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Abstract
The paper addresses an important part of enterprise activity, which is the warranty
claims control and prediction. Warranty claims have a significant impact on the
financial aspect of the company, because of the funds that need to be reserved for repair
of the defected products within the warranty period. The failure process is considered as
a combination of market absorption and failure process. Prediction and determination of
terminal call rate (TCR) is important for monitoring of the production system
efficiency. Several models to predict TCR have been analyzed, such as Weibull model
and the Markov Modulated Fluid model (MMFM). The models were validated against
two types of data: a) from sales to failure, and b) from production to failure. The results
show that MMFM model provides promising prediction results.
Keywords: warranty claims prediction, terminall call rate, weibull model, markov
modulated fluid model

1 Introduction

Warranty claims control and its prediction are an important part of enterprise
activity, because all products are unreliable and they eventually fail. Most products are
sold with a warranty that offers protection to buyers against early failures over the
warranty period. A warranty is a contract between buyer and manufacturer that becomes
effective on the sale of an item. The purpose of a warranty is basically to establish
liability in the event of a premature failure of an item, where failure is meant as the
inability of the item to perform its intended function (Kim et a1.,2004).

Offering warranty implies additional costs to the manufacturer. This is the cost of
repairing item failures (through corrective maintenance) over the warranty period.
Hence, the manufacturer tends to minimize this cost. Minimizing the warranty cost is
not in the scope of this paper directly and the reader is referred to, for example, Blischke
and Murthy (1994), Eliashberg et al. (1997), andZ'so et al. (2000) for warranty cost
evaluation. However, anticipating the share of products that will eventually fail during
the warranty period is crucial in determining this cost.

Taking into account financial and marketing considerations, a multitude of business
decisions are being made based on the predicted number of warranty claims for the
predetermined warranty period. Therefore it is impor[ant to improve the process of
warranty claims prediction with models that provide an acceptable accuracy for
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business decision making. [n addition, a parallel need for warranty claims prediction in
industry also arises when the first few months of warranty claims are being analyzed for
the purpose of forward extrapolation and development of appropriate corrective actions
(Kleyner and Sandbom, 2005).

Many quality and reliability engineers who are involved in the warranty claims
predictions use empirical models based on past data of products with similar design and
complexity adjusted by certain, experience-based correction factors. Therefore, we
stress that an accurate, scientific based, and user-friendly model could help to
accomplish warranty prediction tasks with better precision this enhancing the process of
business decision making (Kljajié et al., 2000, Skraba et al., 2011).

This paper is dealing with anticipation of the number of products failing within the
warranty period with the proposed MMFM method (Rogers, 1994). Further, the
anticipation of parameters for these methods is presented as well as a framework for the
implernentation of a decision support system to help with warranty claims predictions.
To produce a quality estimate a large number of data is needed. To process such a large
amount of data, however, requires substantial processing power. Hence, grid computing
is also addressed as a possibility to solve this issue.

The rest of the paper is organized as follows. In Section 2 the problem formulation is
given. Section 3 provides the results of model validation. ln Section 4 the framework
for the implementation of a decision support system for warranty claims prediction is
discussed. Finally, conclusions are drawn in Section 5.

2 Problem Formulation

Figure 1 shows the temporal aspect of the failure process of the products. Production
is followed by a failure of products after a certain period of time. An item failure can
occur early in its life due to manufacturing defects or late in its life due to degradation
of the item. The degradation is dependent on age and usage (Kim et a1.,2004).

In this paper we are dealing with a forecasting activity for current products, where
the wananty claims are known for the first few months of service and the objective is to
anticipate the final numbers of warranty returns at the end of the warranty cycle.

The products are produced in a series which in our case is a monthly aggregate of a
production of a certain product or a product family. If the failed products can be traced
back to a specific production series, this data can be converted into a more
comprehensive format usually referred as 'layer cake', which combines all produced
and failed units on a monthly basis, as presented in the Table 1. The acquired data are
aggregated in the form of an upper triangular matrix with diagonal. The table shows
tha|, for examplen after the first four months of production we can collect 10 data points
about the failures that can be used as an input for the prediction.

