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Abstract. Coherent wavelets form a unified basis of the multichannel perfect recon-
struction analysis-synthesis filter bank of high resolution radar imaging and clinical mag-
netic resonance imaging (MRI). The filter bank construction is performed by the Kep-
plerian temporospatial phase detection strategy which allows for the stroboscopic and
synchronous cross sectional quadrature filtering of phase histories in local frequency en-
coding multichannels with respect to the rotating coordinate frame of reference. The
Kepplerian strategy and the associated filter bank construction take place in symplectic
affine planes which are immersed as coadjoint orbits of the Heisenberg two-step nilpotent
Lie group G into the foliated three-dimensional real projective space P(R x Lie((G)*). Due
to the factorization of transvections into affine dilations of opposite ratio, the Heisenberg
group G under its natural sub-Riemannian metric acts on the line bundle realizing the
projective space P(R x Lie(G)*). Its elliptic non-Euclidean geometry without absolute
quadric, associated to the unitary dual G, governs the design of the coils inside the bore
of the MRI scanner system. It determines the distributional reproducing kernel of the
tracial read—out process of quantum holograms excited and coexisting in the MRI scanner
-system. Thus the pathway of this paper leads from Keppler’s approach to projective ge-
ometry to the Heisenberg approach to the sub-Riemannian geometry of quantum physics,
and finally to the enormously appealing topic of ensemble quantum computing.
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Magnetic resonance imaging (MRI) scanners are cognitive systems which reconstruct
cross—sectional images of objects and perform the reconstructive amplification by coherent
quantum stochastic resonance as a form of multichannel parallelism. The reconstructive
process from multichannel phase histories is through probing the magnetic moments of
nuclei employing strong magnetic flux densities and radiofrequency radiation. The whole
process of MRI is based on perturbing the equilibrium magnetization of the object with
a train of pulses and observing the resulting time-evolving response signal produced as a
free induction decay (FID) in a coil.

Nuclear spins and the arrays of quantum bits ("qubits”) they represent can be manipu-
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lated in a multitude of different ways in order to extract site information about molecular
structure and dynamic information about molecular motion. Due to the spin dynamics,
a preparation of the sample can be achieved such that the reconstructive amplification
process by coherent quantum stochastic resonance is a well posed problem. With NMR
tomography it is possible to observe, non-invasively, cross-sections through objects, and
thus obtain synthetic aperture radar (SAR) like image information about density, flow,
and spectrally localized chemical composition (Gillies [25]). The preparation procedures
of NMR and MRI turn the reconstruction into a well posed problem. Specifically, an ap-
plication of the blood oxygen level dependent (BOLD) contrast method of human brain
mapping to morphological cranial anatomy (Sanders [39]) allows for an observation of
activation of the brain in vive.

The moment of birth of the temporal magnetic resonance phenomenon was marked by
Felix Bloch’s dynamical approach. The great Felix Bloch (1905-1983), the first graduate
student and assistant to Werner Karl Heisenberg in Leipzig, outlined the NMR experi-
ment in his source paper of 1946 as follows (Fukushima [24], Mattson [34]):

”The first successful experiments to detect magnetic resonance by electromagnetic efects have been car-
ried out recently and independently at the physics laboratories of Harvard and Stanford Universities.
The considerations upon which our work was based have several features in common with the two experi-
ments, previously mentioned, but differ rather essentially in others. In the first place, the radiofrequency
field is deliberately chosen large enough so as to cause at resonance a considerable change of orientation
of the nuclear moments. In the second place, this change is not observed by its relatively small reaction
upon the driving circuit, but by directly observing the induced electromotive force in a coil, due to the
precession of the nuclear moments around the constant field and in a direction perpendicular both to this
field and the applied r—f field. This appearance of a magnetic induction at right angles to the r-f field is
an effect which is of specifically nuclear origin and it is the main characteristic feature of our experiment.
In essence, the observed perpendicular nuclear induction indicates a rotation of the total oscillating field
around the constant magnetic field.”

Because the computer performance was severely limited at the time of the discovery of
NMR spectroscopy, and the fast Fourier transform (FFT) algorithm was not available
to Bloch and his coworkers, the enormously appealing perspective to spin isochromat
computers is not present in his dynamical approach. Such a machine performs a calcu-
lation using quantum parallelism at the molecular level and then amplifies the results to
the macroscopic level via coherent quantum stochastic resonance as a form of multichan-
nel parallelism. Recent experiments in neurobiology verified the amplification effect of
stochastic resonance in the information transfer performed by weak signals in biological
neural networks (Douglass [20]).

