+^tal( t-r) [C-(t-r) ]  -^tb(t)  (32a)

I*(t + At) = I'r(t) + Âtal*(t - r)[c - I*(t - t)] - Àtbl*(t)

+Ât[D(l  +D)][aI( t-ro)[C- ( t-ro)]  - I*( t- t -  t1)[C-I*( t-r- t1)]  (32b)

where t1 is an additional anticipatory time.
Figures l0abarethesimulat ionofeqs.32abfor ^t=0. l ,  a=4,C = l , r0=0,t l  =

10, t = 50, b = l. This gives the time evolution of I(t) and I*(t) as a function of time t =
0 to 1000. So, I*(t) is synchronized to I(t) with an anticipation ra = r * r1 - rs = fQ.
For a master equation without delay, the anticipatory synchronization is tu = rr - r0.

l 3



Figure 7a: Delayed chaos map I(t) as a function of time t.

t*(t)

Figure 7b: Anticipatory synchronized I*(t) as a function of time t.

l ( t + t )  -  l * ( t )

Figure 7c: [I(t + t) - I*(t)] as a function of time t.

t4



r(r) l*(t) l(r)

Figure 8a: Anticipatory synchronization of I*(t) and I(t) with ru:50, versus lime t.

^
.- ".. ' i

Figure 8b: Continuation of Fig. 8a.

l * ( t )

Figure 9a: Anticipatory synchronization of I*(t) and (t) with t, :25, versus time t.

l * ( r )  l ( t )
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l*(t) l(r)

Figure 10a: Anticipatory synchronization of I*(t) and I(t) with tu:60, versus time t.

Figure 10b: Continuation of Fig. 10a.

Figure 9b: Continuation of Fig. 9a.

l*(t) l(t)

t*(t) l( t)

l 6



In applying eqs. 2labc to eq. 30, the synchronization system is given by
I(t + Ât) = I(t) + ̂ tal(t - rXC - (t - t)l - ^tb(,

I*(t + ̂ r) = I*(t) + ̂ al*(t - 1)[C - I*(r - r)] - ^rbl*(t)

+ Ât[D(l + D)][aI(t - ro)[C - (t - te)] - I*(t - r )[C-I*(t - r )]

(33a)

(33b)

I1*(t + Àt) = 1r+1t; + Âtal1*(t - r)[c - Ir*(t - r)] * ^tblr*(t)

+ÂtlDr/( l  +D1)l [al*( t- tor) [C-I*( t-ror) ]  - I r*( t-  t  ) [C-I1*(t-r  ) ]  (33c)

Figures 1lab arethe simulationof eqs.33abc forÂt = 0. l, a=4,C = 1, r = 50,
r0= to t=0 ,b= landD-Dr= l .Th isg lves the t imeevo lu t ionof l ( t ) , I * ( t )and l r * ( t )
as a function of time t = 0 to 1000. So, I1*(t) is synchronized to I*(t) which is
synchronized to I(t) with a meta-anticipation of ru = 2t = 100.

So, in this meta-anticipatory synclronization, the second order anticipation I1*(t)
is synchronized to the first order anticipation I*(t) ofl(t).

I(t)

Figure 1la: Meta-anticipatory synchronization of 11*(t), I*(t), I(t), versus time t.

I, 'È(t) l+(t) l(t)

Figure 1lb: Continuation of Fig. I la.

l(r)

V

Il*(t) t*(r)

t7



4 Conclusion

This paper presents a new exciting approach to computing anticipatory systems
based on anticipatory synchronization of slave or driven systems on master or driver
systems. Anticipation of evolution of systems is thus possible by anticipatory
synchronization. The theory ofincursive synchronization, presented in this paper, is an
extension ofthe incursive synchronization proposed several years ago by Dubois and
Resconi (1993). For delayed systems, the anticipation period is the delay time. It was
shown that meb-anticipatory synchronization is also possible. In this case, a second
order anticipatory synchronization is performed on the first order anticipatory
synchronization. An application with numerical simulations is developed for a delayed
Pearl-Verhulst system, representing a chaos epidemio. At our knowledge, the delayed
Pearl-Verhulst model is original: with the variation of the parameters, chaos transforms
to strange attractors. Very interesting generic properties seem to emerge from delayed
systems.

This paper is just a first attempt to design computing anticipatory systems based
on synchronintion. The application to chaos epidemic is just an example to show the
power of such an approach. It must be pointed out that synchronization plays a centnl
role in many natural and artificial systems.
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