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Abstract

I simulated a large Hopfield neural net which had the signum instead of sigmoid activation
function so that it could be naturally physically implemented, e.g. in spin systems. It
has been used in computational simulations in order to analyze the following capabilities
of processing very large and complex data sets (e.g., protein-structure data-bases): 1.
completion of patterns; 2. recognition of patterns; 3. prediction of unknown parameters;
4. anticipation. While for tasks 1-3 we use a memory-base of previously-learned examples
using ”associations”, task 4 is equivalent to case 3 re-interpreted for temporal (or time-
series) prediction, i.e. prediction of unknown future parameter-values (instead of unknown
present ones). For tasks 3 and 4 it is concluded that a generalization of the model used
in simulation, like phase-Hebb processing or quantum-like information dynamics, is more
promising. Data-structure conditions for success of tasks 1-4 are discussed in a complex
?real-life” example.
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1 Introduction

Computational performance of the following tasks will be discussed and simulated us-
ing an extraordinary-large physically-implementable Hopfield-like associative neural net:
e 1. completion of (relatively very big) patterns: the net completes a set or vector of pa-
rameters — it recalls them from a memory-base of previously-learned examples using ” as-
sociations”, i.e. activated correlations of the current partial input with the automatically-
selected stored vector;

e 2. recognition of (very big) patterns: the net recognizes a pattern, indicated by a partial
input, either as one of those previously-stored, or as one belonging to a class of (stored)
patterns (that’s an extension of case 1 by activation of contextual information and by
corresponding re-arrangement of the output-vector / attractor);

e 3. prediction of (very many) unknown parameters: the net predicts unknown parameters
based on known ones and on a memory-base of previously-learned examples which were
similar to the current new pattern (an extrapolation of case 1, triggered by new-pattern’s
partial input);

e 4. anticipation: time-series prediction by artificial neural nets is a special case of pre-
diction (interpolation, as in case 1 and 2, in a broad sense, and extrapolation, as in case
3, in a narrow sense) using the same mechanism of attractor-reconstruction and attrac-
tor re-shaping based on collective system dynamics, but with temporal interpretation of
parameters which are encoded in the states of "neurons”.
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Anticipation is realized by ”a system for which the present behavior is based on past
and/or present events, but also on future events built from the past, present and future
events” (Dubois, 2000a, p. 29). Thus, in an epistemic way, an anticipatory system evolves
‘as if it knows its future’ (ibid., p. 5, quotes as in orig.).

As it will be shown in section 7, a Hopfield neural net that reconstructs a stored
pattern from memory is an anticipatory system. The net’s final state (pattern-attractor)
is equal to the selected stored pattern, because the net’s evolution towards the output
pattern has been guided by the memory. The anticipation abilities could be better, i.e.
(more) correct or reliable, or worse, i.e. producing an error, as the time flow will finally
reveal. (Only precognition would be anticipation with certainty.)

In the case of net’s pattern recognition from memory (task 2), anticipation is maximal
and perfect (i.e., 100 % correct) if certain conditions, which will be discussed, are satisfied.
In the case of predicting or anticipating values of some variables in new circumstances
not faced before, i.e. not learned (tasks 3, 4), the prediction or anticipation about future
state at time ¢ 4+ 1 might turn out to be more or less wrong when time goes on to ¢ + 1.
Results of testing such highly non-trivial cases will be presented. Since anticipation is a
special case of prediction, i.e. prediction of future states, the presented prediction-method
and computational tests are usable for anticipation also.

We will finally mention how anticipation capabilities could be enhanced by implement-
ing such an algorithm, which is a "natural” (i.e., easily physically-implementable) one, in
quantum systems.

2 Operation of the Basic Associative Neural Net

If all the neurons are bi-directionally connected with all the others, a so-called sym-
metric, self-consistent network is established — the Hopfield net (Amit, 1989; Palmer et
al., 1991). It belongs to the so-called associative neural nets. Among numerous models
of neural nets (Haykin, 1994; Peretto, 1992), it is the most similar to physical complex
systems and processes — spin or magnetic systems (Dotsenko, 1994; Mezard et al., 1987),
and even (with some differences discussed in: Perus, 1998, 2000) to quantum systems and
holography.

A state, or configuration, respectively, of a neural net is described by the vector ¢ =
(g1, @2, ---, gn)- The state of an individual formal neuron (or spin, respectively) i is given by
gi- N is the number of artificial neurons. A neuron can be “active” (¢; = 1) or “inactive”
(¢: = —1, or in another notation: ¢; = 0). The state of each neuron is determined as
the sign (+1, —1) of the sum of contributions from all the other neurons, weighted by the
strengths of synaptic connections Jj;: ¢; = sgn(Zf’:l Jij g;). (The function sgn gives the
sign of its argument.)

Patterns 7* = (v%, %, ...,v%) are those neuronal configurations which have a special
informational significance. Patterns can be parallel-distributively encoded in the system
of neurons or stored in the system of connections (weights) which represent the memory.