From the dynamical approach to NMR spectroscopy, however, Hahn’s spin echo method
popped up. Due to its favorable signal-to-noise ratio, his spin echo pulse sequence is ex-
tensively used both in clinical MRI, NMR spectroscopy and NMR microscopy (Callaghan
[6]). It plays a major role in the emulation of quantum computers by NMR spectroscopy
(Cory [11], Gershenfeld [26], Lloyd [33]).

The immersion aspect of the spectroscopic approach has been summarized by Nico-
laas Bloembergen, Edward Mills Purcell (1912-1997), and Robert V. Pound as follows
(Fukushima [24], Mattson [34]):

"In nuclear magnetic resonance absorption, energy is transferred from a radiofrequency circuit to a sys-
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tem of nuclear spins immersed in a magnetic field, Ho, as a result of transitions among the energy levels
of the spin system.”

»The exposure of the system to radiation, with consequent absorption of energy, tends to upset the equi-
librium state previously attained, by equalizing the population of the various levels. The new equilibrium
state in the presence of the radiofrequency field represents a balance between the processes of absorption
of energy by the spins, from the radiation field, and the transfer of energy to the heat reservoir comprising
all other internal degrees of freedom of the sustance containing the nuclei in question.”

” Finally we review briefly the phenomenological theory of magnetic resonance absorption, before describ-
ing the experimental method. The phenomenon lends itself to a variety of equivalent interpretations.
One can begin with static nuclear paramagnetism and proceed to paramagnetic dispersion, or one can
follow Bloch’s analysis, contained in his paper on nuclear induction, of the dynamics of a system of spins
in an oscillating field, which includes the absorption experiments as a special case. We are interested in
absorption, rather than dispersion or induction, in the presence of weak oscillating fields, the transitions
induced by which can be regarded as non-adiabatic. We therefore prefer to describe the experiment in
optical terms.”

Bloch and Purcell shared the 1952 Nobel Prize in Physics in recognition of their pioneering
achievements in condensed matter. The methods due to Bloch and Purcell are not only of
high intellectual beauty leading finally to quantum computing, they also place an analytic
method of high efficacy in the hands of scientists. Therefore, during the next quarter of
a century NMR spectroscopy flourished, and more than 1000 NMR units were manufac-
tured. The award of the Nobel Prize in Chemistry to Richard Robert Ernst in 1991 later
served to highlight the fact that high resolution NMR spectroscopy is not only an essential
physical technique for chemists and biochemist, but also offers a fascinating application
of non—commutative Fourier analysis to system theory. Ernst summarized the applica-
tion of Fourier transform spectroscopy to NMR as follows (Fukushima [24], Mattson [34]):

"1t is well-known that the frequency response function and the unit impulse response of a linear sys-
tem forms a Fourier transform pair. Both functions characterize the system entirely and thus contain
exactly the same information. In magnetic resonance, the frequency response function is usually called
the spectrum and the unit impulse is represented by the free induction decay. Although a spin system is
not a linear system, Lowe and Norberg (1957) have proved that under some very loose restrictions the
spectrum and the free induction decay after a 90° pulse are Fourier transform of each other. The proof
can be generalized for arbitrary flip angles.”

” For complicated spin systems in solution, the spectrum contains the information in a more explicit form
than does the free induction decay. Hence it is generally assumed that recording the impulse response
does not give any advantages compared to direct spectral techniques. The present investigations show
that the impulse response method can have significant advantages, especially if the method is generalized
to a series of equidistant identical pulses instead of a single pulse. In order to interpret the result, it is
usually necessary to go to a spectral representation by means of a Fourier transformation. The numerical
transformation can conveniently be handled by a digital computer or by an analog Fourier analyzer.”

»Here are some features of the pulse technique: (1) It is possible to obtain spectra in a much shorter
time than with the conventional spectral sweep technique. (2) The achievable sensitivity of the pulse
experiment is higher. All spins with resonance frequencies within a certain region are simultaneously
excited, increasing the information content of the experiment appreciably compared with the spectral
sweep technique where only one resonance is observed at a time.”

Based on the work of the Nobel laureates Pauli, Bloch, Bloembergen, Purcell, Gabor
and Ernst, a whole new science culminating in Fourier transform MRI has been created
where none existed before (Mattson [34], Stark [46], Schempp [45]). This new science of
ensemble quantum computing needs its own mathematical foundation based on elliptic
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geometric analysis. Surprisingly, spin isochromat computing by NMR spectroscopy has
its deep roots in the Kepplerian dynamics of physical astronomy.

The Kepplerian temporospatial phase detection strategy of physical astronomy is derived
from the quadrature conchoid trajectory stratification and the second fundamental law of
planetary motion analysis (Stephenson [47]), as displayed in Keppler’s Astronomia Nova
of 1609. The dynamics of the quadrature conchoid trajectory stratification which seems
to have almost escaped notice in literature, is best understood from the viewpoint of pro-
jective geometry. Although Keppler described the projective approach to astronomical
observations in the Paralipomena of 1604, he is not recognized, along with Desargues, as
one of the pioneers of projective geometry which then culminated in Poncelet’s investiga-
tions.

