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1. INTRODUCTION
Reflexive is a term that refers to the presence of a relationship between an entity and

itself. Nowhere is there a way to effectively cut an individual participant from the
world and make him into a purely objective observer. His action in the world is
concomitant to being reflexively linked with that world. Just so for theorists of the
world (cyberneticists) for their theories, if communicated, become part of the action and
decision-making of that world.

How then, shall we describe a reflexive domain? We shall give an abstract definition
that captures, what I believe to be the main conceptual feature of reflexivity. We then
immediately prove that eigenforms, fixed points of transformations, are present for all
transformations of the reflexive domain.

Eigenforms are the natural emergence of signs and tokens through recursion. The
existence of fixed points for arbitrary transformations shows us that the domain we have
postulated is very wide. It is not an objectively existing domain. It is a clearing in which
structures can arise and new structures can arise. A reflexive domain is not an already-
existing structure. To be what it claims to be, a reflexive domain must be a combination
ofexisting structure and an invitation to create new structure and new concepts.

We are particularly interested in the way these concepts of reflexivity affect
fundamentals of topology and fundamentals of physics. The last part of this essay is a
formulation of elementary mathematics of matrices, complex numbers and exponentials
in terms of process, reflexivity and eigenform.

We then show how quantum mechanics and discrete physics can be seen in the light
of these interpretations.

Our essay begins with explication of Spencer-Brown's Laws of Form [3] and of the
notion of eigenform as pioneered by Heinz von Foerster in his papers 14, 5,6,71 and
explored in papers of the author lll, 12, 22, 231. In [5] The familiar objects of our
existence can be seen as tokens for the behaviors of the organism, creating apparently
stable forms.

An object , in itself , is a symbolic entity, participating in a network of interactions,
taking on its apparent solidity and stability from these interactions. We ourselves are
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such objects, we as human beings are "signs for ourselves", a concept originally due to
the American philosopher C. S. Peirce [10]. Eigenfonns are mathematical companions
to Peirce's work.

In an observing system, what is observed is not distinct from the system itself, nor
can one make a separation between the observer and the observed. The observer and the
observed stand together in a coalescence of perception. From the stance of the observing
system all objects are non-local, depending upon the presence ofthe system as a whole.
It is within that paradigm that these models begin to live, act and enter into conversation
withus.

We take a wider stance and consider the structure of spaces and domains that partake

of the reflexivity of object and process. We make a definition of a reflexive domain
(compare [1] and [8]). Our definition populates a space (domain) with entities that can
be construed as objects. We assume that each object acts as a transformation on the
space. This means that given entities A and B, then there is a new entity C that is the
result of A and B acting together in the order AB (so that one can say that 'A acts on B"
for AB and one can say "B acts on A" for BA). This means that the reflexive space is
endowed with a non-commutative and non-associative algebraic structure. The reflexive
space is expandable in the sense that whenever we define a process, using entities that
have already been constructed or defined, then that process can take a name, becoming a
new entity/transformation of a space that is expanded to include itself. Reflexive spaces
are open to evolution in time, as new processes are invented and new forms emerge
from their interaction.

Reflexive spaces always have eigenforms for every elemenVtransformation/entity in
the space. The proof is simple:

Given F in a reflexive domain, define G by Gx = F(xx).
Then GG = F(GG) and so GG is an eigenform for F.

Just as promised, in a reflexive domain, every entity has an eigenform. From this
standpoint, one should start with the concept of reflexivity and see that from it emerge
eigenforms. Are we satisfied with this approach? We are not satisfied. For in order to
start with reflexivity, we need to posit objects and processes. As we have already argued
in this essay, objects are tokens for eigenbehaviours. And a correct or natural beginning
is a field ofprocesses where objects are seen as tokens ofthese processes.
The story is circular. Objects beget processes and processes beget objects. And with this
we can be satisfied. We weave a tale the goes back and forttr between recursion and
eigenforms. We also relate these ideas of reflexivity and fixed points to left distributive
non-associative algebras. We relate this with approaches to wholeness in physics and
philosophy such as the work of Barbara Piechosinska U6]. A magma is a non-
associative algebra with a single binary operation that is left-associative:

a*(b*c) = (a*b)*(a*c).

This axiom says that every element A of the magma is a structure preserving
mapping of the magma to itself with

A[xl = A*x,
Alx*yl = Alxl*Alyl.
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The notion of a magma is another view of self-reflexivity. We raise questions about
the relationship of magmas and reflexive domains.

This paper explores the analogies of fixed points, observations and observables,
eigenvectors and recursive processes in relation to foundations ofphysics.

For the complex numbers, think of the oscillatory process generated by R(x) : -llx.

The fixed point is i with i2 = -1, but the processes generated over the real numbers must
be directly related to the idealized i. We shall let I{+1,-1} stand for an undisclosed
alternation or ambiguity between +1 and -1 and call I{+1r-1} an iterant. There are two
iterant via,vs: l+lr-ll and [-1r+1]. These, seen as points of view of altemating process
will become the square roots of negative unity. We introduce a temporal shift operator

{ such that

la,bll : î [b,a] and t1 tl : I
so that contcatenated observations can include a time step of one-half period of the
process ...abababab... . We combine iterant views term-by-term as in [a'b][crdl :

[ac,bdl. Then we have, with i = [1,-1][ (i is viedoperator),

ii: [1,-1hl [1,-1]n : [1,-1][-l,Url î = [-1,-11 : -1.
This gives rise to a nev/ process-oriented construction of the complex numbers. The key
to rethinking the complex numbers in these terms is to understand that i represents a
discrete oscillating temporal process. We take as a matter of principle that the usual real
variable t for time is better represented as it so that time is seen to be a process, an
observation and a magnitude all at once. This principle of the temporal nexus is
supported by our analysis of i as an eigenform. The central metaphor of this paper is the
temporal nexus where time is implicit, and time is explicit and keeping time. In the
nexus there is neither form nor sign, motion nor time. Time, the measurement of time
and time's indication all emerge at once from the nexus in the form of action that is
embodied in it. The metaphor suggests that it is no accident that deeper physical reality
is revealed when mere numerical time t is replaced by the time of the nexus it. The time
of the nexus is at once flowing, beyond motion, an eigenform, a geometric operator and
a discrete dynamics counting below where counting cannot go.

2. OBJECTS AS TOKENS FOR EIGENBEHAVIOURS

ln his paper "Objects as Tokens for Eigenbehaviours" [5] von Foerster suggests that
we think seriously about the mathematical structure behind the constructivist doctrine
that perceived worlds are worlds created by the observer. At first glance such a
statement appears to be nothing more than solipsism. At second glance, the statement
appears to be a tautology, for who else can create the rich subjectivity of the immediate
impression of the senses? In that paper he suggests that the familiar objects of our
experience are the fixed points of operators. These operators are the structure of our
perception. To the extent that the operators are shared, there is no solipsism in this point
of view. It is the beginning of a mathematics of second order cybernetics.

Consider the relationship between an observer O and an "object" A. "The object
remains in constant form with respect to the observer". This constancy of form does not
preclude motion or change of shape. Form is more malleable than the geometry of

249



Euclid. In fact, ultimately the form of an "object" is the form of the distinction that "it"
makes in the space of our perception. In any attempt to speak absolutely about the
nature of form we take the form of distinction for the form. (paraphrasing Spencer-
Brown t3]). It is the form of distinction that remains constant and produces an apparent
object for the observer. How can you write an equation for this? V/e write

O(A; = a'
The object A is a fixed point for the observer O. The object is an eigenform. We must
emphasize that this is a most schematic description of the condition of the observer in
relation to an object A. We record only that the observer as an actor (operator) manages
to leave the (form of) the object unchanged. This can be a recogttition of symmetry, but
it also can be a description of how the observer, searching for an object, makes that
object up (like a good fairy tale) from the very ingredients that are the observer herself.

And what about this matter of the object as a token for eigenbehaviour? This is the
crucial step. V/e forget about the object and focus on the observer. We atttempt to
"solve" the equation O(A) : A with A as the unknown. Not only do we admit that the
"inner" structure of the object is unknown, we adhere to whatever knowledge we have.

We can start anew from the dictum that the perceiver and the perceived arise together
in the condition of observation. This is mutuality. Neither perceiver nor the perceived
have priority over the other. A distinction has emerged and with it a world with an
observer and an observed. The distinction is itself an eigenform.

3. COMPRESENCE AND COALESCENCE

We identiff the world in terms of how we shape it. We shape the world in response
to how it changes us. We change the world and the world changes us. Objects arise as
tokens of a behaviour that leads to seemingly unchanging forms. Forms are seen to be
unchanging through their invariance under our attempts to change, to shape them.

For an observer tlere are two primary modes of perception -- compresence and
coalesence. Compresence connotes the coexistence of separate entities together in one
including space. Coalesence connotes the one space holding, in perception, the observer
and the observed, inseparable in an unbroken wholeness. Coalesence is the constant
condition of our awareness. Coalesence is the world taken in simplicity. Compresence is
the world taken in apparent multiplicity. This distinction of compresence and
coalesence, drawn by Henri Bortoft l2f, can act as a compass in traversing the domains
of object and reference. Eigenform is afirst step towards a mothematical description of
coalesence. ln the world of eigenform the observer and the observed are one in a
process that recursively gives rise to them both.

