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Abstract
In case of classical continuum mechanics the set of basic equations consists of the

equation of motion, the kinematic equation and the constitutive equations. The
paper concentrates on the stability problems and the effects of discretization on ma-

terial modeling. The method of investigation is analytic, the monodromy operator

of the discrete system is studied. We study how discretization, stability and antic!
pation act on one another. As results we show cases, when the anticipatory nature

of a material model leads to instability.
Keywords : constitutive equation, discretization, monodromy operator-

1 Introduction

There are numerous papers dealing with anticipatory systems discretization and

stability analysis [4, 8, 2, 7]. In this pâper we study a problem, which appears

at numerical analysis of a continuum. Such calculations are performed quite fre-

quently in mechanical or structural engineering and stability problems are of great

importance [3].
In case of classical continuum mechanics [6] the set of basic equations contains

the equation of motion

the kinematical equation

and the constitutive equation.
Such group of equations has a twofold nature. On the one hand it creates a

mathematical complete set of partial differential equations, which could be solved

for the unknown field tike the stress, strain and velocity fields. On the other hand,

all material properties are included via constitutive modeling. All the data of ex-
perimental investigations and material tests appear in this part of the system of
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equations. For this reason constitutive equations are often referred as material mo-
del, or material law.

In the following the generally used notations of the continuum mechanics are
used [6], where p is mass density and u, o and e denotes velocity, stress and strain
fields. These are the basic unknown functions of the state vector la, e , ol. Derivatives
with respect to time are denoted by dots

de
_ - c

d t - " '

In engineering the basic equations should be solved and the common way is
to use numerical methods (the most popular is Finite Element Method in lots of
commercial software toolkits). When some numerical analysis is performed to solve
that system of basic equations a time discretization is necessary. In the next part
an elastic material will be studied in the uniaxial case.

2. Elastic rate independent material

The easiest case for modeling elastic materials is, when Hooke's law is used [6]

o :  E € , (3)

where .E denotes Young modulus. When time discretization is performed [1], such
constitutive equation reads in a differential form

do: Ede,

while discretization results

L,o: ELe,

where time step is At and for the functions of the state vector oi : o (zAt) etc.
Now

L,o -- oa11 - oi

then

ot+t -  ot :  E (e,;+r -  et) ,

which implies

o t :  Ee t

or

c611 :  EEi l1
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being anticipatory (incursive) forms [7], because the stress at step i (ot i' * 1) is
determined by the value of the strain at the same instant of time.

(1) and (2) are

du lÔo

dt Bôr

de ôu_ : _
dt ôr

hence in differential form we have

.  7 0 o  , .
da : --;-clt

oor

ôu .
^ d t
or

and the formal discretized form reads

1  0o l
I ) i + r : h l -  ^  l A t ,

Q  o r l t

ôu l
c .  -  -  c . J -  - l  A ic x + t - ç z  |  ^  t s eor l t

by adding ( ) the basic set of equations forms a strong anticipatory system.
From equations (1), (2) and (4) we form

.  -oep u :  D  
a r

.0u
c -  _

iJr

and the associated discrete dynamical system reads

E  1 e l  } u l' u i+ t : ,n+ ;  
* loo t ,  

€ i+ r : ' , *  
* l ,o '

in matrix notation

Ioo*' I : |  .  1^. iat(&)I l ' ' l
L'n* ' l -Lat(#) 1 lL 'n. t

Then the eigenvalues of the monodromy operator [7]

v,: l 1". fat(#) I^t (&)  1 I
can be obtained by solving the eigenvalue equation

Mu-Àu :0

l o /
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for À, where u is a proper function satisfying homogeneous boundary conditions.
Then stability is present, if lÀl < 1, [9].