Projective geometry, which is since about the mid 1980’s standard in the computer vi-
sion and robotics literature, allows for the stroboscopic and synchronous cross sectional
quadrature filtering of phase histories in local frequency encoding multichannels with
respect to the rotating coordinate frame of reference (Freeman [23]), and provides the im-
plementation of a matched filter bank by orbit stratification in a symplectic affine plane.
An application of this procedure leads to the landmark observation of the earliest SAR
pioneer, Carl A. Wiley, that motion is the solution of the high resolution radar imagery
and phased array antenna problem of holographic recording by quasi-optical systems
(Leith [32], Wu [52]). Whereas the Kepplerian temporospatial strategy is realized in SAR
imaging by the range Doppler principle (Cutrona [13], Leith [31]), it is the Lauterbur
spectral localization principle (Schempp [45]) which takes place in clinical MRL Having
Damadian’s approach to tumor detection in mind, Lauterbur wrote the following obser-
vation into his 1971 notebook under the title of "Spatially Resolved Nuclear Magnetic
Resonance Experiments” (Mattson [34]):

”The distribution of magnetic nuclei, such as protons, and their relaxation times and diffusion coefficients,
may be obtained by imposing magnetic field gradients (ideally, a complete set of orthogonal spherical
harmonics) on a sample, such as an organism or a manufactured object, and measuring the intensities
and relaxation behavior of the resonance as functions of the applied magnetic field. Additional spatial
discrimination may be achieved by the application of time-dependent gradient patterns so as to distin-
guish, for example, protons that lie at the intersection of the zero-field (relative to the main magnetic
field) lines of three linear gradients.”

”The experiments proposed above can be done most conveniently and accurately by measurements of the
Fourier transform of the pulse response of the system. They should be capable of providing a detailed
three-dimensional map of the distributions of particular classes of nuclei (classified by nuclear species and
relaxation times) within a living organism. For example, the distribution of mobile protons in tissues,
and the differences in relaxation times that appear to be characteristic of malignant tumors, should be
measurable in an intact organism.”

Thus the Lauterbur spectral localization is based on affine dilations. These are imple-
mented on a modular stratification basis by linear magnetic field gradient matrices into
which transvections admit factorizations (Schempp [45]). The measurements of the one—
dimensional Fourier transform have been refined by the two-dimensional Fourier trans-
form spectroscopy contributed by Ernst, and the spin-warp version of Fourier transform
MRI developed by W.A. Edelstein, J.M.S. Hutchinson, and J. Mallard of the Aberdeen
University group in Scotland.
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With regard to possible applications of his spectral localization method, Lauterbur drew
the following conclusions without explicit citation of Damadian’s paper (Mattson [34]):

» Applications of this technique to the study of various inhomogeneous objects, not necessarily restricted
in size to those commonly studied by magnetic resonance spectroscopy, may be anticipated. A possible
application of considerable interest at this time would be the in vivo study of malignant tumors, which
have been shown to give proton nuclear magnetic resonarce signals with much longer water spin-lattice
relaxation times than those in the corresponding normal tissues.”

At the background of both the SAR and MRI high resolution imaging techniques lies the
construction of a multichannel coherent wavelet reconstruction analysis-synthesis filter
bank of matched filter type (Davies [15], Rihaczek [38], Freeman [23]). Beyond these
applications to local frequency encoding subbands, the Kepplerian temporospatial phase
detection strategy leads to the concept of Feynman path integral or sutnmation over phase
histories.

As approved by quantum electrodynamics, geometric quantization allows for a semi-
classical approach to the interference pattern of quantum holography and the spin ex-
citation profiles of MRI (Schempp [42], [43], [44], [45]). Implementation of interference
needs, of course, phases coherency and therefore the transition to the frequency domain
by a duality procedure. Indeed, the unitary dual G of the Heisenberg group G consist-
ing of the equivalence classes of irreducible unitary linear representations of G allows for
a coadjoint orbit foliation of symplectic affine leaves O, (v # 0), spatially located as a
stack of tomographic slices, and decomposing the dual vector space Lie(G)* of the real
Heisenberg Lie algebra Lie(G) (Schempp [40]). This fact is a consequence of the Kirillov
homeomorphism Y
G — Lie(G)*/CoAdg(G)
which establishes the canonical foliation of the three-dimensional super-encoding projec-

tive space P(R X Lie(G)*).

