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Abstract

Anticipation is a natural characteristic of any system. ‘Natural’ is difficult to
define formally in a mathematical model. For a model is an artificial construct rely-
ing on reduced conditions and assumptions. A model gives rise to weak anticipation
while strong anticipation requires us to raise our sights to metaphysics where natu-
rality resides. A prime distinction is that metaphysics has a higher-order tense logic.
Strong anticipation is no prisoner of time like weak anticipation. In general while
adjointness has a logical ordering the operation of an environment C' on a subobject
A has a solution subobject B under Heyting inference A = B in the environment
of C. This is represented as the expression C x A — B 4 B4 «+— C, the ad-
junction of the natural metaphysical ordering which constitutes strong anticipation.
The environment C' may be more particularised as an adjunction between the in-
duced monad and comonad functors. The uniqueness of the adjunction in natural
metaphysics is examined in the context of the Beck-Chevalley test for computing
the multiplicity of formal models possible for weak anticipation.

1 Systems Theory

Anuticipation is inherent in the natural relationship between category theory and
systems. This is a hypothesis posed at the level of metaphysics.

Systems play an important role in many aspects of the information sciences. Yet
despite some early attempts [27] the underlying theory has not been as well devel-
oped in formal terms as might be expected from the ubiquitousness of the concept.
Furthermore many current application areas present science with challenges beyond
a simple set-theoretic approach. Topical examples include pandemics, prediction of
earthquakes, world finance, world energy management policy, regenerative medicine
and climate change. Globalisation implies that local approaches are no longer suf-
ficient and the need to relate one system to another suggests that freeness and
openness are necessary properties in a systems approach ([18] at p.7).

The simplest view of a system, building on classical ideas, has been established by
workers such as von Bertalanffy [7, 8] who define it as a collection of interconnected
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elements. Such a view regards a system as a closed entity with intra-connectivity
between its component elements. This view is not ambitious enough for the cur-
rent requirements of systems theory. In addition the term system has come to be
closely related to another concept, the model. Checkland for instance defines a sys-
tem as a model of a whole entity [9]; when applied to human activity, the model is
characterised fundamentally in terms of hierarchical structure, emergent properties,
communication, and control. The inclusion in this definition of emergence indicates
the need for a data structure with the property of self-organisation, whose impor-
tance was earlier recognised as natural activity by Ashby [2]. Klir considers the
system definition in terms of anticipation, which raises the question of interactiv-
ity between systems, that is a higher-order effect, requiring inter-connectivity. Such
higher-order properties are an integral part of dynamic systems where the behaviour
of one system is related to another [23]. The concept of a system involves a num-
ber of fundamental elements in the natural relationship between global and local,
namely freeness, openness, connectivity, activity and self-organisation. These are
summarised in Figure 1 from our earlier work [30].

| system natural relation- | locality

ship
closed intra-connectivity local
open | inter-connectivity local
self-organised | intra-activity non-local
free inter-activity non-local

Fig. 1: Key Elements in the Definition of a System

2 Models

At first glance the term model has subtly different meanings from one area to an-
other. For instance in mathematics a model gives meaning to sentences of a formal
logic and in information sciences the model is an attempt to represent the structure
and behaviour of the real-world through some notation. However a common theme
is that the model attempts to add semantics to a structure, whether it be abstract
such as a mathematical group or more concrete such as an information system.
Many models are set theoretic with data structures defined as elements of varying
complexity and the behaviour as transitions between states.

Much of the work to date on anticipatory systems concerns the comparison of
present and future states but time is not essential to Robert Rosen’s original notion of
a system both predictive of and reactive to itself. We sought to show at CASYS’07
[16] that prediction is an attribute of predication. Not only is predication more
general than prediction in time but it is more comprehensive of Rosen. His words
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Fig. 2: Modelling a Natural System with a Free System, adapted from Rosen [28]

were ‘A system containing a predictive model of itself and/or its environment’.
He seemed to envisage three distinct aspects: the model of itself, the model of
the environment and the model of itself and the environment. In Rosen’s original
diagram of Figure 2 we would interpret the model itself as @ (implication), the
model of the environment as @ o @ (causality composed with encoding') and the
model of itself and the environment as ® o @ o @ (causality composed with encoding
composed with implication). The arrow @ (decoding) is critical in composition for
validation of the model as described later.