The strengths of connections J;; are determined by the so-called Hebb learning rule
which comes from neurophysiology. Experiments show that a connection between two
neurons with correlated activity is strengthened, but a connection between two neurons
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with un-correlated activity is weakened. Strengthening (weakening) of connections bases
on increasing (decreasing) of the transmission-rate of a synapse. From this observation,
the Hebb formula has been constructed: The connection-strength J;; is proportional to
the auto-correlations between equilibrium-configurations (stored patterns), i.e. (to be
more specific) to the sum of correlation-rates between the i** neuron and the j* neuron
in the framework of individual patterns:

1
i =5 2 vy 1)
p is the number of patterns which are simultaneously stored in the same network; & is
the pattern-index. v¥ describes the role of the i** neuron in the framework of (i.e., while
co-realizing) the k** pattern. Construction of matrix J made of all J;;, which could be
gradual or immediate, is equivalent to memory-storage, or the so-called ”learning” process,
respectively.

The Hopfield model with the Hebb connection-matriz produces patterns which are equiv-
alent to attractors (Amit, 1989; Geszti, 1990; Perus & E¢imovi¢, 1998). An attractor is
a fixed-point of the net’s collective dynamics. This is a state where the network stays
"for-ever” after it has once occupied it. Each attractor corresponds to a minimum of net’s
free energy ! (from the point of view of dynamics of the network in the case of physical
implementation), or to a minimum of the so-called net’s energy function (from the point
of view of a simulation / model, used for information processing) (Amit, 1989; Geszti,
1990). Attractors are thus configurations which are especially dominant, stable, or usually
stationary and act as eigen-states, respectively.

A pattern—attractor is a stable configuration in an energy-minimum, because the Hebb
rule determines the connections so that the neurons in connection are, taking into ac-
count their ”activity-sign” (+ or —), in optimal agreement (correlated). Between two
active neurons or between two inactive neurons, there is a positive connection (meaning
that the information they encode is in agreement); but a currently active neuron and a
currently inactive neuron have a negative connection (i.e., information they encode is not
in agreement).

The Hamiltonian of the Hopfield net with specific and symmetric (ie., J;; = Jj)
connections is like the usual spin-system or spin-glass Hamiltonian (Mezard et al., 1987):

1NN N
H = 3 Z Z Jijeiq; — Z Big 2
=1j=1 =1
where for connections J;; the Hebb rule (eq. 1) is inserted. The first term incorporates
local interactions. The second term describes the influence of an additional global field
B onto a neuron (spin) 7 — environmental influence, for example. To this term, we can
encode additional requirements and constraints during simulations.
Because the Hamiltonian (eq. 2) with the Hebb connections (eq. 1) incorporates
information-patterns as attractors into the net-process, they regulate the net’s dynamics
1 The free energy F is defined by: F = E—TS. E is the (internal, ”thermodynamic”) energy, T is the

”temperature” (”stochastic” neuronal activity), and S is the entropy. Minimization of the free energy is
a ”"compromise” between minimization of energy and maximization of entropy.
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so that the energy of the net keeps decreasing (proof in: Perus & E¢imovic, 1998) and is
minimal when the net reconstructs the patterns—attractors.

3 Recall from Memory and Pattern Recognition
3.1 ”Holographic-like” Recall or Reconstruction Process

Convergence of the vector describing the net-state (§) to the nearest attractor, i.e.
those which is the most similar to the input-based pattern #*, corresponds to recognition
of that pattern. Namely, this process includes intensive coordination between neurons,
and with this, indirectly, also between the parallel-distributed patterns which extend vir-
tually over their constitutive neurons (Perus & E¢imovi¢, 1998). The network recognizes
a pattern, usually input from environment, when the neurons find an optimal compro-
mise. Neurons with mutual interactions and comparisons optimally re-distribute the
information-traces which they encode. In the system of neurons, a superposition of the
external (new input) pattern and the internal patterns (from their traces which are stored
in the system of connections), is formed. The new pattern is in such a way physically and
informationally connected with the context and is so recognized by the net.

This subtle process is executed by a computer using the following simple equation for
the reconstruction or recall of the pattern from memory:

N
q;mtput = Z Jij q;npu! or qoutput =J qq'nput (3)
j=1

The Hebb memory matrix J with elements J;; acts as a projector into the system’s sub-
spaces corresponding to individual patterns 7* stored in those connections.

We worked with binary (i.e., bipolar) vectors: their components are only 1 or —1
(which is equivalent to 0 in another interpretation). To get the output bipolar as well, we
had to use, instead of eq. 3, the following update-rule:

N . .
@ = sgn (Z Ty q) or Pt = (I8 (3)
J=1

where the function sgn gives 1 when its argument is positive, else it gives —1. In general
(with integer or real input and output values g;), merely a suitable normalization is needed
instead of sgn — if one wants to preserve linearity to enable natural implementation.