o The connected, simply connected Heisenberg two-step nilpotent Lie group G admits
a realization by a faithful matrix representation G — SL(3,R).

in terms of standard coordinates, the Heisenberg group G is realized by the set of unipo-
tent matrices

1 .2
01 y z,y,zER}
0 0 1

under the matrix multiplication law of the dual pairing presentation

1 z, =z 1 z, 2 1 z14z22 21 +20471.92
0 1 y|.10 1 wp|=1{0 1 Y1+ Y2
0 0 1 0 0 1 0 0 1

The form of rank one defining the non-commutative matrix multiplication of G is neither
antisymmetric nor non-degenerate. However, it is cohomologous to the non—-degenerate
alternating determinant form. It suffices to use any form which is cohomologous to a
non-degenerate alternating bilinear form to define the multiplication law of G.
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The differential operator associated to the natural sub-Riemannian metric of G is the sub-
Laplacian L on G. Notice that the sub-Riemannian geometry is to the sub-Laplacian
in the sub-elliptic realm what Riemannian geometry is to the Laplacian in the elliptic
rcalm. The solutions of the Hamilton-Jacobi equations associated to the principal symbol
of Lg project onto the constant velocity locally length minimizing curves in G.

¢ The geodesics with respect to the natural sub-Riemannian metric of G are the
Heisenberg helices.

In terms of the coordinates of the dual pairing presentation of G, the sub-Laplacian Lg
takes the form of a Hérmander sum of squares

Lo=—

1,0 0
2« 9z

2,0 d
(').n_yaz) +(8y+laz))

The Heisenberg group (' has two presentations that are particularly important in appli-
cations. It is standard that the radical of a bundled alternating bilinear form is the only
invariant of the bundled form. Therefore, the dual pairing presentation of ( is isomorphic
to the basic presentation of the Heisenberg group G which is given by the multiplication
law of the unipotent matrices

1w Lw*+zi
{lo 1 w }wec,zeR}.
0 0 1

Computations are usually easiest in the basic presentation of G because the straight
lines through the origin are the one-parameter-subgroups. Due to the planetary orbit
stratification, the Kepplerian temporospatial phase detection strategy leads to the basic
presentation (Schempp [45]).

e There is a realization of the Heisenberg group G by a faithful matrix representation
GG — Sp(4,R) defining the image group as an exteasion via matrix multiplication.

In terms of the left-invariant vector fields

a _a = 0 0
LV—~a—w—w5;, W—%*‘UJEZ‘,

the sub-Laplacian L takes the form

By _é(ww +WW)

The spectrum of the sub-elliptic operator Lg is absolutely continuous with uniform mul-
tiplicity on the longitudinal center frequency axis R, transverse to the symplectic affine
plane R ® R. The density of the spectrum on the longitudinal center frequency axis R is
given by the Pfaffian of G.

e The symmetries of the sub-elliptic differential operator Lg; are reflected in the time
reversal, which is implicit in the spin echo methods and the conjugation of the
gradient echo imaging methods.
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The coordinate functions
175 @yl 1 0 0 15052
0 1 0f, 01 yli, 0 1 0
0 0 1 0 0 1 0 0 1

of G define transvections or shearings of a three-dimensional real vector space (Dieudonné
[19]). The multiplicative group of longitudinal dilations transforms the transvections into
the transvections

1 az 0 1 0 0 1.0 a%z
0 1 0}, 01 ayl, 0.1 70
0 0 1 0-=0—1 0 0 1

for a # 0. Conversely, it is easy to verify that transvections admit factorizations into affine
dilations of opposite ratio. With respect to the sub-Riemannian metric of (¢, each dilation
multiplies lengths by the fixed value |a|. The existence of dilations shows that small
neighborhoods are similar to large neighborhoods in G. The reflections implementing the
time reversal implicit in the spin echo method and the gradient echo technique are given

by the improper matrices
1 0
(%)

in the rotating coordinate frame of reference, and

(3 1)
0 1
in the laboratory coordinate frame of reference, respectively.
The contact geometry of the quotient projection
G — G/center
gives rise to the contact one-form
1
n=dz+ i(z.dy —y.dz)

where
dn=dz Ady
holds with respect to the laboratory coordinate frame of reference.

If the unipotent matrices { P, @, I} denote the canonical basis of the three-dimensional
real vector space Lie(G), where the elementary matrices

1 10 1 00 1 01
expgP=10 1 0f,expc@=]0 1 1|,expg/=|(0 1 0
0 0 1 0 01 0 0 1

are given by the matrix exponential diffeomorphism

expg : Lie(G) — G,
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the coadjoint action of G on Lie(G)* is given by

1 -y
CoAdg | 0
0

O~ 8

z 1 0
y|l=10 1 =z
1 0 0 1

Therefore the action CoAdg reads in terms of the coordinates {e, B,v} with respect to
the dual basis {P*, @, I*} of the real vector space dual Lie(G)* as follows:

1
CoAdg | 0
0

[ ]

y | (@P* +8Q" +vI*) = (a = vy) P* + (B + ve)Q" + vI*.
1

e In radar imaging, v # 0 denotes the center frequency of the transmitted coherent
pulse train, whereas in clinical MRI the center frequency v is the frequency of the
rotating coordinate system defined by tomographic slice selection.