Dubois [10, 11] and others (including we ourselves) have investigated further
to distinguish the two types of predication. The copula with the prediction and
the reaction attributed to the system itself is interpreted as strong anticipation:
the object as a proper model is interpreted as weak anticipation. Although not
made explicit by Rosen this follows because a system cannot be a proper model?
of itself. The ‘model of itself’ limb in his definition is therefore not modelling but
is metaphysics. A model gives only partial predication whereas the metaphysical is
full and complete. While a model loses information, metaphysics may add content
to it.

This distinction in computing anticipatory systems has significance for a fun-
damental problem of philosophy in theoretical and practical aspects of computer
science. The current Wikipedia entry for anticipation in the Rosen context con-
centrates on the issue of the need for an internal model in natural evolutionary
cognitive systems. A more general and practical context for that issue might be on
what representation of the real world should underpin information systems. Mod-
els in databases like the relational SQL or object-oriented operate as anticipatory
systems for information retrieval.

These are applications where more attention needs to be paid to the role of the
environment in Rosen’s definition. A model of a system and its environment may not
raise too many problems for weak anticipation but for strong anticipation the system

! causality and encoding are terms as used by Rosen but will be investigated further below.
2cproper’ follows from a model as a subset in set theory. For a set is always a subset of itself
but not a ‘proper subset’.



and its environment need to be integral. This may be only classic holistic systems
theory but it is metaphysics not modelling. For a model cannot represent strong
anticipation, only a model of strong anticipation. This suggests for applications
in Artificial Intelligence the ‘internal model’ needs to be replaced by metaphysics.
TIordache [19] uses the term metamodel to describe the metaphysical relation between
category theory and real-world systems but of course ‘metamodel’ is only apt for the
improper model where a system is a model of itself. A metamodel of a proper model
is rather trivial. It is just the system itself. It seems preferable therefore to keep to
the standard terminology of metaphysics/model as used by the French philosopher
of science Pierre Duhem [13]. The use of the term ‘metaphysics’ may seem rather
narrow as restrictive to physics but this is no bad thing as a reminder that in applied
mathematics all metaphysical relationships are built-up on the relationship between
physical objects of process.

For a scientific understanding of systems and their engineering it is necessary to
make formal all the connections and activity in Figure 1: intra-connectivity, inter-
connectivity, intra-activity and inter-activity. The theory should be realisable, that
is constructive, and should reflect the work on process categories by Whitehead
[33]. Because of the continual interaction with a changing environment, the non-
stationary has to be incorporated with the stationary. With the usual mathematical
modelling tools, a set represents stationary objects. Non-stationary dynamics is
provided by functions between sets but functions and sets are not integrated. To
include natural living systems, where the interaction with the environment is literally
vital, Rosen later proposed (as an early student of Sammy Eilenberg one of its
founders) the use of category theory where both objects and mappings between
them are interchangeable, each being representable by the same notion of the arrow
[25]. Figure 2 is adapted from the original Rosen diagram of life ([28] Figure 7F.1).

Rosen’s diagram can be simply interpreted as an exercise in the composition of
his labelled arrows as @ = @ o ® o @. That is the identity operation on the Natural
System is equivalent to the composition of Encoding with the identity operation on
the Formal System and with Decoding. Indeed Rosen observed that “When this is
true, we say that the diagram commutes and that we have produced a model of our
world”. However, category theory enables us to elaborate further on the diagram’s
properties. For instance Figure 2 includes two identity functors® Opg | OS —
NS and ® §S ¢ §S — §S for the Natural System and Formal System respectively.
The identity functor, the intension for the system category representing the process
[31], is shown as the arrow on the circle representing the category. The internal

3Gothic letters are used for the category names, indicating the categories are general, not
restricted to small categories, that is the category of sets. Thus QU is the general category of any
natural system and similarly for §3, any formal system.
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arrows of the category are then the extension as a curvilinear polygon as shown in
Figure 3. The diagram shows a system with intraconnectivity.

Fig. 3: Identity Functor as the Intension of a Category-System

Figure 2 also exhibits interconnectivity. The arrow @ (Encoding) is a functor
from OIS to §S written @: NS — §S and the arrow @ (Decoding) is a functor
from §S to IS written @: §S — WS. We now have two systems (S and §S
with the interconnectivity relationship between them represented by the functor
arrows @ and @ as in Figure 4.