4. LAWS OF FORM

Laws of Form [LOF] is a lucid book with a topological notation based on one symbol,
the mark:

The Mark
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This single symbol is frgured to
outside:

represent a distinction between

f Outside

its inside and its

Inside and Outside

As is evident from the figure above, the mark is to be regarded as a shorthand for a
rectangle drawn in the plane and dividing the plane into the regions inside and outside
the rectangle. Spencer-Brown's mathematical system made just this beginning.

ln this notation the idea of a distinction is instantiated in the distinction that the mark
is seen to make in the plane. Pattems of non-intersecting marks (that is non-intersecting
rectangles) are called expressions. For example,

Ttr -+ rrl
Express:.ons

In this example, I have illustrated both the rectangle and the marks version of the
expression. In an expression you can say definitively of any two marks whether one is
or is not inside the other. The relationship between two marks is either that one is inside
the other, or that neither is inside the other. These two conditions correspond to the two
elementary expressions shown below.

lnl.':ill - l
Àdjacent and Nested

The mathematics in Laws of Form beeins with two laws of transformation about these
two basic expressions.
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Symbolically, these laws are: -l-l-l

Calling and Crossing

ln the first of these equations, the law of calling, two adjacent marks (neither is inside
the other) condense to a single mark, or a single mark expands to form two adjacent
marks. In the second equation, the law of crossing, two marks, one inside the other,
disappear to form the unmarked state indicated by nothing at all. Altematively, the
unmarked state can give birth to two nested marks. A calculus is bom of these
equations, and the mathematics can begin. But first some epistemology:

First we elucidate a principle of distinction that delineates the use of the mark.
Principle of Distinction: The state indicated by the outside of a mark is nol the state
indicated by its inside. Thus the state indicated on the outside of a mark is the state
obtained by crossing from the state indicated on its inside.

S I notS
I

Dichotomy

It follows from the principle of distinction, that the outside of an empty mark indicates
the marked state (since its inside is unmarked). It also follows from the principle of
distinction that the outside of a mark having another mark inscribed within it indicates
the unmarked state.

-l 
'+ urumrtcd rmrked

ll* unmarked

Space and Value

Notice that the form produced by a description may not have the properties of the form
being described. For example, the inner space of an empty mark is emPtY, but we
describe it by putting the word unmarked there, and in the description that space is no
longer empty. Thus do words obscure the form and at the same time clariff its
representations.

Spencer-Brown begins his book, before introducing this notation, with a chapter on
the concept of a distinction.
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"We take as given the idea of a distinction and the idea of an indication, and that it is
not possible to make an indication without drawing a distinction. We take therefore the
form of distinction for the form."

From here he elucidates two laws:
l. The value of a call made again is the value of the call.
2.T"he value of a crossing made again is not the value of the crossing.
The two symbolic equations above correspond to these laws. The way in which they
correspond is worth discussion.

First look at the law of calling. It says that the value of a repeated name is the value
of the name. In the equation -lt-l

Calling

one can view either mark as the name of the state indicated bv the outside of the other
mark. In the other equation

Crossing

the state indicated by the outside of a mark is the state obtained by crossing from the
state indicated on the inside of the mark. Since the marked state is indicated on the
inside, the outside must indicate the unmarked state. The Law of Crossing indicates how
opposite forms can fit into one another and vanish into the Void, or how the Void can
produce opposite and distinct forms that fit one another, hand in glove.

There is an interpretation of the Law of Crossing in terms of movement across a
boundary. In this story, a mark placed over a form connotes the crossing of the
boundary from the Domain indicated by that form to the Domain that is opposite to it.
Thus in the double mark above, the connotation is a crossingy'om the single mark on
the inside. The single mark on the inside stands for the marked state. Thus by placing a
cross over it, we transit to the unmarked state. Hence the disappearance to Void on the
right-hand side of the equation. The value of a crossing made again is not the value of
the crossing. The same interpretation yields the equation

-l:-l
t l

Identity of Process and lila.me

where the left-hand side is seen as an instruction to cross from the unmarked state, and
the right hand side is seen as an indicator of the marked state. The mark has a double
carry of meaning. It can be seen as an operator, transforming the state on its inside to a
different state on its outside, and it can be seen as the name of the marked state. That
combination of meanings is compatible in this interpretation.
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In this calculus of indications we see a precise elucidation of the way in which
markedness and unmarkedness are used in language. In language we say that if you

cross from the marked state then you are unmarked. This distinction is unambiguous in
the realm of words. Not marked is unmarked. In this calculus of the mark these patterns

are captured in a simple and non-trivial mathematics, the mathematics of the laws of
form. Spencer-Brown makes the point that one can follow the analogy of introducing
imaginary numbers in ordinary algebra to introduce imaginary boolean values in tJ:re

arithmetic of logic. An apparently paradoxical equation such as

f : J I
The Reentering Mark

can be regarded as an analog of the quadratic x : -llx, and its solutions will be values
that go beyond marked and unmarked, beyond true and false. The reentering mark is the
fust representative ofan object that is seen to arise as the fixed point ofa process'

5. THE EIGENFORM MODEL

We have seen how the concept of an object has evolved. The notion of a fixed object
has become the notion of a process that produces the apparent stability of an object.
This process can be simplified in modelling to become a recursive process where a rule
or rules are applied time and time again. The resulting object is the fixed poiint or
eigenform of the process, and the process itself is the eigenbehaviour.

In this way lve have a model for thinking about object as token for eigenbehavioru.
This model examines the result of a simple recursive process carried to its limit.
For example, suppose that

Figure I

Each step in the process encloses the results of the previous step within a box. Here is
an illustration of the first few steps of the process applied to an empty box X:

TNEE
x F(x) F(F(x)) F(F(F(E))

Figure 2
If we continue this process, then successive nests of boxes resemble one another, and in
the limit of infinitely many boxes, we find that

254



X=F(F(F(...))):

F(E: -X

Figure 3

the infinite nest of boxes is invariant under the addition of one more srrrounding box.
Hence this infrnite nest of boxes is a fixed point for the recursion. In other words, if X
denotes the infinite nest of boxes, then

X = F(X).
This equation is a description of a state of affairs. The form of an infinite nest of boxes
is invariant under the operation of adding one more surrounding box.

In the process of observation, we interact with ourselves and with the world to
produce stabilities that become the objects of our perception. These objects, like the
infinite nest of boxes, often go beyond the specific properties of the world in which we
operate. We make an imaginative leap to complete such objects to become tokens for
eigenbehaviours. It is impossible to make an infurite nest of boxes. We do not make it.
We imagine it. And in imagining that infinite nest of boxes, we arrive at the eigenform.

The leap of imagination to the infinite eigenform is a model of the human ability to
create signs and symbols. In the case of the eigenform X with X : F(X), X can be
regarded as the name of the process itself or as the name of the limit process. Note that
if you are told that

X = F(D'
then substituting F(X) for X, you can write

X: F(F(x)).
Substituting again and again, you have

X = F(F(F(X))) = FG(FG(X)))) = FGG(F(F(X))))) :...

The process arises from the symbolic expression of its eigenform. In this view the
eigenform is an implicate order for the process that generates it.

Sometimes one stylizes the structure by indicating where the eigenform X reenters its
own indicational space by an arrow or other graphical device. See the picture below for
the case of the nested boxes.
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Figure 4

Does the infinite nest of boxes exist? Certainly it does not exist in this page or anywhere
in the physical world with which we are familiar. The infurite nest of boxes exists in the
imagination. It is a symbolic entity. Eigenform is the imagined boundary in the
reciprocal relationship ofthe object (the "It") and the process leading to the object (the
process leading to "It"). In the diagram below we have indicated these relationships
with respect to the eigenform of nested boxes. Note that the ult" is illustrated as a finite
approximation (to the infinite limit) that is suflicient to allow an observer to
infer/perceive the generating process that underlies it.

The Process leadingto It.

TtrE@

Figure 5

An object in the world (cogrritive, physical, ideal,...) provides a conceptual center for
the exploration ofrelationships related to its context and to the processes that generate
it. If we take the suggestion toheart that objects are tokens for eigenbehaviors, then an
object in itself is an entity, participating in a network of interactions, taking on its
apparent solidity and stability from these interactions.
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An object is an amphibian between the symbolic and imaginary world of the mind
and the complex world of personal experience. The object, when viewed as process, is
a dialogue between these worlds. The object when seen as a sign for itself, or in and of
itself, is imaginary. The eigenform model can be expressed in abstract and general
terms. Suppose that we are given a recursion (not necessarily numerical) with the
equation

x(t+l) = F(x(t))'
Here X(t) denotes the condition of observation at time t Then F(X(t)) denotes the
result of applying the operations symbolized by F to the condition at time t. You could,
for simplicity, assume that F is independent of time. Time independence of the
recursion F will give us simple answers and we can later discuss what will happen if the
actions depend upon the time. In the time independent case we can write

J= F(F(F(...)))
the infinite concatenation of F upon itself. Then

F(J): .1
since adding one more F to the concatenation changes nothing.
Thus J, the infinite concatenation of the operation upon itself leads to a fixed point for
F. J is said to be the eigenform for the recursion F. We see that every recursion has an
eigenform. Every recursion has an (imaginary) fixed point.