In clinical MRI, the Pfaffian of G allows to select the tomographic slice by an application
of linear magnetic field gradients.

o The pitch of the Heisenberg helices is inversely proportional to the polarity of the
linear slice select gradients.

For an illustration of the Heisenberg helix after excitation by a nutation 7 pulse. The
pitch of the Heisenberg helix indicates the energy gain due to the longitudinal relaxation
effect. This is typical of a single-frequency FID.

The linear varieties

O, = CoAdg(G)(vI") =RP* +RQ* +vI* (v #0)]

actually are symplectic affine planes in the sense that they are in the natural way compati-
bly endowed with both the structure of an affine plane and a symplectic structure. There-
fore the trivial line bundle R @ R on the symplectic affine plane O, — Lie(G)* (v # 0)
of connection differential 1-form

v.(z.dy — y.dz)
and rotational curvature differential 2—form

w, =vdz Ady

in the cohomology group
N(©)=2H(RORR) (v#0)

forms the predestinate planar mathematical structure to implement the Kepplerian tem-
porospatial phase detection strategy over the bi-infinite stratigraphic time line R of time
cycles or repetition times. The closed exterior differential 2-form

w, = éuidw A dw (v #0)
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is a representative of the magnetic moment referred to in Bloch’s dynamical approach.
In the NMR experiment, the intrinsic dynamics is due to the driving flat radiofrequency
circuit.

In MRI, the symplectic affine lincar varieties O, < Lie(G)* (v # 0) are predestinate
to carry quantum holograms or spin excitation profiles acting as multichannel perfect
reconstruction analysis—synthesis filter banks (Schempp [41], Farre [22]). The quantum
holograms are implemented by the frequency modulation action of G.

The stationary singular plane O, < Lie(G)* of equation

v=20
consists of the single point orbits or focal points

Oo = {E(a,ﬁ) | (a3ﬂ) €ERO® R}

corresponding to the one-dimensional representations of G. The elements of the plane
O are the analogs of the resonance ”"sweet spots” of the conventional spectral sweep
technique employed in the early NMR spectroscopy, as well as the prototype whole-body
MRI scanner. The world’s first whole-body scanner, dubbed ”Indomitable” by Damadian
to capture the spirit of its seven—year construction (Schempp [45]), provided a technique
named FONAR to achieve the first MRI scan of the human body in vivo, and to convince
the medical community that MRI scanning was, in fact, a reality.

The infinite dimensional irreducible unitary linear representations of G associated to the
symplectic affine leaves O, (v # 0) collapse down to characters of G. The state-vector
reduction, or collapse of coherent wavelet can be described by the transition

@~ cpda®dl (v # 0)]

As an energetic edge, the confocal plane at infinity P(R x Os ) plays a fundamental role in
the energetic structure of observation (Farre [22]), and specifically in the coherent optical
processing of radar data (Cutrona [13]), morphological MRI studies, and neurofunctional
MRI detection for the mapping of the activities of the human brain to morphological
cranial anatomy. From there the reconstructive amplification via the multichannel paral-
lelism of coherent quantum stochastic resonance takes place.

The quantum holograms which are generated by neurofunctional MRI experiments rep-
resent ”matiere & pensée” (Changeux [9]), or shadows of the mind implemented by the
rotationally curved planes of immanence in the philosophy of constructivism (Deleuze
(16], [17]), or symplectic affine planes of incidence (Farre [22]).

”Ein maschinelles Gefiige! ist den Schichten zugewandt, reinen Intensitaten, die sie zirkulieren 128t um
die Selektion der ” Konsistenzebene” zu sichern und der sich die Subjekte zuordnen, welchen sie einen
Namen nur als Spur einer Intensitat 1aft.”

The shadows of the mind emulated by MRI scanner systems seem to provide a promising
conceptual approach to the missing science of consciousness.

1 agencement” in French
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e The canonical foliation of the three-dimensional super-encoding projective space
P(R x Lie(G)*) allows to deduce the phase coherent wavelet collapse phenomenon.

e There exists no equivalent of the state-vector reduction, or coherent wavelet collapse
phenomenon in the realm of classical physics.

¢ The amount of information that can be extracted from a spin isochromat computer
is limited by the phenomemon of phase coherent wavelet collapse.