NS FS

Fig. 4: Two-way Mapping of Functors @ and @ between categories (TS and §S

If the formal system is a perfect representation of the natural system then we can
map forward with @ and backwards with @ without loss or gain of information. In
this case the natural system and formal system are isomorphic. However, in practice
it is much more likely that there will be imperfections in the representation of IS by
§S. If certain conditions are satisfied we can still though have a relationship between
the two functors in which the displacement of the mapping into each category is
measured. This relationship, termed adjointness, was first recognised by Kan [21]
and its understanding in category theory was advanced by Lawvere [24] to show
that syntax and semantics are a pair of contravariant functors. We now know from
advances in information systems that this can be further generalised into intension
and extension but mutually with respect to each other to be dealt with below.

Figure 5 therefore shows two systems with interconnectivity between them. The
diagrams can be re-drawn to show how an object? in the left-hand category F'S (that

4therefore presented as in Roman not Gothic font.
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Fig. 5: Interconnectivity between Categories IS and §S

is 1ps : FIS — F'S) is related to @ o @(F'S), that is the result from mapping an
object in §S to the right with @ and then back to the left with @. The relationship
between 1pg and @ o @(FS), if adjointness holds, is given by 7, the unit of adjunc-
tion. If 7 is the initial object L then no change has occurred in the mapping and
the relation is the special case of isomorphism. Similar reasoning can be applied to
the right-hand category TS on the relationship, € the counit of adjunction, between
Inys : NS — NS and @ o @(NS). These more detailed mappings are shown in
the diagrams in Figure 6 where Figure 6(a) shows the displacement in the left-hand
category TS when the unit of adjunction 7 is other than L, the initial object, and
Figure 6(b) shows the displacement in the right-hand category §3 when the counit
of adjunction € is typed other than by T, the terminal object. The two functors are
adjoint if the two triangles in Figure 7 commute, that is in (a) @(g) on = f and in
(b) eo @(f) = g. If the two triangles do not commute, then the functors @ and @
are not adjoint and cannot therefore exist naturally.

4 The Intension/Extension Relationship

Relationships in nature are explicable in process categories with the single concept
of adjointness [24] that consists only of a pair of contravariant arrows inducing a
monad. In finitary categories the mathematics of adjointness has been developed in
what is termed a cartesian closed category, derived as an abstraction of the cartesian
product but this description from historic origins may by its simplicity mislead as
to its great power and content. The finitary approach is to distinguish the two
properties of cartesian closed and locally cartesian closed but in process categories
it is that natural distinction between intension and extension.

In cartesian closed categories everything in the world is related to everything else
in the world. The formal structure of the relationship may therefore be relevant to
any scientific study or technological application requiring an understanding of these
relationships. The intension-extension relationship is fundamental as it provides
for the intension at one level to define the permitted instances at the next. The
intension-extension distinction is implicit in Aristotle’s Organon but not really made
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Fig. 6: Adjointness between Natural and Formal Systems: (a) unit of adjunction 7
other than L, (b) counit of adjunction € other than T

explicit until brought out in the Port-Royal logic of 1662-1683 [1].

Process categories as a metaphysics provide mixed levels for intension /extensions.
Intension and extension alternate in a pre-order, that is with an arbitrary beginning
[29]. This is the natural role of the arrow in category theory with an identity
arrow as intension and a distinguishable valued arrow for extension. The simplest
identity arrow is treated as an object, the next higher identity arrow (the functor)
composed of extensional arrows between objects makes a category with ordinary
functors as extensional arrows between categories. The highest level arrow is the
natural transformation which composes structures of categories and functors with
the identity natural transformation constituting a topos. The whole is therefore a
recursive system with closure at four levels [29] consisting of three open interfaces
as shown in Figure 8. This is process and the Universe is an instantiation of process
but the World is even greater than the physical Universe for the World consists of all
the relations between physical entities and all the relations between those relations.

The diagrams so far show in an abstract way a two-way mapping between one
intension-extension pair (IS and another §S, each represented as an identity functor
(in terms of Rosen’s analysis). The question is whether the mapping can be shown
to reveal a greater level of detail.