If a part of a stored vector (a part of 7, for example) is inserted as §™”** (so-called

“memory key”), the network reconstructs the whole bipolar vector 7! on the output. For
example: ¢! =(1,0,1,1,0,1,1,0,1,1),
¢ = (1,0,1,1,0,0,0,0,0,0).
The first five “neurons” or “spins” were put, as an example, to the states which are equal
to corresponding states in the chosen stored vector #'. The other ”zeros” in §™”** are
signifying the lack of information. Assume that some conditions are fulfilled which will be
discussed soon. After the recall-operation, i.e. ¢ = sgn(Jg*"P**), the reconstructed
whole #' is obtained at the output: @*“** = (1,0,1,1,0,1,1,0,1,1) = 7.
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From the “key” and J, where ¢ is implicitly encoded, those (the same) " is re-
constructed. Thus, when we can reconstruct a pattern #* from memory J, it holds:
# = J#; or in our concrete example with bipolar vectors: 7* = sgn(J&*). This is the
equation which shows that all the patterns 7* are eigen-vectors of the matrix J, where the
eigen-value is, in the limit case of the recall of a chosen #*, equal to 1 (Amari & Maginu,
1988). This is the result of competition between patterns, described by eigen-vectors o*,
their relevance being specified by the corresponding eigen-values A\¥. The pattern with
the biggest initial eigen-value (which is specified by the similarity with the "key” given
in the input) pervades — this is ¥ in our case. ”Taking power” by #! is accompanied
by increase of A! toward 1; other M,k # 1, decrease toward 0 (Haken, 1991; Perus &
E¢imovi¢, 1998).

For the reconstruction of #*, the following condition, beside the similarity of the “key”
with one of the chosen stored pattern ('), must be satisfied: Pattern ¢ has to be or-
thogonal to other stored patterns ¥*,k # 1. Why? We insert an input ¢’ (the prime [’]
denotes similarity of the input with the current net-state ¢) and we calculate for each i:

_ N N 1 .» 1 (X N N
0 = 3 gy = 35 2ok = | (L vighol + (L vighof + -+ (X v )o!
k=1 =1 =1 =1

j=1 j=1
(4).
If &, k # 1, are orthogonal to 4, then all the terms from the second to the last are equal
to 0. The first term, because of similarity of the “key” and @, gives 1 in the bracket
(vectors were normalized in the beginning) and so " is the final, output state.

3.2 Conditions for Undisturbed Recall and for Prediction

This was a trivial case — reconstruction of a stored pattern. Such a recall is not
sufficient for prediction or anticipation. For prediction or anticipation, a “fuzzy” version of
the same process is needed. The difference is merely in a different structure of correlations
between the used “key” and the previously-learned / stored patterns, and in the "rate of
orthogonality” (cf., Kainen & Kurkovd, 1993; Kainen, 1992) between the stored patterns.
The memory recall of eq. 3 will not give any "non-sense” output if the stored patterns are
almost orthogonal between each other (i.e., the scalar products should be close to 0, but
not too close). Then, an optimal prediction or anticipation in new circumstances could
be obtained — an interpolation or even some limited extrapolation.

The decomposition of eq. 4 can, in such a ”fuzzy” case, give the following result: The
first term gives a contribution which is close to ¥, because the product in the bracket
is close to 1. The other terms together contribute something to be described as a small
"noise” — all their products in brackets are numbers that are just a bit bigger than 0. So,
all the terms together produce an output-vecivr which has optimally taken into account
the "key” as well as all the stored patterns, but mainly that one which is the most similar
to the newly-produced (anticipated) pattern.

The recall is very simple, seemingly at least, but it is a very efficient process with
implicit selection of relevant information. Such a procedure is very similar to hologra-
phy — specifically, to reconstruction of a stored pattern from a hologram. A hologram
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(similar to J) is produced by an interference of so-called object (direct) wave and so-
called reference (indirect) wave. At reconstruction, on the other hand, the hologram is
illuminated-through with a “partial” reference-wave — so an image, corresponding to the
“whole” reference-wave, is produced (Hariharan, 1996). Therefore, such a memory recall
will be called ”direct or holographic” recall to distinguish it from a gradual Monte Carlo
adaptation.

4 Experience with Classification and Memory-Storage

For a Hopfield net, it is convenient that the learned patterns constitute a suitable
number of classes, or attractors, respectively. The ratio of attractors and neurons should
be somewhat less than 0.14 (this is my computational experience which confirms earlier
theories and simulations described, for example, in: Amit, 1989; cf., Sompolinsky et al.,
1985). Above this limit, ”catastrophic melting-together” of patterns occurs, and they
"average out”. It is better if numbers of elements per class are approximately equal. The
patterns which constitute an attractor should be more similar to each other than the
patterns which belong to different attractors. My rough estimate is that data-similarity
(measured, for instance, as a scalar product of binary vectors) inside a class should be, if
possible, above 0.8-0.9; between the classes, on the other hand, should be below 0.1-0.2
(so, at least, my ”protein case”, to be presented later, suggests). In mathematical terms:
patterns which belong to different classes-attractors should be such that their binary
codes are approrimately-orthogonal bipolar vectors (cf., Kainen, 1992). On the other
hand, patterns which belong to the same class—attractor should be such that they are
coded with similar binary (bipolar) vectors. If these conditions are not satisfied, mutual
disturbances between patterns cause worse recall, and prediction or anticipation is not
possible at all.

If the stored patterns do not form well-distinguishable classes, then there are no strong-
enough attractors. The network in the worst of such cases ”averages out” all the possible
pattern-configurations — this results in a "mean pattern”. In the case of inconvenient
data-structure and exceeding of the memory capacity, there are, beside the real attractors
("good memory patterns”) which are usually more global, also many more local un-
real attractors (”spurious attractors” or ”spin-glass states”). These are "bad, unclear,
transitory memory patterns”. This is because the rate of correlation is so high (or: they
are "not enough orthogonal”) that they disturb each other ("interfere”) and so “the noise
spoils the signal”.