The data presented in a layer cake format allows more sophisticated data processing,
because we are able to obtain exact failure time intervals and the number of failed items.
This allows for the implementation of distribution best-fit approaches and provides the
confidence intervals on the results of the best-fit approximation. (Kleyner and
Sandbom,2005).
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Table 1: Example of a layer cake data.
Month Number of

produced products
Number of failures bv month
Month I Month 2 Month 3 Month 4

1
2
J

4

4553
4224
8s21
9661

133 56
r25

34
76
186

20
21
110
224

2.1 Terminal Call Rate

Terminal call rate (TCR) is an expected maximum value of the failed products within
the warranty period. Fig. I shows an example of quarterly gathered failures data. There
are three curyes within each quarter, each curve representing a cumulative failure rate
for a specific monthly production series. Such a representation might indicate
difficulties in the production process or perhaps a problematic semi-product that is
integrated in the finished product, ifa certain series' failure rate is above the others.

Hence, determination of TCR is important for monitoring of the production system.
On the other hand, determination of TCR also covers the financial aspect. Its
determination influences the evaluation of funds that are to be reserved for maintenance
during the warranty period.

2.2 Failure process

Mostly, realiability is expressed in terms of commonly used distributions: Weibull,
Exponential, Normal, and Logrormal (Xie and Lai, 1995,Hall and Sfut, 2003, Kleyner
and Sandborn, 2005). In our case there are two types of data available for the warranty
claims prediction, depending on the type of products: a:) only the time of sale is known
while the production time is unknown l(sales), and b) only the time of production is
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Figure 1: Estimation of the terminal call rate TCR.



known while the time of sale is unknown lQtroduction). Hence, two types of data
collections result in two different probability density functions (see Fig. 2) and its
resulting cumulative density functions (see Fig. 3).
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Figure 2: Probability density functions of I(sales) and l(production) fype of data.
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Figure 3: Cumulative density functions of l(sales) and I(production) type of data.

Obviously, the l(sales) is following the exponential distribution while the
IQtroduction) is following the Webull distribution. From the figures one can observe
that lQtroduction) finction has an additional part of the curve that is characterized by
the market absorbtion time, i.e. the time from production to the point of sale. Hence, we
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can chamcterize the l(sales) function as the failure process without delay and the
I(production) function as the failure process with delay. Since the point of sale for
products, characterized by the lQtroduction) function, is not known, the parameters have
to be anticipated from the currently available data.

To anticipate the CDF curves for both data types, we propose the Markov Modulated
Fluid Model (see, e.g. Lenin and Parthasarathy, 2000) given by the following equation:

F(t)= 
at 

,
c + t o

where d represents the limit value of the process, i. e.

represent the shape ofthe distribution.
Figure 4 shows an example of F(t) according to the

paxameter a.

( 1 )

a = lim, .- F(l), while b and c

equation (1) and variation of

20 40 60 t0 100

Figure 4: F(t) with the variation of parameter a.

Firs! we need to determine a way to calculate the parameters a, b and c.
Let

. F(x)
Z = L - :

a

Apply natural logarithm In and rewrite:

àrtrr-hl.Ll)
c = e  \ z  /

(2)

,//
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Now the following terms determine the parameters of the model:

a = Fx-u (c + xu\

f i = -
lnr

(a - F)xb

F

Now we have obtained the formulae needed for the parameters' estimation. When
analyzngdatân we need to select a method for estimating the parameters for the chosen
distribution. There are several methods available, such as rank regression on X (RRX)
or Y (RRY) or maximum likelihood estimation (MLE) (Tomblin and Seneviratne,
2011) .

Regression generally works best for data sets with smaller sample sizes. Rank
regression on Y is best used with data other than time-to-failure data, such as free-form
data. An example of this would be warranty data that have unreliability estimates for
each month of a warranty period (Reliability Hotwire, 2007). Hence, we have chosen
RRY method for parameter determination that can be generally described by the
following equation:

J l . ^  î  N

Z@ * bt, - y,)' = min(a, b)I (a + bx, - y,)2 (5)
i=l ,=l

Where ô and 6 are the least square estimates of a and b. This equation is minimized

with the following values of â and 6 :

N N

.n I+Iv,

( "(-'.{)lhl  -  \  " i  I

[ - ) (4)

? Y N

I v. It.
u ' r  _ H .