Figure 9 shows for a cartesian closed category the relationship between intension
and extension in terms of the functors ¥ (exists), A (diagonal or pullback) and
II (product). ¥ is left adjoint to A and II is right adjoint to A. A plays a dual
role in that it is both right adjoint to ¥ and left adjoint to II. The relationship is
often written ¥ 4 A - II, indicating the two adjunctions involved. Figure 9 shows



®(NS)

®(FS) @o® (E € FS

Fig. 7: Roles in Adjointness of a) 7, the unit and b) €, the counit of adjointness
respectively

Fig. 8: Four-level Description of the World and the Universe

the alternation between intension and extension with the input to ¥ intension, the
output of ¥ and the input to A extension, the output of A and the input to II
intension and the output of Il extension. Intension is left exact to extension and
extension is right exact to intension®.

Figure 10 shows for a cartesian closed category an explosion of the intension-
extension relationship ¥ 4 A 41II. ¥, A and II in the categorial diagram of Figure 9
apply to each source object in the domain. Functor ¥ identifies each product in the
category and assigns them to B. Functor A picks out the arrows from A to product
B. Functor II identifies all arrows from A — B to C. So composition of [Io Ao X
to give F' only holds if the following all hold also:

1. There exists a product C' x A — B.

2. There exists an exponential B4 «+— C.

® Adjointness and exactness for right and left must be carefully distinguished [17].
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Fig. 9: Relationship between Intension and Extension in terms of the Functors X,
A and I1

3. There exists a universal C — C.

For a category to be cartesian closed it satisfies these conditions for F' and
moreover the adjointness F' - G holds such that ¥ 4 A 11

In general, adjointness gives a logical ordering: iff the operation of an environ-
ment C' on a subobject A has a solution subobject B then the Heyting inference
A = B applies in the environment of C. This can be represented as the adjunction:

CxA— B-ABA«—C

This adjunction is the natural metaphysical ordering which constitutes anticipa-
tion. Thus causation (left adjoint) and Heyting inference (right adjoint) are both
stationary forms of the predicateS of anticipatory systems. Moreover these adjoints
dominate the two mainstream applications of Al and databases. In Al the left
adjoint is a relevance connection in context and the corresponding right adjoint is
cognition. For information science including data warehousing, data mining and
the semantic web, a query in context is left adjoint and the resultant retrieval right
adjoint

In the next section we explore the conditions for anticipation in more detail, in
particular by applying Rosen’s example in an expanded environment, using Beck’s
monadicity theorem.

8¢<predicate’ is used in the same sense as in ‘predicate calculus’.
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Fig. 10: Cartesian closed category: Explosion of Intension-Extension Relationship
¥ 4 A 4 1II. For simplicity of terminology subscripts in natural transformations,
indicating components ([25] at p.16), are not shown

5 Intension-Extension Relationship in Terms of Rosen’s Model

Rosen’s example in Figure 2 can be reinterpreted in terms of cartesian closed cate-
gories as in Figure 11. The free functor @ takes the category for the formal system
§S, representing the intension, to the category for the natural system (XS, rep-
resenting the extension. The underlying functor @ takes the category QUS, the
extension, to the category §S, the intension. If adjointness holds we can write
@-®, indicating that @ is left adjoint to ® and ® is right adjoint to @.

From the explosion perspective there is an alternation of intension and extension.
The terms are relative rather than absolute with an intension-extension pair at one
level mapping into another intension-extension pair at the next level down. For a
cartesian closed category the adjointness @-@® can be decomposed into ¥ -+ A 11
where the functors are respectively ¥ : §S — OS, A OS — §S, 11 : §S —
OS. Note the subtlety of A: A is right adjoint to ¥ and left adjoint to IT. So, while
Y is a free functor and II an underlying functor, A can be viewed as both a free and
an underlying functor.

The identity functors @ and ® for the categories §3 and QIS respectively are
of particular interest. A cartesian closed category has an identity functor. So this
requirement means that the individual categories are cartesian closed as well as
participating in the adjoint intension-extension relationship. We can then write for
the category §S the identity functor 1 §S §S — §S and for the category TS
the identity functor lyg : S — OS, @ and @ respectively in Rosen’s labelling,
as in Figure 11.