My simulations, which will be presented in the next sections, led to the following
observations. The process of completion, classification and recognition of stored patterns
and, on the other side, the process of prediction or anticipation are not coherent, but
rather ezclusive and opposing. These two sorts of processes arise from different tendencies
of attractor dynamics, and usually a ”subtle, compromising interplay” between these
tendencies is needed for optimal performance. As already emphasized, a class or its
prototype is formed by an attractor which is stronger if the patterns inside a class are
more correlated, and if representatives of different classes are less correlated (it’s the best
if they are orthogonal). If attractors are not strong enough or if they ”interfere” too
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much, the net gives an output that is an ”average” (”compromise”) over the ”interfering”
patterns. If the attractors are optimally strong, but not perfectly orthogonal, the net can
classify input-data. If the net preserves some optimal ”interference”, it has associative
capabilities necessary for prediction or anticipation based on learned examples. In an
extreme case when there are orthogonal classes, but no interference, there are no abilities
for prediction or anticipation, but there is a hundred-percent capability of reconstruction
of a stored pattern from a partial "key” (i.e., pattern completion). An estimate for the rate
of an optimal ”creativity-stimulating freedom of interference-like interactions” (namely,
prediction demands ”some creativity” of the network — highly non-trivial!) depends on
the actual data-structure. This estimate is chosen intuitively, after consideration of the
correlation-structure of data.

If there are no correlations, the network cannot learn in Hebbian way so that it could
even optimally predict or anticipate in new circumstances. It could merely rigidly repro-
duce a limited number of stored patterns. Note that these recipes are a result of many
years of own computer simulation experience with various concrete data. In spite of their
importance, it is often very hard to express these recipes mathematically in detail, be-
cause of complexity and multiplicity of the process. Articulated intuition helps most.

5 Prediction with "Holographic” Recall is much Faster than with
Monte Carlo Adaptation

Modeling with Hopfield-(like) neural nets has two phases. In the phase of ”learning”,
the patterns which have to be ”learned” are encoded ("memorized”) so that their joint
Hebb correlation matrix is ”calculated”. This matrix describes / represents the ”parallel-
distributed” memory. It henceforth remains fixed and is used in the second phase — recall
from memory, or prediction (anticipation) based on memory and the new ”prediction key”.
For the recall phase, where the ”learned cases” are applied in new circumstances, there are
two possibilities: the direct recall, which is similar to holographic pattern-reconstruction,
and the Monte Carlo adaptation (the net adapts to the new "key” as much as the Hebbian
weights allow it).

When the Monte Carlo procedure is used for adaptation / learning, random changes
of the ”spin”-vector are made in order to achieve optimal agreement among encoded data.
For this purpose, the cost-function called ”energy” (proportional to disagreement) is tried
to be maximally reduced as prescribed by Hamiltonian: E = —% Zfil Z’-vzl Jij 4 qj -
It implicitly incorporates Hebb’s expression (eq. 1) for weights J;; where correlations
between all learned patterns are encoded. If eq. 1 is inserted into the above Hamiltonian,
the latter becomes: E = —;5 TN, $¥ (¥7_, vf v¥) ¢; ¢;. In Monte Carlo procedure
we accept all those random changes of the elements of ¢ which decrease the "energy” E or
increase it a little bit only — up to a certain limit (the Metropolis algorithm — see reprint
in: Mezard et al., 1987).

As already described in section 3.2, direct recall gives optimal output automatically
and immediately. Although the "secret” is in both cases in the well-known Hebb rule, which
encodes patterns into the system of weights so that these patterns become the attractors
of net-dynamics, it turned out in my simulations that Monte Carlo adaptation produces
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virtually the same outputs, but needs very much more time than the ”holography-like”
direct recall.

Direct recall (multiplication of the Hebb memory matrix with a new input vector —
"key”) gives equally good results (in case of my concrete data and computer-power) as
Monte Carlo in few seconds; Monte Carlo adaptation, on the other hand, lasts in the same
case hours or even days. With direct recall it is possible to automatically avoid many
problems of Monte Carlo adaptation: waste of time, getting trapped into intermediary
and transitory local minima, need of artificial determination of an optimal “temperature”,
the number of Monte Carlo steps, etc.

[ TABLE la: "Learning” and recall scheme for task 1 or 2 I
[ 1D and 2D structure 3D structure |
”learning” | learned for all 94 ”proteins” learned for all 94 ”proteins”

recall given for test "protein” (key) | reconstructed by net from memory
TABLE 1b: ”Learning” and recall scheme for task 3 (or 4)

[ 1D and 2D structure 3D structure
[ "learning” learned for 93 ”proteins” learned for 93 ”proteins”
| recall given for test "protein” (key) | unknown to net, predicted by net

6 Results of Reconstruction (from Partial Data) and Prediction:
a Complex Case Study

The reconstruction of a previously-memorized data-vector (pattern) from partial new
input ("key”), and prediction based on the memory and the ”key”, are presented here in
the case of encoded protein structures, i.e. from approximated (simplified) and encoded
(binarized) quantitative data on proteins. 2 (See Table 1.) However, the purpose of
this presentation is not to demonstrate a good model for prediction of the protein 3-
dimensional structure! The aim is to present the processing capabilities of a physically-
implementable, i.e. spin-glass-like (Mezard et al., 1987; Fisher & Hertz, 1991), associative
neural net (Appendiz A) and potentials for anticipation. (Numerous biochemical and
modeling details, available in Perus, 1999, are not important for our purpose.)