We end this section with one more exarnple. This is the eigenform of the Koch
fractal tl4]. In this case one can write
symbolically the eigenform equation

K = K { K  K } K
to indicate that the Koch Fractal reenters its own indicational space four times (that is, it
is made up of four copies of itself, each one-third the size of the original. The curly
brackets in the center of this equation refer to the fact that the two middle copies within
the fractal are inclined with respect to one another and with respect to the two outer
copies. In the figure below we show the geometric configuration of the reentry.

K:K {KK}K
Figure 6
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In the geometric recursiono each line segment at a given stage is replaced by four line
segments of one third its length, ananged according to the pattern of reentry as shown
in the figure above.
The recursion coresponding to the Koch eigenform is illustrated in the next figure.
Here we see the sequence of approximations leading to the infinite self-reflecting
eigenform that is known as the Koch snowflake fractal.

Figure 7

Five stages of recursion are shown. To the eye, the last stage vividly illustrates how the
ideal fractal form contains four copies of itself, each one-third the size of the whole. The
absfact schema

K = K  {  K K }  K

forthis fractal can itselfbe iterated to produce a "skeleton" ofthe
geometric recursion:

K : K { K K } K
:K {KK}K {  K {KK}5  K{KK}K }K{KK}K

We have only performed one line of this ,rcf"iuf recursion. There are sixteen K's in this
second expression just as there are sixteen line segments in the second stage of the
geometric recursion. Comparison with this symbolic recursion shows how geometry
aids the intuition. The interaction of eigenforms with the geometry of physical, mental,
symbolic and spiritual landscapes is an entire subject that is in need of exploration.
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It is usually thought that the recognition of an object arises in some simple way from
the assumed existence of the object and the action of our perceiving systems. This is a
fine tuning to the point where the action of the perceiver and the perception of the object
are indistinguishable. Such tuning requires an intermixing of the perceiver and the
perceived that goes beyond description. Yet in the mathematical levels, such as number
or fractal pattern, part of the process is articulated. The closed loop of perception
occurs in the eternity of present individual time. Each such process depends upon linked
and ongoing eigenbehaviors and yet is seen as simple by the perceiving mind. The
perceiving mind is itself an eigenform of its own perception.

6. THE SQUARE ROOT OF MINUS ONE

The purpose of this section is to place i, square root of minus one, and its algebra in
the context of eigenform and reflexivity. We then see that the square root of minus one
is intimately related to time and the mathematical expression of time. We then return to
this theme in later sections, showing how this point of view works in relation to
quantum mechanics. The main point here is that i can be interpreted as a primitive
dynamical system that undergoes oscillation and nevertheless has a significant
eigenform associated with this iteration.

Traditionally i, the square root of minus one, arises from the fact that it is suggested

by the solutions to quadratic equations. The simplest instance is the equation x2 + I = 0.
A solution to this equation must have square equal to -1, but there are no real numbers
whose square is -1. The square of a negative number is positive and the square of a
postive number is positive and the square of zero is zero. Thus mathematicians

(reluctantly at first) introduced an ideal number i such that i2 = -1. This number can be
used to find solutions to other quadratic equations. For example l+i and l-i are the roots

o f  x2  -2x*2 :0 .
The use of such complex numbers became indispensible when it was realized that

they could be used in the solution of cubic equations in such a way that the real solution
of a cubic was expressed naturally as a combination of two complex numbers such that
the imaginary parts canceled out and all that was left was the real solution.

Here is an example showing how complex numbers can combine in non-trivial ways
to form real numbers.

We write x: Sqrt(l + i) + Sqrt(l-i)

andthenwe see that* = l+i+ f-i+ 2Sqrt((1+iX1-D) =2+2Sqrt(2).

Thus we can conclude that x: Sqrt(2 + 2 Sqrt(2))
and so Sqrt(l + i) + Sqrt(l-i): Sqrt(2 + 2 Sqrt(2)),
showing that certain real numbers can be obtained as combinations of complex
numbers. This theme of finding real solutions by entering and leaving the complex
domain is fundamental to the applications of complex numbers in mathematics and
natural science.

Mathematicians began to seriously use complex numbers in the 1500's. It was not
until around 1800 that Gauss and Argand discovered a geometric interpretation that
opened up the subject to genuinely deep explorations.
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The geometric interpretation of the complex numbers is well-known and we shall not
repeat it here except to remark that i seen as a vector of unit length in the plane, and
perpendicular to the horizontal axis. The horizontal axis is taken to be the real numbers.
Multiplication by i is interpreted geometrically as rotation by 90 degrees. Thus ii is
rotation by 180 degrees. Indeed the 180 degree rotate of+l is -1' and so ii = -1.

We now describe a process point of view for complex numbers.
Think ofthe oscillatory process generated by

R(x) = -17t'

The fixed point would satisff
i = -lli

and multiplying, we get that
ii : -1.

On the other hand the interation of R on 1 yields
+1' R(1) = -1' R(R(l)): * 1' -1' +1'....

Thus there must be a linkage between this ideal number i whose square is -l and the
recursion that leads to an oscillation. The square root of minus one is aperfect example
of an eigenform that occurs in a new and wider domain than the original context in
which its recursive process arose. The process has no fixed point in the original domain.

i as an imqinary value,
defined in terms of itself.

i i =  - l

The square root
of minus one

tt istt

a discrete oscillation.

. . .  +  l ,  - 1 ,  +  l ,  - 1 ,  *  l ,  - 1 ,  * .

[ -1 ,+ t ]  [+1 , - l l

Figure 8

Looking at the oscillation between *1 and -1, we see that there are naturally two
viewpoints that we denote by [+1'-1] and [-1'+1]. These viewpoints corrsepond to
whether one regrads the oscillation at time zero as starting wittt +1 or with -1.

We shall let I{+1,-1} stand for an undisclosed alternation or ambiguity between +1
and -1 and call I{+1,-1} an iterant. There are two iterant views: [+1,-U and [-l'+ll.

Given an iterant [arb], we can think of [b,a] as the same process with a shift of one
time step. These two iterant views, seen as points of view of an alternating process, will
become the square roots of negative unity, i and -i.
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We introduce a temporal shift operator Tl such that

[a,b]tl =1 [b,al andq q = I
for any iterant [arb], so that contcatenated observations can include a time step of one-
half period of the process

...abababab....
We combine iterant views term-by-term as in

la,bl[c,d]: [ac,bd].
We now define i bythe equation

i = [1,-1111 .
This makes i both a view of the iterant process and an operator that takes into account a
step in time. We calculate

i i= [I,-t]q [l,-Un = [1,-11[-letlnn = [-1,-11:-1.
Thus we have constructed the square root of minus one by using an iterant viewpoint.
The key to rethinking the complex numbers in these terms is to understand that I
represents a discrete oscillating temporal process and it is an eigenform participating in
the algebraic structure of the complex numbers.
The Temporal Nexus

We take as a matter of principle that the usual real variable t for time is better
represented as it so that time is seen to be a process, an observation and a magnitude all
at once. This principle of "imaginary time" is justified by the eigenform approach to the
structure of time and the structure of the square root of minus one. An example of the

use of the Temporal Nexus, consider the expression t2 + f + z2 + t2, the square of the
Euclidean distance of a point (x*p,t) from the origin in Euclidean four-dimensional
space. Now replace t by it, and find

? * f + z2 +(i92 = *2 + y2 + z2 - &,
the squared distance in hyperbolic metric for special relativity. By replacing t by its
process operator value it we make the transition to the physical mathematics of special
relativity. V/e will discuss this theme further in later sections. There, we relate the
Temporal Nexus, the role of complex numbers in quantum mechanics and the role of
temporal shift operators in discrete physics.

7. REFLEXIVE DOMAINS
A reflexive domain D is an arena where actions and processes that transform the

domain can also be seen as the elements that compose the domain. Every element of
the domain can be seen as a transformation of the domain to itself. In actual practice an
element of a domain may be a person or company (collective of persons) or a physical
object or mechanism that is seen to be in action. In actual practice we must note that
what are regarded as objects or entities depends upon the way in which observers inside
or outside the domain divide their worlds. It is very difficult to make a detailed
mathematical model of such situations. Each actor is an actor in more than one play.
His actions undergo separate but related interpretations, depending upon the others with
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whom he interacts. Mutual feedback of a multiplicity of ongoing processes is not easily
described in the Platonic terms of pure mathematics.
Nevertheless, we take as a general principle for a mathematical model that D is a certain
set (possibly evolving in time), and we let [D,D] denote a selected collection of
mappings from D to D. An element F of [D'D] is a mapping F:D ---->D.

We shall assume that there is a 1-1 correspondence I:D ----> [D'D]. This is the
assumption of reflexivity. Every element of the reflexive domain is a transformation of
that domain.
Each denizen of the reflexive domain has a dual role of actor and actant.