12
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Fig. 11: Intension-Extension Relationship for Natural Metaphysics as Cartesian
closed categories

Figure 11 represents natural metaphysics with the formal system the intension
and the natural system the extension. Adjointness gives the unique state when all
the mappings satisfy the conditions in Figure 6. Anticipation compares one state
with another in both a forward and backward direction. It is the generalisation of a
differential in classical Calculus. The monad construction and its dual the comonad
provide the categorial generalisation of anticipation [31]. The associative laws for a
monad are shown in Figure 12(a). Taking the adjoint pair of functors @o@ as the
endofunctor T' we can compose the diagram in Figure 12(a) to compare the states
pw:T% — T? and pu : T? — T. The arrow p, the multiplier, compares T between
one state and another by looking back at the previous value. For the comonad,
whose associative properties are shown in Figure 12(b), the endofunctor is S (@
o®) and the states compared are ¢ : S — S? and 4 : S? — S3. The arrow d, the
comultiplier, compares S between one state and another by looking forward to the
next value. The categories for monads and comonads are historically described and
written as triples” ([6] section 3 pp.83-122, including pp.121-122 for historical notes
on the usage of the term): T =< T, u,n > and S =< §, 4, € >, respectively, where
1 and € are the unit and counit of adjunction, respectively, as already introduced.

Anticipation might be thought of as being measured by §, the change looking
forward. But this is too simplistic. Forward and back refer to the natural ordering
of which time is a special case where ‘anticipation’ is often considered. But it is a
much deeper and more comprehensive concept in general. There is a further possible

7Set theoretic terms such as triple, unit and multiplier are often used for monads which are not
really general enough for monads induced by general categories. We use these words because we
have no others.
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Fig. 12: Associative Law for (a) Monad < T\, p,n >, that is goTu = po uT; (b)
Comonad < S,d,e >, that is Sdod =485 04

adjunction between the functor parts of the monad T and the comonad S, that is
T 4 S ([6] at p.120). The conditions for this adjunction to hold have already been
given at a basic level in Figure 7 but can be re-stated with more relevance for the
monad/comonad relationship in the series of diagrams developed below.

FS

Fig. 13: Relationship between one Formal State FS and another FS' in the Context
of a Natural State NS and two potential adjunctions T'4 S, 7" 4 S’ where FS and
NS are states being subobjects in their respective categories of §S and S

In Figure 13 the looking forward from the natural system QS to the formal
system §S is performed by 7" the monad functor with S the comonad functor looking
back ([6] at p.115). The monad functor T has source of NS and target of NS; the
comonad functor S has source of F'S and target of FS. The functors may be described
as endofunctors as the source and target are isomorphic. However, the monad and
comonad both involve an intermediate category: T maps back to NS via FS; S maps
back to F'S via NS. We therefore have the arrows:

T : NS — FS — NS as the composite of F': NS — FS with G : FS — NS

14




T
'

S :FS — NS — FS as the composite of G : FS — NS with F : NS — FS

As the formal system moves from one state to another W : FS — FS/, the
mappings between the formal system and the natural system change from S and
T to 5" and T” respectively, as also shown in Figure 13. If the diagram is to be a
category it must commute so that 77 o S = W. The change in the formal system
W : FS — FS' is the required anticipation. However W is rather open at this stage
with no preservation of limits or colimits.

FS o

NS

Fig. 14: Anticipation between one Formal State and another as the adjunction
W 4 R in the Context of Figure 13

Closure can be provided by introducing a further arrow R : FS' — FS, dual
to W as shown in Figure 14. For the diagram to commute there are now two
equations: T"oS =W and R =T o 5. If W is left adjoint to R and R is right
adjoint to W we write W 4 R, with W preserving colimits and R preserving limits.
Anticipation is given by W with the conditions that the diagram commutes, that
the monad/comonad adjunctions T - S, 77 4 S’ hold and that W 4 R. Such
anticipation is potentially strong as the environment and the system are tightly
integrated.

Diagrams such as that in Figure 14 are familiar in category theory as Beck’s
monadicity® theorem ([6] p. 101, 115). Beck developed his ideas in the 1960s with
Barr [3, 4], showing the conditions for adjointness between the induced monad and
comonad functors. Mac Lane ([25] pp.149-155) provides a more current interpreta-
tion of the coequalizers in terms of colimits. From the point of view of the present
work such diagrams can be considered as slice categories, in which the relationship
between FS and FS’ is considered in the context of a third subobject NS. Such
categories are locally cartesian closed, hence expressing the intension-extension re-
lationship as in Figure 11.