For the sake of simplicitv we restrict the study to periodic perturbations in form

l rn ' l,: I l" I exp (iar)
1 " 0  I

then the eigenvalue equation results

^2-2^+r+a29(a t )2 :o
p '

thus

(6)

) t , z : 1 *

ri
Àr,z :  1+ 

"Lt\ f  
- î

When ,E > 0 (7) is a complex number. Its absolute value is

(7)

(8)lÀ t , r l  :

while at E -- 0

l À t " l  : 1

a n d w h e n  E < 0

) r : 1  *  a L t
t-

1,  Àz :L+a t t r l -E_  r1
vp

(e)

By comparing (Àr,z)2 (S) and À! from (9) we have

rl :: 1 + 
E-o' 

(tt) '  and r]:: I + 2c,Lt1f -E + Po' (lt) ''avaa

thus as Al -+ 0limrf < limr!. Thus in both case instability is found, but case
E < 0 is "more" unstable. At E :0 the static bifurcation condition is satisfied.

r + 9.,2 (Lt), >

E
a
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The change of location of roots at the unit circle as E decreases

3. Damping effect

Let us change the constitutive equation to a rate dependent one by adding term
Dô. Then the constitutive equation reads

Fie.

o * D o - E E ,

which happens in case of visco-elastic materials. From (10)

. 8 1
o : D r _  

D o

or in differential form we have

tr, 'l
6o: lOedt -  

Oodt.

After discretization

E 1
66: "OeiLt -  

fotAt
or

1 E
oi+r:  ot .  -  

Sot\ t  
*  

Oe;At

and by adding equations (5) a recursive system

f ,n*,  I  |  1 o i t t ( f r )  l f , ,  I
I 'n*' l: lor(#) ,1 . ,.0, . l l ' ' l
Lon* ' l  L  o Et t  ( t -$at)  JL"nJ

(10)
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is obtained. Now the monodromy operator is

I r o itt(ft) I
Mu::  lor (#)  _1 

-  
o.  lu

L o Ë^t  (1 - ;^r )J

and the eigenvalue equation for similar periodic perturbations as in (6) is

f (1-À)  o àar( tCI)  l f * l
exp( ia r )  lA r ( io )  (1  - ) )  o  l l ro  l :o

I  o Ba;t  Q-$nt-À) iL"ol
The characteristic equation is

(1 - À)'((1 - À) D - at) - o'E-(ar;3 : s
p '

\Mhile the square of the elastic wavespeed is

, E

a
f rom (11)

-D)3 + ^2 (D- At) + ^(2At - 3D) + D - a2c2 çAt1s : g

( 1  1 )

(12)

which is a third order algebraic equation for the eigenvalues of the monodromy
operator. Its solutions can be obtained by using for example Cardano's formula.
Then the absolute value of the roots decides stabilitv.

Fig. 2: Stability boundary in the plane of complex eigenvalues

Hopf bifurcation
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Fig. 3: Absolute values of the eigenvalues of the monodromy operator: l,\11 and

lÀ21 :  lÀ31

In the complex plane of eigenvalues (see Fig. 2) the stable region is in the

unit circle and loss of stability happens when one of the eigenvalues leaves the unit

circle. The regions of three possible types of instabilities the flip, saddle'node and

Hopf bifurcations are also shown in Fig. 2.
In Fig. 3 solutions lÀnl : lÀn (")l of (11) were calculated at At : 0.00037s

and a : 1,. It shows that there exists a region of stability in contrast to the

anticipatory (rate independent) constitutive equation. The stability boundary can

also be calculated by substituting the critical unit eigenvalue

x:+JT4+, ip,  o<p<1

into (12), (see Fig. 4)
In Fig. 4 the stability region is under the curve, where c denotes wavespeed,

which has the value 3000 m/s for elastic case and less for non-elastic case. Parameter

r : # denotes the ratio of time step and the rate dependent parameter'

B! studying the way of loss of stability on the stabitity boundary [9], Hopf

bifurcation happens except at flip (À : -1) and saddle'node (,\ : 1). If ) : L from

(t2),

a2c2D (at)2: g,

thus c : 0 or D : 0. The first case is the so-called divergence type of mate'

rial instability or strain localization, while the second leads to Hooke's elastic rate

independent material (part 2). When À: -1, from (12)

1,2

D_
AAt - c2 (At)3
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Fig. 4: Stability chart in parameters r, c

is obtained. Thus the condition of flip bifurcation contains time step and material
constants.

4 Conclusion

Numerical solution of all dynamic problems of mechanics of continua require discrete
time systems. When it is constructed from the classical basic set of equations, we
may obtain incursive systems. In rate independent elasticity such system leads to
unstable behaviour. \Mhen rate dependence is added, the resulting discrete time
system remains recursive and stable.

In studying the case of a continuum satisfying Hook's law with and without rate
dependence we find that simply time discretization results instability by causing
anticipatory nature.
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