Given an element g in D, I(g):D ----> D is a mapping from D to D, and for every
mapping F:D ----> D, there is an element g in D such that I(g) = F. The reflexive
domain embodies a perfect correspondence between actions, and entities that are the
recipients of these actions. We now prove a fundamental theorem about reflexive
domains. We show that every mapping F:D ----> D has a fixed point p, an element p in
D such that F(p) : p. This means that there is another way, in a reflexive domain, to
associate a point to a transformation. The point can be seen as the fixed point of a
transformation and in that way, the points of the domain disappear into the selÊ
referential nature of the transformations.

Fixed Point Theorem. Let D be a reflexive domain with actor/actant correspondence
F:D -----> [D,Dl. Then every F in [D'D] has fixed point. That is, there exists a p in D
such that F(p) = p.

Proof. Define G:D ----> D by the equation Gx = F(I(x)x) for each x in D.
Since I:D ----> [D,Dl is a 1-l correspondence, we know that C = I(g) for some g in D.
Hence Gx: I(g)x: F(I(x)x) for all x in D.
Therefore, letting x = g, I(g)g: F(I(g)g) and so p : I(g)g is a fixed point for F.

Q.E.D.
We shall discuss this proof and its meaning right now in a series of remarks, and later

in the paper in regard to examples that will be constructed.

Remarkl.
Suppose that we reduce the notational complexity of our description of the reflexive

domain by simply saying that for any two entities g and x in the domain there is a new
entity gx that is the result of the interaction of g and x. (We think of gx as l(g)x.)
In mathematical terms, we define gx : I(g)x. Then the proof of the fixed point theorem
appears in a simpler form: We define Gx: F(xx) and note that GG = F(GG).
Thus GG is the fixed point for F! I like to call G "F s Gremlin". This is an apt
description of our G. At first G looks quite harmless. Applying G to any A we just

apply A to itself and apply F to the result. GA : f(AA). The dangerous mixture comes
when it is possible to apply G to itself! Then GG: F((GG) and GG is sitting right in
there surrounded by F and you cannot stop the action. Offgoes the recursion

GG = F(GG)
: F(F(GG))
: F(F(F(F(GG))))
: F(F(F(F(F(F(F(F(GG))))))))
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The diabolical nature of the Gremlin is that he represents a process that once started, is
hard to stop. Such are the processes by which we make the world into a field of tokens
and symbols and forget the behaviours and processes and reflexive spaces from which
they came. Fixed points and self-references are the unavoidable fruits of reflexivity, and
reflexivity is the natural condition in a universe where there is no complete separation of
part from the whole.
Remark 2.

A reflexive domain is a place where actions and events coincide. An action as a
mapping of the whole space, because there is no intrinsic separation of the local and the
global. Feedback is an attempt to handle the lack of separation of part and whole by
describing their mutual influence.

When we define a new element g of D via gx: F(x) for any mapping F:D---->D, and
we have a notion of combination of elements of D: arb ---> tb, then we can define
gx = F(xx) and so get gg: F(gg). Here we have not made a big separation between the
elements of D and the mappings, since each element g of D gives the mapping
I(g)x: gx. But in fact, we could define ab = I(a)b in a reflexive domain.

Whenever there is a transformation F, we make that transformation into an element
of the domain by the definition gx: F(x). We transmute verbs to nouns. The reflexive
domain evolves. The space is not given a priori. The space evolves in relation to actions
and definitions. The road unfolds before us as we travel.
Remark3.

We create languages for evolving concepts. The outer reaches of set theory (and
category theory ) lead to clear concepts, but these concepts are not themselves sets or
categories. A good example is the famous Russellian concept of sets that are not
members of themselves. Russell's concept is not a set. Another example is the concept
of set itself. There is no set that is all sets.
This very limitation on the notion of set is its opening. It shows us that set theory is an
evolving language. Language and concepts expand in time.

Here is a transformation on sets: F(X) = { X }. The transform of a set X is the
singleton set whose member is X. If X is not a member of itself, then F(X) is also not a
member of itself. But a fixed point of the transformation F is an entity U such that {U}
: U, and this would be a set that is a member of itself.
Left Distributivity and Magma
ln a left distributive formalism we have a binary operation a*b on a domain Q such that
for all A, b and c the following equation holds.

A*(b*c) = (A*b)*(A*c).
This corresponds exactly to the interpretation that each element A in Q is a mapping of
Q to Q where the mapping A[x] = A*x is a structure preserving mapping from Q to Q.

A[b*c] = Albl*Alcl'
We can ask of a domain that every element of the domain is itself a structure presewing
mapping of that dotnain. This is very similar to the requirement of reflexivity.
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We call a domain M with an operation * that is left distributive a magma. A magma
with no other relations than left-distributivity is called afree magmc. For interpretations
in terms of the theory of knots and links, see [9], l22l and,[23].

The simplest example of a Magma is an algebra on three elements {a'b'c}
where ab = c = ba, bc : a = cb, ca = b = ac and aa : a, bb:b, cc = c. Here we have
three distinct entities, each pair interacts to produce the third entity and each entity
interacts with itself to produce itself. Note that this system is not associative. For
example, (aa)b : ab : c, while a(ab) : ac = b. It is easy to check the left distributive
law. For example a(bc) = ^^= swhile (ab)(ac) = cb=a so that a(bc) = (ac)@c).

The search for structure preserving mappings can occur in rarefied contexts. See for
example the work of Laver and Dehomoy l2l,9l who studied mappings of set theory to
itself that would preserve all definable structure in the theory. Dehomoy realized that
many of the problems he studied in relation to set theory were accessible in more
concrete ways via the use of knots and braids. Thus the knots and braids become a
language for understanding formal properties of self-embedded structure.

Structure preserving mappings of set theory must begin as the identity mapping since
the relations of sets are quite rigid at the beginning. (You would not be able to map an
empty set to a set that was not empty for example, and so the empty set would have to
go to itself.) The existence of non-trivial strucfire preserving mappings of set theory
questions the boundaries ofdefinablity and involves the postulation ofsets ofvery large
size. See [6] for a good exposition of the philosophical issues about such embeddings
and for an approach to wholeness in physics that is based on these ideas.

I shall call a magmaM reflexive if it has the property that every structure preserving
mapping of the algebra is realized by an element of the algebra and (x*x)*z = x*z for
all x and zinM.
A special case of this last property would be where x*x = x for all x in M.

Fixed Point Theoremfor Reflexive Magmas.
Let M be a reflexive magma.
Let F:M ----> M be a structure preserving mapping of M to itself.
Then there exists an element p in M such that F(p) = p.

Proof, Let F:M -----> M be any structure preserving mapping of the magma M to
iteself. This means that we assume that F(x*y) : F(x)*F(y) for all x and y in M.
Define G(x) = F(x*x) and regard G:M ----> M. Is G structure preserving?
We must compare G(x*y) = F((x*y)*(x*y)) = F(x*(y*y))
with G(x)* G(y) : F(x*x) *F(y*y) = F((x*x)* (y*y))'
Since (x*x)*z: x*z for all x and z in M, we conclude that G(x*y) : G(x)*G(y) for all
x and y in M. Thus G is structure preserving and hence there is an element g of M such
that G(x): g*x for all x in M.
Therefore we have g*x = F(x*x), whence g*g: F(g*g).
For p = B*g, we have p = F(p).
This completes the proof. //

This analysis shows that the concept of a magma is very close to our notion of
reflexive domain.
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8. THE SECRET

TVhat is the simplest language that is capable of self-reference?
We are all familiar with the abilities of natural language to refer to itself. Self reference
is a most accessible example of eigenform. Why this very sentence is an example of
self-referentiality. The American dollar bill declares "This bill is legal tender.". The
sentence that you are now reading declares that you, the reader, are complicit in its own
act of reference. But what is the simplest language that can refer to itselfl

Such anguage would have a simple alphabet. Let us say it has only the letter R. The
words in this language will be all strings of R's. Call the language LS. The words in LS
are the following:

R,
RR,

RRR,
RRR&

and so on.
Two words are equal if they have the same number of letter R's.
We now create arule of reference of this language.

Each word makes a meaningful statement of reference via the rule:
If X is a word in LS, then RX refers to XX. RX refers to XX, the repetition of X.

Thus RRR refers to RRRR (not to itself), and R refers to the empty word.
There is a word in LS that refers to itself. Can you find it? Lets see.

RX refers to XX. So we need XX: RX if RX would refer to RX.
If XX = RX, then X : R. So we need X = R. And RR refers to itself.

The little language LS looks like a pedantic triviality, but it is actually at the root of
reflexivity, Godel's incompleteness Theorem, recursion theory, Russell's paradox and
the notion of self-observing and selÊrefening systems. It seems paradoxical that what
looks like a trick of repeating a symbol can be so important. The trick is more than just
a trick.

I would like to think that when we eventually discover the true secret of the universe
it will tum out to be this simple. The snake bites its tail. The Universe is constructed in
such a way that it can refer to itself. In so doing, the Universe must divide itself into a
part that refers and part to which it refers, a part that sees and a part that is seen.

Let us say that R is the part that refers and U is the referent. The divided universe is
RX and RX = U and RX refers to U (itself.

Our solution suggests that the Universe divides itself into two identical parts each of
which refers to the universe as a whole. This is RR.

In other words, the universe can pretend ttrat it is two and then let itself refer to the
two, and find that it has in the process refened only to the one, that is itself.