A categorial integration of the two approaches is presented in Figure 15 where
the relationship between one slice category and another is given by the two pairs

8formerly ‘precise tripleability’.
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7'y

NS’

Fig. 15: Intension-Extension Relationship between one Slice Category and another
as the Adjunction X 4 A 11

of adjoints representing an intension-extension relationship ¥ 4 A 4 II. In the left-
hand slice category the mapping is onto the initial state of the natural system NS;
in the right-hand slice category the mapping is onto the next state of the natural
system NS'. W, mapping the formal system from one state to another, strongly
anticipates the change in the natural system between the intension, the left-hand
slice category, and the extension, the right-hand slice category.

6 Intension-Extension Relationship in Natural Metaphysics

Rosen never pursued his category theory suggestion before his untimely death. Be-
cause of the strict rigour of category theory an implementation shows that Rosen is
operating simultaneously at more than one level in his diagram of life in Figure 2.
Category theory suggests that the essence of life resides in the natural metaphysics.
His diagram should therefore be expanded recursively as in Figure 16. The contrast
between the natural computing of metaphysics and formal models of computing is
apparent in the different manifestations of mathematics as a formal language. To be
natural the metaphysics of process philosophy restricts categories to those that are
cartesian closed. This provides the unique adjointness of T' - S as the intensional
limit with an existence of possible extensional colimits by means of the free functor.
Each extension is still unique according to the value of its respective adjointness
< n,e >. Finitary category theory on the other hand admits arbitrary categories
modelled in the category of sets. This is the usual version of category theory that is
used for formal purposes although the subject itself evolved from algebra, geometry
and topology as a higher level mathematical workspace. However the category of
sets requires axioms and is therefore undecidable.

16
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That gives scope for variety but is therefore degenerate, for example sketches [20,
5]. Open systems represented by arbitrary categories are not necessarily complete.
Where it is possible to induce a triple, adjointness is present but gives rise to the need
to test for ‘tripleability’. The early unpublished work in the mid-sixties mentioned
above by Jon Beck working with Michael Barr [6, 25] established the sufficient
conditions for tripleability. Beck’s conditions to induce adjointness (i.e. what he
called ‘tripeleability’) require the existence of a stability functor that is both free
and underlying. It is a functor that®:

1. has a left adjoint;
2. reflects isomorphisms; and

3. preserves coequalizers

The first test establishes intension, the third establishes extension and the sec-
ond provides that their respective entities are naturally isomorphic (ie ‘the same’
for practical purposes). Around the time of Beck’s work the existence of the higher
order cartesian closed category of the topos was emerging. This provides for an
adjointness between the triple and its co-triple and is found to have an open inter-
nal logic where the Boolean world is replaced by its intuitionistic counterpart from
Heyting algebra. The ‘tripleability’ was updated to ‘monadicity’ but substance also
needed to be enhanced by incorporation of the openness of the Heyting logic. This

9Because of the limitations of the category of sets a number of technical points need to be
| added to the sufficient conditions leading to greater complexity ([6] at pp.117-121) than in the full
| process category version
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is again'® an example of the need for greater complexity for arbitrary categories

(see for instance [26], [20] pp. 589 et seqq). For it was soon apparent that the
Boolean world had a relevant counterpart in the Zariski open topology developed
by Grothendieck. In particular the work of Claude Chevalley in the Bourbaki group
of French mathematicians on constructible sets in algebraic geometry, is able to
complete the internal logic for Beck’s theorem to provide what has become known
as the Beck-Chevalley conditions for stability. In terms of Figure 10 these criteria
relate to the dual nature of the pullback functor A. For cartesian closed categories
in process theory the significance of the Beck-Chevalley conditions are no more than
the straight forward test for adjointness. However it does underline the subtle du-
ality of the stability of A which is quite profound in the way that it switches the
free and underlying functors in the intension/extension relationship. It is also the
critical point of the test for a category to be locally cartesian closed and explains
and provides the relationship between different local extensions for the same inten-
sion that is the global/local relationship. An example is the stability between slice
categories [15].

7 Conclusion

To sum up anticipation is the property of any natural system < T,S >, computed
from its monadicity < T, pt,n > and comonadicity < S,4d,¢ > and given by W 4 R
(in diagram 15) where ¢ is the measure of the prediction typing forward (S — S?)
and p the predication back typing (7% — T). It should be noted that the detail
of this analysis refers to strong anticipation.

The detail for the lower extension in Figure 16 is mainly concerned with weak
anticipation which has special considerations. We hope to present at a future CASYS
a study on classifying information systems by weak anticipation.
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