Table 2 presents evaluations of computational reconstructions of individual encoded
protein patterns, named with standard codes in the left-side box ”proteins” (task 1, or 2,
respectively).

2Multi-level feed-forward neural nets and combined evolutionary (competing) neural nets (Rost &
Sander, 1992, 1994) have the best prediction success for secondary structure and thus are better than
all biochemical (Cantor et al., 1980, etc.) and artificial-intelligence methods. All attempts, using various
methods, to predict tertiary structure have up to now been more or less unsuccessful. The previously-
mentioned neural nets have merely a few outputs and are thus less suitable for prediction of many coor-
dinates of the 3-dimensional (i.e., tertiary) structure. Therefore, attempts of modeling tertiary structure
started with Hopfield-based nets (Bryngelson & Wolynes, 1987; Friedrichs & Wolynes, 1989; Goldstein et
al., 1992a,b), in spite of frequent very serious obstacles such as astronomic complexity of protein structure
and inconvenient concrete data-structure (classes, correlations between classes, correlations inside a class,
etc.) (cf., Stein, 1992; Frauenfelder & Wolynes, 1994).




[ TABLE 2: Reconstruction of a memorized pattern 1
"protein” | K | H | energy | RMS [ category | commentary ||
bgd 37| 35 -583 | 10.66 E short ”protein”
him 30 | 40 -285 | 11.74 E short ”protein”

gdk 29 | 29 | -3334 | 11.67 G -
1h4 29 | 32| -3334 | 12.83 G -
emy 12 | 16 | -6896 | 8.54 Y -
mbc 35 (33| -7609 | 9.75 Y -
mlf 0| 0| -9785 0 R -
mll 0| 0| -9778 0 R -
mlq 1| 1| -9760 | 2.59 R -
moa 0| 0| -9778 0 R -
mtj 0| 0| -9760 0 R -
yma 14 | 15| -7060 | 7.04 Y -
spe 0 0| -7659 0 Y SP = min. 0.9
vxd 2 3| -T31| 232 Y -
2mgb 0| 0] -9747 0 R -
2mgh 0| 0| -9717 0 R -
2spn 1 1| -9766 | 2.59 R -
mlh 0| 0] -9785 0 R -
bmn 37 | 28 -347 | 5.81 E short ”protein”
ilk 32|32 =772 | 7.90 E short ”protein”

First, all known data on all mentioned proteins were used in ”learning” (i.e., insertion
into the Hebb memory-matrix). After learning, each protein-pattern individually was
tried to be reconstructed based on the partial "recall-key” (20 % of totally 593 "neu-
rons”). Reconstruction means the global graphic presentation of a decoded 3-dimensional
”protein”, made from a "key” of aminoacid sequences and of data on local meso-structure
such as a-helices and (3-sheets.

Table 8 shows evaluations of responses which the neural net makes after learning of all
protein-patterns ercept the one given in the left-side box, with the "recall-key” incorpo-
rating partial data on this given "protein” (task 8, or 4 in the case of temporal interpre-
tation of variables). The other, unknown data on this ”protein” were then interpolated
("predicted”) by my Hopfield-like net. The second experiment thus studied responses in
somewhat new circumstances from those learned. A response was based on a new key
interacting with memories of other ”proteins”. The network automatically selected the
most relevant (similar) examples from memory to produce an optimal response-pattern.

The difference is also that in the case of reconstruction we can compare the net’s
result with the (tertiary) structure that we know about, but in the case of prediction or
anticipation we cannot, since the result is ”guessed” by the net.

Since the correlation structure of data is very important for a network with Hebb-type
memory, let us see the rates of structural similarity, measured with the “INSIGHT “-
program in RMS, between some arbitrary proteins from the DSSP-base. Classes are
denoted as R, Y and G (see Appendiz B):

1. RMS-differences between pairs of ”learned proteins” from two different classes:
RMS (gdl-hrm: G-Y) = 5.10 A / RMS (gd1-mlf: G-R) = 4.90 A / RMS (mlf-hrm: R-Y) = 3.89 A