The Universe plays hide and seek with herself, pretending to divide herself into two
when she is really only one. And that is the secret of the Universe.

And Physics. From the point of view of physics, the universe should have a universal
equation ofthe form

U lPhi> =0
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Where lphi> is the state of the universe and U is the universe as an operator on its own
state. We follow our own principles and identiff the universe as state lphi> the universe
as process U. Then the equation of the universe becomes

U U = 0 .
This is the fundamental nilpotent form for a universal equation of physics. See [24] for a
detailed evocation of this philosophy of nilpotence and its relationship with the Dirac
equation. In a sequence to the present paper, the physical considerations in the next
section will be brought into line with this nilpotent viewpoint of Peter Rowlands.

9. QUANTUM PHYSICS

Our pimary reason for introducing quantum physics into this essay is that it is
inextricably related to the complex numbers and in particular to the square root of minus
one. We wish to show that the eigenform view of the square root of minus one and the
Temporal Nexus inform the epistemology of quantum theory. The reader should recall
the Temporal Nexus from the section before. We take as a matter of principle that the
usual real variable t for time is better represented as it so that time is seen to be a
process, an observation and a magnitude all at once. This principle of "imaginary time"
is justified by the eigenforrn approach to the strucfure of time and the structure of the
square root of minus one. Quantum mechanics has been a powerful force in asking us to
rethink our notions of objects and causality. Von Foerster's notion of eigenform was an
outgrowth of his background as a quantum physicist. We should ask what eigenforms
might have to do v/ith quantum theory and with the quantum world.

In this section we meet the concurrence of the view of object as token for
eigenbehavior and the observation postulate of quantum mechanics. In quantum
mechanics observation is modeled not by eigenform but by its mathematical relative the
eigenvector. The reader should recall that a vector is a quantity with magnitude and
direction, often pictured as an arrow in the plane or in three dimensional space.

Figure 9

In quantum physics [ 1], the state of a physical system is modeled by a vector in a high-
dimensional space, called a Hilbert space. As time goes on the vector rotates in this high
dimensional space. Observable quantities correspond to (linear) operators H on these
vectors v that have the properly that the application of H to v results in a new vector that
is a multiple of v by areal factor îs.
(An operator is said to be linear if H(av *w) = aH(v) + H(w) for vectors v and w, and
any number a. Linearity is usually a simplifying assumption in mathematical models,
but it is an essential feature of quantum mechanics.)

In symbols this has the form

Hv = luv.
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One says that v is an eigenveetor for the operator H, and that À is the eigenvalue. Tlte
constant I is the quantity that is observed (for example the energy of an electron). These
are particular properties of the mathematical context of quantum mechanics. The l, can
be eliminated by replacing H by G = H/1" (when l, is non zero) so that

Gv: (Illl.)v: (Hv/À = Àvlk: y.

Thus
G v = v .

In quantum mechanics observation is founded on the production of eigenvectors v with
Gr:v where v is a vector in a Hilbert space and G is a linear operator on that space.

Many of the sûange and fascinating properties of quantum mechanics emanate
directly from this model of observation. In order to observe a quantum state, its vector
is projected into an eigenvector for that particular mode of observation. By projecting
the vector into that mode and not another, one manages to make the observation, but at
the cost of losing information about the other possibilities inherent in the vector. This is
the source, in the mathematical model, of the complementarities that allow exact
determination of the position of a particle at the expense of nearly complete uncertainty
about its momentum (or vice versa the determination of momentum at the expense of
knowledge of the position).

Observation and quantum evolution (the determinate rotation of the state vector in
the high dimensional Hilbert space) are interlocked.
Each observation discontinuously projects the state vector to an eigenvector. The
intervals between observations allow the continuous evolution of the state vector. This
tapestry of interaction ofthe continuous and the discrete is the basis for the quantum
mechanical description of the world.
The theory of eigenforms is a sweeping generalization of quantum mechanics that
creates a context for understanding the remarkable effectiveness of that theory. If indeed
the world of objects is a world of tokens for eigenbehaviors, and if physics demands
forms of observations that give numerical results, then a simplest example of such
observation is the observable in the quantum mechanical model.

Is the quantum model, in its details, a consequence of general principles about
systems? This is an exploration that needs to be made. We can only ask the question
here. But the mysteries of the interpretation of quantum mechanics all hinge on an
assumption of a world extemal to the quantum language. Thinking in terms of
eigenform we can begin to look at how the physics of objects emerges from the model
itself. Where are the eigenforms in quantum physics? They are in the mathematics itself.
For example, we have the simplest wave-function

Q(x,t)=sr(kx-ot).
Since we know that the function E(x) = ex is an eigenform for orperation of

differentiation with respect to x, g(x,Q is a special multiple eigenform from which the
energy can be extracted by temporal differentiation, and the momentum can be

extracted by spatial differentiation. We see in g(x,t) the complexity of an individual
who presents many possible sides to the world.
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{p(xrt) is an eigenform for more than one operator and it is a composition of ex and i, the
squaxe root on minus one, a primordial eigenvalue related to time. It is this internal
complexity that is mirrored in the uncertainty relations of Heisenberg and the
complementarity of Bohr. The eigenforms themselves, as wave-functions, axe inside the
mathematical model, on the other side of that which can be observed by the physicist.

We have seen eigenforms as the constructs of the observer, and in that sense they are
on the side ofthe observer, even ifthe process that generates them is outside the realm
of his perception. This suggests that we think again about the nature of the wave
function in quantum mechanics. Is it also a construct of the observer?
To see quantum mechanics and the world in terms of eigenforms requires a turning
around, a shift of perception where indeed we shall find that the distinction betweem
model and reality has disappeared into the world of appearance.

This is a reversal of epistemology, a complete tuming of the world upside down.
Eigenform has tricked us into considering the world of our experience and we find that
it is our world, generated by our actions. The world has become objective through the
self-generated stabilities of those actions.

A Quick Review of Quantum Mechanics
DeBroglie hypothesized two fundamental relationships: between energy and frequency,
and between momentum and wave number. These relationships are summarized in the
equations

E : h w ,
P+k'

where E denotes the energy associated with a wave and p denotes the momentum

associated with the wave. Here h =hl}n where h is Planck's constant.
Schrôdinger answered the question: Where is the wave equation for DeBroglie's

waves? Writing an elementary wave in complex form

V: V(x,t) : exp(i(kx - wt))'

we see that we can exfact DeBroglie's energy and momentum by differentiating:

ihôVtôt =Ery and -ihô\tl ôx = prlt.

This led Schrôdinger to postulate the identilication of dynamical variables with
operators so that the first equation ,

ihôl{,tldt= EV,

is promoted to the status of an equation of motion while the second equation becomes
the definition of momentum as an operator:

P = -ihô/ôx '

Once p is identified as an operator, the numerical value of momentum is associated with

an eigenvalue of this operator, just as in the example above. In our example pV : htny.
In this formulation, the position operator is just multiplication by x itself. Once we

have fixed specific operators for position and momentum, the operators for other
physical quantities can be expressed in terms of them.
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We obtain the energy operator by substitution of the momentum operator in the
classical formula for the energy:

B=11/2)mv2 + Y

E= p2nm + V

E:-(h2l2m7a2nx2 + v.
Here V is the potential energy, and its corresponding operator depends upon the details
of the application. With this operator identification for E, Schrôdinger's equation

rhôtt | ôt : -6? tzm\a2ynx2 + VV
or equivalently,

htr | ôt : i(hlzm\iizryl ôx2 - (i/h)W

is an equation in the first derivatives of time and in second derivatives of space. In this
form of the theory one considers general solutions to the differential equation and this in
turn leads to excellent results in a myriad of applications. It is useful to point out that
Schrôdinger's equation without the potential term has the form

Nlôt= i(hl2m)ô2ybx2.
It is in this form that we shall compare it with discrete processes in the next section.
There we shall use the Temporal Nexus to obtain new insight into the role of i in this
equation.

ln quantum theory, observation is modelled by the concept of eigenvalues for
conesponding operators. The quantum model ofan observation is a projection ofthe
wavefunction into an eigenstate.
An energy spectrum {Ek} conesponds to wave functions y satisfying the Schrôdinger
equation, such that there are constants Ek with Ery : EkV. An observable (such as
energy) E is a Hermitian operator on a Hilbert space of wavefunctions. Since Hermitian
operators have real eigenvalues, this provides the link with measurement for the
quantum theory.

It is important to notice that there is no mechanism postulated in this theory for how
a wave function is "sent" into an eigenstate by an observable. Just as mathematical logic
need not demand causality behind an implication between propositions, the logic of
quantum mechanics does not demand a specified cause behind an observation. This
absence of an assumption of causality in logic does not obviate the possibility of
causality in the world. Similarly, the absence of causality in quantum observation does
not obviate causality in the physical world. Nevertheless, the debate over the
interpretation of quantum theory has often led its participants into asserting that
causality has been demolished in physics.