In contrast to the coadjoint orbit visualization of the unitary dual G, the standard bra-ket
procedures of quantum mechanics provide no implication that there be any way to de-
duce the collapse phenomenon as an instance of the deterministic Schrédinger evolution.
Whereas the weak containment of the identity representation 1 in the tensor product
representation provides a geometric symmetry condition for the decryption of quantum
information from the holographic encryption, there is in standard quantum mechanics no
clear rule as to when the probabilistic collapse rule should be invoked, in place of the deter-
ministic Schrédinger evolution. This establishes the extraordinary power of the coadjoint
orbit visualization in terms of the three-dimensional real projective space P(R x Lie(G)*),
and the confocal plane at infinity P(R x O4) included.

In order to define the transvectional G-action of G', it is convenient to imimerse the
CoAdg(G)-foliation of Lie(G)* with typical fiber R & R into its projective completion
P(R x Lie(G)*) by the bi-infinite stratigraphic time line R. It will be shown that the
concept of projective space P(R x Lie(G)*) which is helpful in the realms of computerized
geometric design, computer vision and robotics, is also useful in non-invasive radiodiag-
nostics.

o The intrinsic construction provides the foliated three-dimensional super—-encoding
projective space P(R x Lie(G)*) as the projective completion of the dual vector
space of the affine dual of any of the tomographic slices @, — Lie(G)* (v # 0) by
the bi-infinite stratigraphic time line R.

e The stratigraphic time line R records simultaneously the time cycles or repetition
times of the MRI protocol as well as the superposition of spin up and spin down
states, and the arrays of qubits they are representing in coexistence.

e The unitary dual G of the Heisenberg group G can be immersed into the foliated
three-dimensional projective space P(R x Lie(G)*). The confocal plane P(RxO.)
is the plane at infinity of P(R x Lie(G)*). The two-dimensional projective varieties
P(R x O0,) (v # 0) are contained in its complement.

e Due to the factorization of transvections into affine dilations of opposite ratio, the
Lauterbur spectral localization controls the transvectional action of G on the line

bundle model P(R x Lie(G)*) of G.

¢ The three-dimensional elliptic non-Euclidean space P(R x Lie(G)*) is homeomor-
phic to the compact unit sphere S3 < R* under antipodal point identification via
the action of the group {id, —id}.

® The three-dimensional elliptic non-Euclidean space P(R x Lie(G)*) is homeomor-
phic to the compact solid ball B3 — R?® with the antipodal (diametrically opposite)
points of its boundary S; = 9Bj identified.
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It follows from the classification of the coadjoint orbits of G in the foliated projective
space P(R x Lie(G)*) the highly remarkable fact that there exists no finite dimensional
irreducible unitary linear representation of G having dimension > 1. Hence the irreducible
unitary linear representations of G which are not unitary characters are infinite dimen-
sional and unitarily induced. Their coefficient cross sections for the Hilbert bundle sitting
over the bi-infinite stratigraphic time line R define the holographic transforms which sum
the free induction decays.

e In the data acquisition process, the holographic transform collects the decaying
response wavelets of the radiofrequency pulse trains in quantum holograms, or FIDs
in spin excitation profiles.

Let C denote the one-dimensional center of G, transverse to the plane carrying the quan-
tum holograms or spin excitation profiles. Then

C = R.expgl

is spanned by the central transvection expgl. In coordinate-free terms, G forms the
non-split central group extension

& gl —aC

where the plane G/C is transverse to the line C. Thus G is defined to be the unique
central extension

{0} - R—G—RoOR — {0}

which does not contain any line R as a direct factor. This condition of not containing R
as a factor is equivalent to the 2-cocycle of the extension which always can be taken to
be alternating bilinear, being non-degenerate. The uniqueness follows from the fact that
every pair of non-degenerate such forms are congruent in GL(2,R), the outer automor-
phism group of the plane R @ R.

The irreducible unitary linear representations of G associated to the projective coadjoint
orbits P(R x 0,) — P(R x Lie(G)*) (v # 0) are unitarily induced in stages by the unitary
characters of closed normal abelian subgroups which provide a fibration of G sitting over
the bi-infinite stratigraphic time line R. The elements w € O, of the typical fiber are
represented by complex numbers of the form

G 2)-GD+6 )G 9)

including the differential phase

and the local frequency
(5 v)
0y
as real coordinates with respect to the frame of reference rotating with center frequency

v # 0. The alternating matrix
e
“\1 0

363




of Pfaffian
Pf(J) =1

acts as imaginary unit of the basic presentation of G. It generates the special orthogonal
group SO(2,R) — O(2,R). Together with the reflection defined by the data routing

ma.trix
( )
O —1 ’

the non diagonalizable matrix J generates the orthogonal group O(2,R). The group
O(2,R) can be lifted to the group of all isometries of G with respect to the natural sub-
Riemannian metric of G.