[

TABLE 3: New response based on similar memories

|

"protein” | K [ H [ energy

RMS [ category

commentary

bgd 37|35 -354 | 10.66 E short ”protein”
aep 34 | 41 -818 | 12.95 E short ”protein”
him 30 | 40 -60 | 11.75 E short ”protein”
gdi 29 | 29 | -3117 | 11.66 G -

gdj 28 | 29 | -3067 | 10.72 G -

gdk 29 | 29 | -3116 | 11.67 G -

gdl 31|26 | -3142 | 10.77 G -

gdm 31|30 | -3154 | 10.77 G -

1h4 29 [ 32 | -3118 | 12.83 G -
2gdm 31|30 -3154 | 10.77 G into R-category
21h3 30 | 33| -3116 | 12.45 G -
2mgg 0| 0| -9519 0 R -

bve 3| 5| -7526 | 4.57 Y -

emy 12 | 16 | -6884 | 8.54 Y -

fcs 0| 0| -9390 0 R -

fip 38 | 52 -852 | 12.42 E short ”protein”
hrm 43 | 40 | -6898 | 15.13 Y into R-category
hsy 12 | 14 | -7048 | 7.33 Y -

lhs 43 | 46 | -5611 | 13.31 Y -

lht 2| 2| -5764 | 1.87 Y -

mbc 35 (33| -7414 | 9.75 Y -

mbd 39 | 42 | -7433 | 14.84 Y -

mbo 40 | 41 | -7434 | 14.84 Y -

mbs 37|34 | -6324| 9.62 Y into R-category
mey 0| 0 -9428 0 R -

mgn 0| 0| -9510 0 R -

mlif 0| 0| -9579 0 R -

mlj 1] 3| -9571 0 R -

mlk 0| 0] -9579 0 R -

mll 0| 0| -9572 0 R -

mim 1| 1| -9557 | 2.59 R -

min 0| 0| -9579 0 R -

mlq 1 1| -9550 | 2.59 R -

mir 0] 0 -9552 0 R -

mls 1 1] -9759 | 2.59 R -

mlu 35| 32| -9278 | 10.37 R SP = max. 0.8
moa 0] 0| -9572 0 R -

mob 34 |34 -9272 | 10.13 R SP = max. 0.8
moc 0| 0| -9523 0 R -

mod 0| 0| -9523 0 R -

moh 41 | 55 | -1481 | 14.86 E -

mtj 0| 0| -9552 0 R -

mtk 0| 0| -9579 0 R -

mym 0| 0| -9559 0 R -

continuation of the Table 3 on the next page
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"protein” | K | H | energy | RMS | category | commentary
spe 0| O -7447 0 Y SP = min. 0.9
swn 1 2 -7526 | 2.32 Y SP = min. 0.9
tes 0| 0| -9272 0 R -
vxc 1 2| -7526 | 2.32 Y SP = min. 0.9
vxe 37 | 41 | -7343 | 13.61 Y -
vxf 39 | 42 | -7433 | 14.84 Y -
vXg 39 [ 42 | -7433 | 14.84 Y -
vxh 39 [ 40 | -7380 | 13.74 Y -
yma 14 15| -6849 | 7.04 Y -
ymb 43 | 46 | -7009 | 12.00 Y -
ymb 43 | 39 | -6858 | 13.31 Y -
2hif 35| 34 -382 | 10.96 E short ”protein”

| 2mb5 40 | 42 | -7367 | 15.61 Y -
2mga 33 | 35 | -9283 | 10.46 R SP = max. 0.8
2mgb 0| 0| -9540 0 R -
2mgc 1| 1| -9489 | 2.59 R -
2mgd 0| 0| -9490 0 R -
2mge 0] 0| -9490 0 R -
2mgf 0 0| -9523 0 R -
2mgh 0| 0| -9510 0 R -
2mgi 0] 0| -9523 0 R -
2mgk 0] 0] -9579 0 R -
2mgl 0 0| -9579 0 R -
2mgm 1| 1] -9570 | 2.59 R -
2mya 2| 3| -7528 | 2.32 Y SP = min. 0.3
2myc 39 | 42 | -7433 | 14.84 Y -
2spl 0| 0] -9579 0 R -
2spm 1| 1| -9557 | 2.59 R -
2spn 1| 1] -9557 | 2.59 R -
2spo 1] 2| -9559 | 233 R -
bvd 6| 7| -7487 | 2.17 Y SP = min. 0.3
ilk 32| 32 -544 | 7.90 E short ”protein”
irc 0| 0| -7386 0 Y SP = min. 0.3
bmn 37 | 28 -104 | 5.81 E short ”protein”
mbw 6| 8| -9473 | 3.06 R -
mlg 0| 0| -9577 0 R -
mlh 0| 0] -9577 0 R -
mlo 1| 1] -9555 | 2.59 R -
mti 5 71 -9502 | 217 R -
vxa 1| 3| -7219 | 0.003 Y SP = min. 0.3
vxb 11 | 13| -7125 | 4.32 Y SP = min. 0.3
vxd 2| 3| -7526 | 2.32 Y SP = min. 0.3
2cmm 2 4 -7524 | 3.37 Y SP = min. 0.3
2mgj 0| 0] -9508 0 R -
2mm1 37 | 41 -6865 | 14.19 Y -
2myb 38 [ 42 | -7397 | 14.74 Y -
2myd 1| 2] -7526 | 2.32 Y SP = min. 0.3
2mye 1] 2| -7526 | 232 N SP = min. 0.3
4mbn 39 [ 40 | -7380 | 13.74 Y -
5mbn 2 3| -7528 | 2.32 Y SP = min. 0.3
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2. RMS between pairs of ”learned proteins” from the same class:

2a. class G: RMS (gd1-gdm) = 0.43 A

2b. class Y: RMS (hrm-yma) = 0.69 A / RMS (hrm-vxd) = 0.96 A / RMS (vxd-yma) = 0.74 A

2c. class R: RMS (m1f-2mgh) = 0.39 A / RMS (mlf-mlh) = 0.10 A / RMS (mlh-2mgh) = 0.41 A
Proteins in our data-base are thus quite similar: mostly inside the same class, but they
are less similar if belonging to different classes.