Note that the operators for position and momentum satis$ the equation xp - px = hi.
This corresponds directly to the equation obtained by Heisenberg, on other grounds, that
dynamical variables can no longer necessarily commute with one another. In this way,
the points of view of DeBroglie, Schrôdinger and Heisenberg came together, and
quantum mechanics was bom. In the course of this development, interpretations varied
widely. Eventually, physicists came to regard the wave function not as a generalized
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wave packet, but as a carrier of information about possible observations. In this way of
thinking V*V (Vt denotes the complex conjugate of ry) represents the probability of
finding the "particle" (A particle is an observable with local spatial characteristics.) at a
given point in spacetime. Strictly speaking, it is the spatial integral of ytyr that is
interpreted as a total probability with ytry the probablility density. This way of
thinking is supported by the fact that the total spatial integral is time-invariant as a
consequence of Schrodinger's equation!

10. ITERANTS, COMPLEX NUMBERS AND QUANTUM MECHANICS

We have seen that there are indeed eigenforms in quantum mechanics. The
eigenforms in quantum mechanics are the mathematical functions such as

er
that are invariant under operators such as D = Ùdx.
But we wish to examine the relationship between recursion, reflexive spaces and the
properties of the quantum world.
The hint we have received from quantum theory is that we should begin with
mathematics which is replete with eigenforms.
ln fact, this hint seems very rich when we consider that i, the square root of minus one,
is a key eigenform in our panoply of eigenforms and it is a key ingredient in quantum
mechanics intimately related to the role of time.

Revisiting the Temporal Nexus
If we define

R(A; = -174

then R(i) = i since i2 = -l is equivalent to i = -lli.

Using the infinite recursion we would then write
i : -l | -ll -ll -Il -11...'

making i an infinite reentry form for the operator R
rWe will write

i: [-1l*l
where * denotes the reentry of the whole form into that place in the right-hand part of
the expression.

Similarly, if F(x) :1 + l/x, then the eigenform would be [1 + 1/*] and we could
write (1+{5)12 = Il + ll*1.
With this in place we can now consider wave functions in quantum mechanics such as

v(x,Q : exp(i(kx - wt)) = exp([-ll*] (kx - wt))
and we can consider classical formulas in mathematics such as Euler's formula

exp([-1l*19) = cos(9) + [-1l*l sin(9)

in this light. We start here with Euler's formula, for this formula is the key relation
between complex numbers, i, waves and periodicity.

We return to the finite nature of [-1l*]. This eigenform is an oscillator between -1

and +1. It is only i in its idealization.
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In its appropriate synchronization it has the property that i : -lli. As a real oscillator,
the equation R(i) : -lli tells us that when i is 1, then i is transformed to -1 and when i is
-1 then i is transformed to +1. There is no fixed point for R in the real domain. The
eigenform is achieved by leaving the real domain for a new and larger domain.

We know that this larger domain can be conceptualized as the plane with Euclidean
rotational geometry, but here we explore the larger domain in terms of eigenforms.

We find that i itself is a fundamental discrete process, and it is in the "microworld" of
such discrete physical processes that not only quantum mechanics, but also classical
mechanics is born.
Iterants and Iterant Views
In order to think about i. consider an infinite oscillation between +1 and -1:

-l +1,-1r+lr-lr+lr-lr+1r...
This oscillation can be seen in two distinct ways. It can we seen as t-1r+11 (a repetition
in this order) or as [+1,-1] (a repetition in the opposite order). This suggests regarding
an infinite alternation such as

... arbrarbrarbrarbrarbrarbrârbr...
as an entity that can be seen in two possible ways, indicated by the ordered pairs [arb]
and [cdf . We shall call the infinite altemation of a and b the iterant of a and b and
denote it by l{a,b}. Just as with a set {a,b}, the iterant is independent of the order of a
and b. We have l{a,b} = I{b,a}, but there are two distinct views of any iterant and these
are denoted by [a,b] and [b,a]. The key to iterants is that two representatives of an
iterant can by themsleves appear identical, but taken together are seen to be different.
For example, consider

... a rb ra rb rr rb rarbrarbrarbrSrbr...
and also consider

...brarbrarbrarbrarbrarbrarbrar...
There is no way to tell the difference between these two iterants except by a direct
comparision as shown below

... arbrarbrarbrarbrarbrarbrârbr...

... brarbrarbrarbrarbrarbrarbrtr...
ln the direct comparison we see that if one of them is [arbl, then the other one should be
[b,a]. Still, there is no reason to assign one of them to be [a,b] and the other [b'a]. It is a
strictly relative matter. The two iterants are entangled (to bonow a term from quantum
mechanics) and if one of them is observed to be larbl, then the other is necessarily
observed to be [b,al.
Lets go back to the square root of minus one as an oscillatory eigenform.

... -1r+1r-1r+1r-1r+1r-1r+1r...

What is the operation R(x) = -llx in this case? We usually think of a starting value and
then the new operation shifts everything by one value with R(+1) = -1 and R(-1) = a1.
Thus would suggest that

R(... -1 r+ 1 r-1 )+ l r-l r+ | )-l r-.) = ... + l r-l r+ l r-l r+1r- l r+ 1 r...
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and these sequences will be different when we compare, them even though they are
identical as individual iterants.

... -1r+1r-1r+1r-1r+1r-1r+1r...

... +1r-1r+1r-1r+1r-1r+1r-1r...

However, we would like to take the eigenform/iterant concept and make a more finite
algebraic model by using the iterant views

l-l,+U and [+1,-1].
Certainly we should consider the transform P[a'b] : [b'al and we take

-[a,b]=[-a, -b],

so that
-P[a,bl = 1-b,-al.

Then
-P[l'-U = [1'-U.

In this sense the operation -P has eigenforms [1'-11 and [-1'1].
You oan think of P as the shift by one-half of a period in the process

...ababababab.... .
Then [-1111 is an eigenform for the operator that combines negation and shift.

We will take a shorthand for the operator P via
P[a,bl= [a,bl': [b,a].

If x=[a,bl then x' = [b,al. We can add and multiply iterant views by the combinations

[a,b][c,d] = [ac,bd],
[a,b] + [c,dl = [a+c, b+ d],

k[a,bl = [ka,lçbl when k is a number.

We take I = [1r1] and -1 = [-lr-U. This is a natural algebra of iterant views, but note
that t-1r+11[-1r+11 = [lru = 1, so we do not yet have the square root of minus one.

Consider [arbl as representative of a process of observation of the iterant l{arb}.

[arb] is m iterant view. V/e wish to combine [a,b] and [cd] as processes of
observation. Suppose that observing I{arb} requires a step in time. That being the case,

[a,b] will have shifted to [b,al in the course of the single time step. V/e need an

algebraic structure to handle the temporality. To this end, we introduce an operator {
with the property that

la,blll= Ilb,al witn q2 = îrl : I

where 1 means the identity operator. You can think of n as a temporal shift operator
that can act on a sequence ofindividual observations. The algebra generated by iterant

views and the operator { is taken to be associative.
Here the interpretation is that XY denotes "first observe )L then observe Y". Thus

XqYn = XY'nn = XY' and we see that Y has been shifted by the presence of the

operator 1'1, just in accord with our temporal interpretation above.
We can now have a theory where i and its conjugate -i correspond to the two views

of the iterant I{-l'+U.
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Let i = [1,-1lq and -i = [-1,ll4 . We get a sqrure root of minus one:

;; = 11,-11{[1,-1]n = [1,-1][-1,11în : [-1,-11 : -[1,11 = -1.
The square roots of minus one axe iterant views coupled with temporal shift operators.
Not so simple, but not so complex either!
11s: [1r-1] then e' = I-1r1] : -e and ee = [1r1] = 1 with eef : -1.

i = e q

ii: eÏleq = ee'qn = ee'= -1

With this defintion of i, we have an algebraic interpretation of complex numbers that
allows one to think of them as observations of discrete processes.

This algebra contains more than just the complex numbers.

With x : [a,bl and y : [cd], consider the products (xn)6q) and (y{)(x{):

(xn)Cyn) = [a,b][ [cdlr1 = [a,b][d,c] = [ad,bc]

Cvnxq): [c,dlr1[a,bl4 : [cd][b,al = [cb'da].
Thus

(xtl)Ott) - Cynxxq): [ad-bc, -(ad-bc)] = (ad -bc)[1,'1].

Thus

xîyn - ynxq = (ad -bc)i r|.
We see that, with temporal shifts, the algebra of observations is non-commutative.

Note tlrat for these processes, represented by vectors [arbl, the commutator
xqyn - ynxq = (ad -bc)it1 is given by the determinant of the matrix corresponding to
two process vectors, and hence will be non-zero whenever the two process vectors axe
non-zero and represent different spatial rays in the plane. There is more. The full
algebra of iterant views can be taken to be generated by elements of the form

[a,b] + [cdlî
and it is not haxd to see that this is isomorphic with 2 x 2 matix algebra with the
correspondence given by the diagram below.