-  i - l  ,  ; - l

a- := !__bJ l_=  v_bx
n/N

(6)
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where N is the number of @i, yù data coordinates. One of the advantages of the rank
regression method is that it can provide a good measure for the fit of the curve to the
data points with the he correlation coefficient p, generally expressed as:

c*
P = -

6rO y

where o- is the covariance of x and y, a, is the standard deviation of x, and o, is the
standard deviation ofy. The estimate of the correlation coefficient is then given by:

3 Model Validation

It is vital to perform model validation for evaluating if the model was developed for
the purpose it was intended. To obtain a valid model, we need to measure the inputs and
outputs of the real system and compare them against the variables of the model get as
accurate model response as possible (Kleijnen, t995). Validation of the model has a
particular significance in the quality control,where the following issues are important:

- Availability of the failures data,
- Quality of data,
- Numerus of a particular production series,
- Large datasets makes this process time consuming.

Validation is performed on the input matrix of dimensions 18x18 (upper triangle
matrix with diagonal, l7l data points). Thus, the prediction of the cumulative
proportion of each product is performed on historical data for the past 18 months at the
time or 24 months that represents the end of the warranty period. We present two
validation cases: a) the one with all historical data included in prediction, and b) the one
with production series that have had 6 or more failures.

Table 2 and Fig. 5 present model validation results on a product with all historical
data included in prediction. The historical TCR curve is marked with a diamond shape
while the predicted is marked with a square. The historical TCR at the end of 24 months
is 0,085 and the predicted TCR is 0,092. The prediction accuracy in this case is 8,2Yo.

(7>

(8)
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Figure 5: Cornparison of: a) historical (diamond) and predicted TCR (square) with all
historical data included, and b) absolute deviation between historical and predicted

data.

Table 3: Comparison of historical and predicted TCR with product series with at least 6
failures.

Historical value 0.0887
Predicted value at 24m 0.0894
Absolute deviation 0,0007
Deviation [%l 0-0079
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Figure 6: Comparison of: a) historical (diamond) and predicted TCR (square) with
product series with at least 6 failures, and b) absolute deviation between historical and

predicted data.
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historical and predicted TCR with all

Historical value 0.08s
Predicted value at 24m 0.092
Absolute deviation 0.007
Deviation [%l 0.082
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Table 3 and Fig. 6 present model validation results on a product with product series
with 6 or more failures used for prediction. The historical TCR curve is marked with a
diamond shape while the predicted is marked with a square. The historical TCR at the
end of 24 months is 0,0887 and the predicted TCR is 0,0894. The prediction accuracy in
this case is 0,790Â. Obviously, the prediction accuracy is much higher than in previous
case due to the quality data achieved by excluding outliers that have negatively
infl uenced the prediction.

4 Application Development and Implementation

So far, we have presented the metholodogical framework for warranty claims
prediction. Since the model has given valid results, we were able to integrate it in a
decision support system presented in Fig. 7. The requirements for such a system were:

- Application of both data types (sales-failure and production-failure),
- Web application with possibility of concurrent clients,
- Application of existing production database,
- Tabelaric report with absolute and relative failure frequencies,
- Application of color codes of historic/combined/predicted data,
- Aggregation of the results on a quarterly and yearly basis,
- Graphs of failure functions,
- Visual validation of results.

Resulrs ôfSOL Qu.4, ilxswim

Figure 7: The framework for warranty claims prediction decision support system.
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The technological platform used to implement the information system was:
Microsoft SQL Server to store the data, MATLAB as a computational core, Microsoft
IIS Server and MATLAB Web Server for website hosting and user interface.

Because the prediction process involves alarge amount of data it is computationaly
costly. Hence, grid computing is a preferable option to solve this problem, because the
MATLAB platform itself supports such computation through distributing jobs to a
network of computers.

5 Conclusion

This paper is dealing with the warranty claims prediction for two types of data: a)
from sales to failure, and b) from production to failure, where the market absorbtion
time is considered. We have proposed the Markov Modulated Fluid Model for warranty
claims prediction. The model was verified and validated against the real world data,
yielding quality prediction results, especially in a case, where the data outliers have
been removed. In this case the prediction accuracy is less Than lYo for a selected
product.

Further, we have presented the framework for a warranty claims prediction decision
support system that integrates a database with a large amount of data, computational
core and a web user interface with a possibilty of concurrent clients. We also propose an
application of grid computing because of computationaly costly prediction.

The presented decision support system has a clear industrial application, since the
prediction of failures is an important part of the production process. Not only it might
indicate the possible problems in the production process, it also gives a foundation for
estimation of preventive maintenance costs.
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