For our purposes, it is sufficient to note low values of the three measures of recognition-
error: K (class error), H (number of wrong coding ”neurons”), RMS (coordinate distance
or discrepancy), and much negative values of "energy”. (For detailed descriptions of
these ”distance measures” and details on the test-simulation in the case of ”proteins” see
Appendiz B.) ”Energy” refers to the Hopfield energy-function which has a more negative
value if there is less reconstruction-failure. Several protein categories were found in the
Brookhaven protein data-bank (cf., Murzin et al., 1995; Kabsch & Sander, 1983). The
net’s attractors were shown to correspond to categories with codes G, Y, R. E denotes all
extra (usually short) protein-patterns not belonging to any category / attractor.

The prototype R was almost orthogonal (i.e., not similar) to other prototypes, there-
fore reconstruction of a R-type "protein” (its 3-dimensional structure) from partial input-
data (2-dim. and 1-dim. structure, i.e. aminoacid sequences) was almost 100 % perfect
(H, K, RMS zero or very small). Almost 60 % of all the ”proteins” used in the com-
putational experiment were reconstructed with such a high success — they were mainly
members of the strongest R-category.

The prototypes G and Y were similar (as measured by the scalar product SP: minimum
0, maximum 1) to each-other, but not to R. Therefore, there were memory-disturbances
(”interferences” ) between Y and G, which resulted in unclear ("mixed”) responses, indi-
cated by higher value of H, K and RMS, for Y and G. Some Y-type ”proteins” converged
to the R-attractor, because of having some similarity (denoted by ”SP = min[imally] 0.3”
in Table 3) with the R-prototype which constituted ” far the strongest lobby”. Some other
Y-type "proteins” were similar to each-other (see ”SP = min[imally] 0.9”), so they con-
stituted an independent (small) Y-attractor. G-type ”proteins” were, because of being
too few, always attracted into ”foreign” attractors.

There were only few R-type ”proteins” being less similar to the R-prototype (see ”SP =
max[imally] 0.8”), so their reconstruction was not successful. These, and other ”proteins”
with H- and K-errors about 30 to 40, converged to a wrong attractor, called ”spurious
attractor”. This was unavoidable in this case because of an ”ambivalent” key shared by
more than one attractor. The results demonstrate dependence of pattern recognition on
categorization, i.e. on memory-based prototypes (attractors).

7 Conclusions: Improving Anticipation
For our systematic computational research of data-processing tasks 1-4, we used var-

ious large data-bases, including finally the encoded information on the structure of ” pro-
teins” (up to the 3-dimensional arrangement of protein constituents like a-helices and
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pB-sheets). Our Hopfield-like network has stored in its Hebbian content-addressable asso-
ciative memory about hundred pattern-codes of protein’s 1-, 2- and 3-dimensional struc-
ture. Then, capabilities 1, 2, 3 have been studied for individual unknown patterns (e.g.,
encoded proteins): the part of the new vector encoding the protein 3-dimensional struc-
ture was reconstructed (”protein was recognized or classified”) or predicted.

Tasks 1 and 2 work perfectly, if certain conditions (see section 3.2) are satisfied, but
task 3 is highly non-trivial (therefore, our results are good for correlated cases only, and
are relevant for studying net’s prediction-potentials rather than for biochemistry).

According to Dubois (2000a), an incursive anticipatory system is the one where its
state g at time ¢ + At depends on the state at present time t (in other cases also at past
times t — At,, ...), but also at future time ¢t + At. This is described, in general, by:
q(t + At) = flg(t),q(t + At), p], where p is a parameter (unimportant for us here).

For pattern reconstruction in a Hopfield net or a similar one (like ours), the final
state of dynamics is: §(t + At) = ¥, where ¥ is a selected pattern. Indeed, after eq. 3,
# = f[q(t), ¥, p], where ¥ is/are hidden in the weights as in the Hebbian equation - eq. 1.
Thus, the process of Hopfield-(like) pattern reconstruction, or memory recall, respectively,
incorporates incursive anticipation (cf., Dubois, 2000a; Nadin, 2000; et al. ibid.; Dubois,
2000b; Dubois & Nibart, 2000.)

In the case of our-net’s prediction and anticipation in new circumstances (i.e., predic-
tion of an unknown pattern or future state) the final state (pattern %) is adaptable, i.e.
changeable according to influences of the stored patterns, hidden in matrix J, and the
current "key”. It depends on flexibility of the final attractor formation whether prediction
or anticipation will be successful, i.e. correct, or not. In the case of anticipation, we can
only wait and compare later.