It becomes obvious that [w|? = det w and that the rotational curvature differential 2-form
wy of O, is exactly the standard symplectic form of R®R, dilated by the center frequency
v # 0. Thus G implements the oscillator driven dynamical system

R<RoR

of longitudinal center frequency axis R, transverse to the symplectic affine plane R @ R.
Keppler described the idea of an oscillator driven cyclic clockwork as an act of profanation:

"Mein Ziel ist es, zu zeigen, daf die himmlische Maschinerie nicht von der Art eines géttlichen Lebe-
wesens, sondern von der eines Uhrwerks ist, da8 die ganze Mannigfaltigkeit ihrer Bewegungen von einer
einfachsten magnetischen korperlichen Kraft herriihrt, so wie alle Bewegungen des Uhrwerks allein von
dem es treibenden Gewicht.”

The R-linear isomorphism
@~ (5 )
of O; onto the realification C(R ® R) of the field C of complex numbers suggests an
extension from two dimensions to three dimensions via the real quaternion skew-field H.
The R-linear mapping
w w
(w, w') ~ ( _ )

—w' W

provides an isomorphism from the image of C? onto H. In terms of the matrices of this
type, the multiplication in H reads

wy  wy wy  wy') wiwy — wy'wy wiwy + wy'w,
(—1151' w; ) ’ (—1172' Wq ) - (—(U71U72' +wi'w,y)  wyw, — 1171'U)2’)
The tangent space of S3 < R* at the neutral element of SU(2, C) is isomorphic to the
vector space R®. The isomorphism suggests to introduce the Pauli spin matrices forming
the canonical basis of the Lie algebra associated to SU(2,C), and the real Clifford algebra
Clio)(R). These matrices generate analyzing one-parameter subgroups of the group

SU(2,C). The corresponding elements in the skew-field H are given by the pure or
traceless quaternions.

e The group S3 is the non-trivial covering Spin(3, R) of the rotation group SO(3, R).
The group SO(3,R) contains two normal subgroups, both isomorphic to Ss., which
give rise to the Clifford translations acting transitively on the foliated projective

space P(R x Lie(G)*).
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e Identification of the group S; — R* with the unit sphere of the skew-field H
provides the multi-slice imaging capability of the MRI modality via the abelian
groups SO(2,R) of Clifford translations of tomographic slices in the elliptic non-
Euclidean space P(R x Lie(G)*).

e Identification of the unit sphere S3 < R* with the compact group SU(2,C), or
the compact homogeneous manifolds (SU(2,C) x SU(2,C))/SU(2,C), or
SO(4,R)/SO(3, R) provides the design of pairs of surface coils of the MRI scanner
bore via zonal spherical harmonics.

The interleaving of data acquisition through multi-slice imaging provides a simple means
of acquiring data in all three dimensions, and is widely used in clinical imaging. Due to
the multiplanar imaging capability of MRI, direct transverse slices of superior to inferior
orientation of the plane normal, sagittal slices of anterior to posterior orientation of the
normal, and coronal slices of lelt to right orientation of the normal, as well as oblique
plane selections can be performed without changing the patient’s position. In X-ray com-
puted tomography (XCT) imaging, sagittal and coronal images are reconstructed from a
set of contiguous images. The orthogonal and oblique scan plane selection offer clinical
advantages of MRI over XCT. Actually, MRI is closer to high resolution radar imaging
than to XCT. The high soft-tissue contrast resolution is another advantage over XCT.
Neuroradiologists think that if history of science was rewritten, and XCT invented after
MRI, nobody would bother to pursue XCT imaging. For whole-body imaging radiol-
ogists, however, the predictions of XCT’s imminent demise and MRI’s ascendency no
longer seem so prescient.

The bundle-theoretic interpretation of the inducing mechanism gives rise to the pair of
isomorphic irreducible unitary linear representations

v w#0)

of G unitarily induced in quadrature by the unitary characters of the associated closed
normal abelian subgroups of G. The induced Hilbert bundles sitting in quadrature over
the bi-infinite stratigraphic time line R, admit for any Fourier transformed pair of exciting
phase coherent wavelets

(¥, %)
in the frequency modulation space LE(R), and element z € C the contiguous cross-

sections of a phase-splitting network of uncorrelated multichannels in quadrature format
" (Freeman (23], Farre [22])

RIO’ 62niu(z—(z—ro)y).w(__1)) ’ (yo, e21riu(z+r(y—yo)).(r9(y)> ((zo,90) € T & S)

where zo € T denotes the phase reference of the stroboscopic phase cycling at which
system state change. Moreover, yo € S denotes the intermediate frequency reference of
the synchronous period cycling clockwork of transitions determined by the computer’s
programming, and

¢ = Fr
where the phase coherent wavelet o is the Fourier transform of v». The linear representa-
tion U” of G and its swapped copy V' are globally square integrable mod C'. Indeed, it

365




is well known that a coadjoint orbit is a linear variety if and only if one (and hence all) of
the corresponding irreducible unitary linear representations is globally square integrable
modulo its kernel. An equivalent characterization of square integrability mod C is that
the Pfaffian of G does not vanish at the center frequency v.