[a ,b ]+ [c ,d ]  n { *

Figure l0
'We 

see from this excursion that there is a full interpretation for the complex numbers
(and indeed matrix algebra) as an observational system taking into account time shifts
for underlying iterant processes.
Let A = [a,b] and B : [c,d] and let C = [r,sl, D = [t u]. With A' : [b,a], we have

(A + BîXC+Dî) = (AC + BD') + (AD + BC')TI.
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This writes 2 x 2 mafrx algebra in the form of a hypercomplex number system. From

the point of view of iterants, the sum [a,b] + [b,cl[ can be regarded as a superposition

of two types of observation of the iterants I{a,b} and l{cd}. The operator-view [c'd]4
includes the shift that will move the viewpoint from [c,d] to [d,c], while [a'bl does not
contain this shift. Thus a shift of viewpoint on [cd] in this superposition does not affect
the values of [arb]. One can think of the corresponding process as having the form
shown below. ':.".i".i""i".i".i".i"""i:'

. . . b b b b b b b b b b b b b b . . .
The snapshot [crdl changes to [drcl in the horizontal time-shift while the vertical
snapshot [arb] remains invariant under the shift.
It is interesting to note that in the spatial explication of the process we can imagine the

horizontal oscillation corresponding to [cd]q as making a boundary (like a frieze
pattem), while the vertical iterant parts a and b mark the two sides of that boundary.

Returning to Quantum Mechanics

You can regard V(x,t) =exp(i(kx - wt)) as containing a micro-oscillatory system with

the special synchronizations of the iterant view i: [+lr-Un. It is these synchronizations

that make the big eigenform of the exponential ry(x,t) work correctly with respect to
diflerentiation, allowing it to create the appearance of rotational behaviour, wave

behaviour and the semblance of the continuum. Note that exp(ig) - cos(q) + i sin(9)
in this way of thinking is an infinite series involving powers of i. The exponentional is
synchronized via i to sepaxate out its classical trigonomeûic parts. In the parts we have

cos(rp) + i sin(9) = [cos(9), cos(g)] + [sin(9)' -sin(g)lJ, a superposition of the
constant cosine iterant and the oscillating sine iterant. Euler's formula is the result of a
synchronization of iterant processes.

p(i(lor -wt) ) = c os(kx-wt)+isin(lor-wt)

Figure ll

One can blend the classical geometrical view of the complex numbers with the iterant
view by thinking of a point that orbits the origin of the complex plane, intersecting the
real axis periodically and producing, in the real axis, a periodic oscillation in relation to
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its orbital movement in the higher dimensional space. The diagram above is the familiar
depiction of a vector in the complex plane that represents the phase of a wave-function.

I hope that the reader can now look at this picture in a new way, seeing i : [+l'-1]Tl as a
discrete oscillation with built-in time shift and the exponential as a process oscillating
between cos(kx-wt) + sin(kx-wt) and cos(kx-wt)-sin(kx-wt). The exponential function
takes the simple oscillation between +(kx-wt) and -(kx-wt) and converts it by a
complex of observations of this discrete process to the trigonometric wave-forms. All
this goes on beneath the surface of the Schrodinger equation. This is the production of
the eigenforms from which may be exffacted the energy, position and momentum.

Higher Orders of Iterant Structure. What works for 2 x 2 matrices generalizes to n
x n matrix algebra, but then the operations on a vector [x1rx2r...rxa] consitute all
permutations of n objects. A generating element of iterant algebra is now of the form

x o = [x1rx2r.-rxa]o

where o is an element of the symmetric group 51. The iterant algebra is the linear span

of all elements x o, and we take the rule of multiplication as

x o y t = x y o o t

where yo denotes the vector obtained from y by permuting its coordinates via o ; xy is
the vector whose k-th coordinate is the product of the k-th coordinate of x and the k-th
coordinate of y ; ot is the composition of the two permutations o and t .

Hamilton's Quaternions
Here is an example. Hamilton's Quatemions are generated by the iterant views

I: [+1r-1r-1r+Uo, J= [+1,+1r-lr-11î,, K= [+1r-1r+1r-U1
where

o =(12)(34),îu= Q3)Q4), t =(14)(23).

Here we represent the permutations as products of transpositions (ij). The transposition
(ij) interchanges i and j, leaving all other elements of {11,...,n} fixed.

One can verif that

12:72 -(2 = IJK: -1.

For example,

12 = 1+1,-1,-1,+llo [+1,-1,-1,+116 = [+1,-1e-1r+1][-1,+1,+1,-1]o o
= [-lr-le-le-U = -1.

and

IJ : [+1,-1,-1,+UO [+1,+1,-1,-UI : [+1,-1,-1,+U[+1,+1,-1,-11 6 I
= [*1,-1,*1,-1] (12X34)(13X24) = [+1,-1,+1,-11 (14X23): [+1,-1,+1,-U 1.

ln a sequel to this paper, we will investigate this iterant approach to the quatemions and
other algebras related to fundmental physics. For now it suffices to point out that the

quaternions of the form a + bI + cJ + dK with a2 + b2 + c2 + d2 : | (a,b,c,d real
numbers) consitutute the group SU(2), ubiquitous in physics and fundamental to
quantum theory. Thus the formal structure of all processes in quantum mechanics can be
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represented as actions of iterant viewpoints. Nevertheless, v/e must note that making an

iterant interpretation of an entity like 1 : [+1r-1r-lr+1]6 is a conceptually natural
departure from our original period two iterant notion. Now we are considering iterants
such as I{+1r-1r-lr+1} where the iterant is a multi-set and the permutation group acts to
produce all possible orderings of that multi-set. The iterant itself is not an oscillation. It
represents an implicate form that can be seen in any of its possible orders. Once seen,
these orders are subject to permutations that produce the possible views of the iterant.
Algebraic structures such as the quatemions appear in the explication of such implicate
forms.

The reader will also note that we have moved into a different conceptual domain
from the original emphasis in this paper on eigenform in relation to to recursion. lndeed,
each generating quaternion is an eigenform for the transformation R(x) = -llx.

The richness of the quaternions arises from the closed algebra that arises with its
infinity of eigenforms that satisfu this equation, all of the form U = aI + bJ + cK where

z 2 + b 2 * ç 2  = 1 .
This kind of significant extra structure in the eigenforms comes from paying attention to
specific aspects of implicate and explicate structure, relationships with geometry and
ideas and inputs from the perceptual, conceptual and physical worlds. Just as with our
earlier examples (with cellular automata) of phenomena arising in the course of the
recursion, we see the same phenomena here in the evolution of matheamatical and
theoretical physical structures in the course of the recursion that constitutes scientific
conversation.

Quaternions and SU(2) Using Complex Number Iterants
Since complex numbers commute with one another, we could consider iterants whose
values are in the complex numbers. This is just like considering matrices whose entries
are complex numbers.
For this purpose we shall allow given a version of i that commutes with the iterant shift

operator Tl. Let this commuting i be denoted by t (iota). Then we are assuming that

t " 2 = - l r î l = t 4 r { 2 = + 1 .

We then consider iterant views of the form [a * b1, c+ d1] and

[a+ b1 ,  c*d t r  lq  =q  [c+d l ,  a+  b t  ] . Inpar t i cu la r ,wehavee:  [1 r -1 ] ,  and i :en  is

quite distinct from t . Note, as before, that et1 = -Tl e and that e2 : l.Now let

I = l , e r J = e [  , K = l î .
We have used the commuting version of the square root of minus one in these
definitions, and indeed we find the quaternions once more.

12 =l,el,e = tr tr e e: (-lx+l) = -1, J2: eî eT : e (-e) rl q = -1,

K2 = t4 ltl = ù r { 4 =-1, IJK= le eq u1 = r I t q { = I t=-1.

Thus

12 = 72 =K2 = IJK= -1.
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This must look a bit cryptic at first glance, but the construction shows how the structure
of the quaternions comes directly from the non-commutative structure of our period two
iterants. In other, words, quaternions can be represented by 2 x 2 matrices. This is way it
has been presented in standard language. The group SU(2) of 2 x2 unitary matrices of
determinant one is isomorphic to the quaternions of length one.

:  l z  ,Z f+  [  *  , - * - ]  r , l

Figure 12

ln the equation above, we indicate the matrix form of an element of SU(2) and its
corresponding complex valued iterant. You can easily veriff that

lz ælrw:0, I: z:lrw:0, J: z:0, w: 1, K: z:0, w = 1,.
This gives the generators of the quatemions as we have indicated them above and also
as generators of SU(2).

Similarly, H: [a,b] + [c + di, c-dilt1 represents a Hermitian 2x2matrlrx and hence
an observable for quantum processes mediated by SU(2). Hermitian matrices have real
eigenvalues. It is curious how certain key iterant combinations turn out to be essential
for the relations with quantum observation.

11. TIME SERIES AND DISCRETE PHYSICS

In this section we shall use the convention (outside of iterants) that successive
observations, first A and then B will be denoted BA rather than AB. This is to follow
previous conventions that we have used. We continue to interpret iterant observation
sequences in the opposite order as in the previous section. This section is based on our
work in [20] but takes a different interpretation of the meaning of the diffrrsion equation
in relation to quantum mechanics.

We have just reformulated the complex numbers and expanded the context of matrix
algebra to an intepretation of i as an oscillatory process and matrix elements as
combined spatial and temporal oscillatory processes

(in the sense that [a,bl is not affected in its order by a time step, while [a,bln includes
the time dynamic in its interactive capability, and 2 x 2 mafrx algebra is the algebra of

iterant views [a,bl + [c,dlq).
We now consider elementary discrete physics in one dimension. Consider a time

series of positions x(t), t = 0, At, 24t,34t,... . We can define the velocity v(t) by the
formula v(t) : (v(+ À) - v(t)/Ât = Dx(t) where D denotes this discrete derivative. In
order to obtain v(t) we need at least one tick Ât of the discrete clock. Just as in the
iterant algebra, we need a time-shift operator to handle the fact that once we have
observed v(t), the time has moved up by one tick.