To improve the rate of success, some sophisticated physical implementations of the
net or their simulations could be tried. Our artificial neural net is roughly physically
implementable (and that’s why it was chosen!) in magnetic systems like spin glasses
(Dotsenko, 1994; Fisher & Hertz, 1991) or, analogically, in quantum systems (Perus,
1998, 2000). The quantum implementation would improve the prediction and anticipa-
tion abilities by introducing the processing of (oscillatory) phase, thus replacing the Hebb
rule by the phase-Hebb rule, i.e. Jy; = 3 vafe_i(sz'sf ) (phase-difference in the ex-
ponent!), as in Perus (2000) (cf., Ezhov & Ventura, 2000). An analogical alternative,
using phase-Hebbian processing, is so-called Holographic Neural Technology, a sort of
simulated holography (Sutherland, 1990). However, success could not be great, except for
simple cases, unless some more fundamental (necessarily quantum-field-based, I think)
anticipation possibilities as debated at the CASYS conferences could be incorporated in
the net-dynamics. For instance, the quantum forward and backward propagations (i.e.,
dynamics due to anti-parallel time-arrows), ¥ and ¥*, suggest new, subtle anticipation
capabilities (J¥* =| ¥ |2...) — see, especially, Dubois (2000a), Dubois & Nibart (2000),
Nadin (2000) for review and further references. I will discuss them in a future work.

Appendix A: Algorithm for Prediction

Our computer program incorporates the following steps (details in Perus, 1999):
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— input of selected DSSP-bases and ”learning” parameters;

— for each DSSP-base of an individual protein, DSSP-data are ”translated” into binary
(i.e., bipolar) spin values of #* (as a sub-task, Cartesian coordinates of C,-atoms of residua
are transformed into so-called internal coordinates d, , T);

— calculation of the Hebb memory mairiz J following prescription eq. 1, ie. J;; =
% Tk vFvk, based on the known examples 7¥,k = 1,...,p (p = 93 or 94 in our case);

— input of DSSP-base of a selected test protein and ”trans-coding” of its primary plus
secondary part into a simplified binary “key”;

- "trans-coding” of the tertiary part of DSSP-file of the test protein into a set of lengths
of "cylinders” 2 and a set of angles ¢ and 7 created by the cylinders — these are the
correct coordinates for testing the prediction capability (details in Perus, 1999);

— Monte Carlo adaptation (tertiary part of the test vector randomly changes so that, on
average, "energy” decreases) or direct recall (tertiary part obtained by multiplication of
the Hebb matrix with the "key”) — the result is a completed tertiary part of the test
binary protein-pattern (task 1);

~ decoding of the completed tertiary part from a binary code into internal coordinates
(angles ¢ in ) or their classes, and their transformation into Cartesian coordinates;

— comparison of the correct and the predicted structure spin by spin (Hamming distance)
and angle by angle; calculation of discrepancy between the correct and the predicted
coordinates for the test ”protein” (measured in ”distances” K on the level of classes of
internal coordinates and/or RMS-errors between Cartesian coordinates); visual compari-
son of rotatable 3D graphics (RASMOL).

Appendix B: Error Measures: K, H, RMS

In Table 2 (for reconstruction) and Table 3 (for prediction), from left to right, the
columns incorporate values of the following quantities (described later): standard ab-
breviation of the reconstructed (Table 2) / predicted (Table 3) ”protein”; class-error K,
Hamming distance H, ”energy” E, RMS-error in A (= 107'° m) between the correct poly-
gon of cylinders and the reconstructed (Table 2) / predicted (Table 3) polygon of cylinders;
protein class (after a rough informal classification); commentary (sometimes).

In each row of Table 2, the result of reconstruction, or recall, respectively, of an
individual protein-pattern (given in the left-most column) is shown after its primary plus
secondary part has been used as the "key”. All 94 proteins (all their parts) have been
used for learning. Cf., Table 1a.

In each row of Table 3, the result of prediction is shown for a case where the primary
plus secondary part of a given (in the left) protein was used as the "key” and all the other
93 proteins (all their parts) for learning. Cf., Table 1b.

Descriptions of the error-measures:

K: The correct values (calculated from the DSSP base) and the predicted values (de-
coded output of the net) of individual angles ¢ (angles between inter-atomic links) and
dihedral angles 7 were compared. If they differed for one class (less than 45 degrees), the
"error” K increased for 1; if they differed for two classes (45-90 degrees), K increased for

3 A cylinder is an approximative envelope of a protein chain.
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2, etc. K was summed over all the angles ¢ and 7, and so the total discrepancy of the
prediction from reality was obtained measured in the ”class-distance” K.

H: The rate of similarity of binary vectors was measured with scalar product or with
so-called Hamming distance. The Hamming distance is the number of differences in indi-
vidual elements (corresponding to each other) between two vectors. The scalar product
is more convenient if we would have real-valued "neurons” in the Hopfield or similar net
(the theory is more developed for such a case). The Hamming distance is more convenient
for binary coding.

RMS: The rate of structural similarity of stereo-forms is measured by so-called “root-
mean-square error’: RMS = \/% YN (@0 = Zp)2 + (Yn — Yp)? + (2 — 2,)?],
where (2, ¥n, zn) are the predicted coordinates of C,-atoms (the out-most ones) of approx-
imative polygons of cylinders, (z,, y,, 2,) are the correct coordinates from the DSSP-base,
and N is the number of all C,-atoms.
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