Thus we shall add an operator J that in this context accomplishes the time shift:

x(t)J = Jx(t+Ât).

277



\Ve then redefine the derivative to include this shift:

Dx(t): J(x(t+ Â) - x(t)/Ât '

The result of this definition is that a successive observation of the form x@x) is distinct
from an observation of the form (Dx)x. ln the first case, we observe the velocity and
then x is measured at t + Àt. In the second case, we measure x at t and then measure t}te
velocity. Here are the two calculations:

x(Dx) = x(t) (J(x(t+ À) - x(t))/Ât )
= (J/Â)(x(t+ Â$)(x(t+ ^t) - x(t))

: (J/Ât)(x(t+ At'f -x(t+ At)x(t)).
(Dx)x = (J(x(t+ Ât) - x(t)/At )x(t)

= (J/At)(x(t+ Ât)x(t) - x(t)2).

We measure the difference between these two results by taking a commutator

[A,B] = AB - BA and we get the following formula where we write Âx = x(t+ Àt) - x(t).

lx,(Dx)l = x(Dx) - (Dx)x = (J/AQ(x(t+ Ât) - x(t))2 :1 (nx)2741

This final result is worttr marking:

lx,@x)l : J (^x)2/At.

From this result we see that the commutator of x and Dx will be constant if

(Aù265=Kisaconstant.

For a given time-step, this means that (Âx)2 = K Ât
so that Âx = * l(K Ât ) or - l(K Ât ).
ln other words,
x(t + At ) = x(t) + {(K Ât ) or x(t) - {(K ^t ).
This is a Brownian process with diffirsion constant equal to IC

Digression on Browian Processes and the Diffusion Equation
Assume, for the purpose of discussion that in the above process, at each next time, it

is equally likely to have * or - in the formulas
x(t + Ât ) = x(t) + {çr At I or x(t) - {(X lt ).
Let P(x,t) denote the probability of the particle being at the location x at time t in this
process. Then we have

P(x, t + Àt ) = (1/2)@(x - Àx) + P(x + Âx)).

Hence
(P(x, t + Ât ) - P(x,t)/Ât)

: (tùzl2/lt)(P(x - Âx) - 2P(x,t) + P(x + Ax,t)X^x)2)
= gçr2)@(x - ̂ x) - 2P(x,t) + P(x + Ax,t)y(Àx)2).

Thus we see that P(x,t) satisfies the a discretization of the diffrrsion equation

ôPtôt: (Kl2)ô2 Pnxz.

Compare the diffirsion equation with the Schrodinger equation iwith zero potential
shown below.

rhôtt | ôt = -@? t 2m)ô2y nx2
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In the Schrodinger equation we see that we can rewrite it in the form

ô\r | ôt = i(hl2m) ôzty | ôx2
Thus, if we were to make a literal comparison with the difusion equation we would take
K = i(h/m) and we would identifu

@ù2tN: i(h/m).
Whence

tra = ((l+i)/r/z) {t(vm)atl
and the corresponding Brownian process is

x ( t + Â t ) = x * A x o r x - Â x .
The process is a step-process along a diagonal line in the complex plane. We are
looking at a Brownian process with complex values! What can this possibly mean? Note
that if we take this point of view, then x is a complex variable and the partial derivative
with respect to x is taken with respect to this complex variable. In this view of a
complexified version of the Schrodinger equation, the solutions for Âx as above are real
probabilities.
We shall have to move the x variation to real x to get the usual Schrodinger equation,
and this will result in complex valued wave functions in its solutions.

ln our context, the complex numbers are themselves oscillating and synchronized

processes. We have i : [1,-1]11 where I is a shifter satisffing the rules of the last
section, and [1r-11 is a view of the iterant that oscillates between plus and minus one.
Thus we are now observing that solutions to the Schrodinger equation can be construed
as Brownian paths in a more complicated discrete space that is populated by both
probabilistic and synchronized oscillations. This demands further discussion, which we
now undertake.

The first comment that needs to be made is that since in the iterant context Ax is an
oscillatory quantity it does make sense to calculate the partial derivatives using the
limits as Ax and Ât approach zero, but this means that the interpretation of the
Schrodinger equation as a diffrrsion equation and the wave function as a probability is
dependent on this generalization of the derivative. If we take Ax to be real, then we will
get complex solutions to Schrodinger's equation. In fact we can write
r+r(x, t + Ât) : (l-i)ry(x, t ) + (i/2)ry(x - Âx) + (i/2)ty(x + Âx)
and then we will have, in the limit,

ôt1lôt: i(N2m)ô2yftx2

if we take (A92161- : (h/m).It is interesting to compare these two choices. In one case
we took

(A92161: i(h/m)
and obtained a Brownian process with imaginary stçs. In the other case we took

êx)2nt :6/m)
and obtained a real valued process with imaginary probability weights. These are
complementary points of view about the same structure.
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With (^x)2/Àt = (h/m), V(x, t ) is no longer the classical probability for a simple
Brownian process. We can imagine that the coefficients (1-i) and (ilz') n the expansion

of ry(x, t + ^t) are somehow analogous to probability weights, and that these weights
would correspond to the generalized Brownian process where the real-valued particle

can move left or right by Âx or just stây put.
Note that we have (1-i) + (ilz) + (i121= 1, signalling a direct analogy with probability

where the probability values are imaginary. But this must be explored in the iterant

epistemology! Note that l-i : [lrU -[1,-1]q and so at any given time represents either

[1,U - U,-11= [0,2] or [,1] - [-1,11= [2,01.
It is very peculiar to try to conceptualize this in terms of probability or amplitudes.
Yet we know that in the standard interpretations of quantum mechanics one derives
probability from the products of complex numbers and their conjugates.
To this end it is worth seeing how the product of a+bi and a-bi works out:

(a + bi)(a-bi) : Lî + bia + a(-bi) + (bix-bi) : aa + abi - abi - bbii
: aa - bb(-l): aa * bb.

It is really the rotational nature of exp(it) that comes in and makes this work.

exp(it)exp(-it) = exp(it - it) = eap(Q) = 1

The structure is in the exponent. The additive combinatory properties of the complex
numbers are all under the wing of the rotation group.
A fundamental symmetry is at work, and that symmetry is a property of the
synchronization of the periodicities of underlying process. The fundamental iterant
process of i disappears in the multiplication of a complex number by its conjugate. In its
place is a pattern ofapparent acuality. It is actual just to the extent that one regards i as
only possibility. On making a reality of i itself we have removed the boundary between
mathematics and the reality that uitu is supposed to describe. There is no such boundary.

12. EPILOGUE AI\[D SIMPLICITY

Finally, we arrive at the simplest place. Time and the square root of minus one are
inseparable in the temporal nexus. The square root of minus one is a symbol and
algebraic operator for the simplest oscillatory process.
As a symbolic form, i is an eigenform satisffing the equation

i : -lli.

One does not have an increcemt of time all alone as in classical Ât. One has iÂt, a
combination of an interval and the elemental dynamic that is time. With this

understanding, v/e can rehrn to the commutator for a discrete process and use iÀt for
the temporal incerment.

We found that discrete observation led to the commutator equation

[x,Dxl : J (Lùz/2rt
which we will simpliff to

lq, p/ml = (Lx)2lht
taking q for the position x and p/m for velocity, the time derivative of position.
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Understanding that Ât should be replaced by iÂt, and that, by comparison with the
diffrrsion equation,

(Ax)2/At = h/In:
we have

lq, p/ml : (Ax)lzfiÂt = -i h/m,
whence

[P'ql = ih'
and we have arrived at Heisenberg's fundamental relatiionship between position and
momentum. This mode of arrival is predicated on the recognition that only i ^t
represents a true interval of time.
ln the notion of time there is an inherent clock or an inherent shift of phase that is
making a sychrony in our ability to observe, a precise dynamic beneath the apparent
dynamic of the observed process. Once this substitution is made, once the correct
imaginary value is placed in the temporal circuit, the patterns of quantum mechanics
qppear.

The problem that we have examined in this paper is the problem to understand the
nature of quantum mechanics. In fact, we hope that the problem is seen to disappear the
more lve enter into the present viewpoint. A viewpoint is only on the periphery. The
iterant from which the viewpoint emerges is in a superposition of indistinguishables,
and can only be approached by varying the viewpoint until one is released from the
particularities that a point of view contains.

It is not just the eigenvalues of Hermitian operators that are the structures of the
obsenration, but rather a multiplicity of eigenforms that populate mathematics at all
levels. These forms are the indicators of process. Mathematics comes alive as an
interrelated orchestration of processes. It is these processes that become the exemplary
operators and elements of the mathematics that are put together to form the physical
theory. We hope that the reader will be unable, ever again, to look at Schrodinger's
equation or Heisenberg's commutator the same way, after reading this argument.
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