It is reasonable to regard global square integrability as an essential part of the Stone—
von Neumann theorem of quantum physics, because a representation of a nilpotent Lie
group is determined by its central unitary character Xv if and only if it is globally square
integrable mod C. Thus , allows for selection in the tomographic slice P(R x O,) —
P(R x Lie(G)*) (v # 0) a coordinate frame rotating with center frequency v # 0 via an
affine dilation in the longitudinal direction of the line C'. The corresponding equivalence
classes of irreducible, unitarily induced, linear representations U of G acting on the
complex Ililbert space of globally square integrable cross sections for the Hilbert bundle
sitting over the bi-infinite stratigraphic time line R are infinite dimensional and can be
realized as Hilbert-Schmidt integral operators with kernels A € L*(R & R) (Schempp
(40], [42], [43], [44], [45]). The derived representation

U*(Le),

evaluated on the sub-Laplacian L of G in the universal enveloping algebra of Lie(G), is
the harmonic oscillator Hamiltonian of center frequency v # 0. Due to the global square
integrability mod C of U" for v # 0, the center of Lie(G) coincides with the center of the
universal enveloping algebra of Lie(G).

The center of the product group S; x S; is given by the set

{1, 1] % {I,~1},

and therefore has order 4. It contains the kernel

{L,1} x {-1,-1}

of order 2 of the natural group epimorphism S3 x S; —» SO(4,R).

Due to the antipodal point identification of S, the realization of the foliated three-
dimensional super-encoding projective space P(R x Lie(G)*) is diffeomorphic to the quo-
tient of S3 by the action of the group {id, —id}. As a result, the center of S3 x S3 in the
direction plane R @ R of P(R x O.) (v # 0) gives rise to the distributional reproducing
kernel
L®lL,

on P(R x 0,) - P(R x Lie(G)*) corresponding to the rotational curvature differential
2-form

w, € P(ROR,R) (v #£0).

It defines the symplectically reformatted two-dimensional Fourier transform
*(1,®1,)

acting as a spectral sweep by symplectic convolution (Schempp [44], [45]) on the symplectic
spinors of P(R x O,) — P(R x Lie(G)*) (v # 0). In contrast to the conventional two-
dimensional Fourier transform of order 4, the symplectic Fourier transform admits order
2 (Schempp [43], [44]). This corresponds to the involutory entangling map W ~» W of
quantum computation (Schempp [45]).
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e The kernel function K € L*(R @ R) associated to the irreducible unitary linear
representation U of central unitary character x, = U* | C implements a multichan-
nel coherent wavelet perfect reconstruction analysis-synthesis filter bank of matched
filter type.

In order to paratactically synchronize the rotating coordinate frame to the laboratory
frame of reference, the kernel function K has to be composed with the symbol map o
which is defined by the Hopf fibration

S3——-—)Sg

with fiber S; into Clifford parallel circles S; < S3. The Clifford parallelism is understood
in the sense of the elliptic non-Euclidean geometry.

e The decomposition of the complement of P(R x O) in the real projective space
P(R x Lie(G)*) by the canonical foliation P(R x 0,) (v # 0) corresponds to the
decomposition of the unit sphere S3 — R* by the Hopf fibration.

In terms of a partial Fourier cotransform, the symbol of K* takes the explicit form
o(K*)(z,y) = € ™ Fper K*(z,y) ((z,y) e ROR)

The excitation profile, generated by the density f of proton-weighted spin isochromats,
takes the form of the symplectic spinor extension

v*(f)
corresponding to U*(Lg). If the tempered distribution

K" = KY

represents the kernel associated to U”(f), the symbol o(K7}) of Ky results from the
standard spin echo pulse sequence.

e The continuous affine wavelet transform performing the spectral localization of the
proton-weighted spin isochromat density f in the leaf P(R x 0,) (v # 0) by linear
gradient stratification lifts to the central spectral transform for the sub-Laplacian

Lg.

e The central spectral transform for Lg diagonalizes the weak action of Lg on the
symplectically reformatted two-dimensional Fourier transform. It gives rise to the
distributional reproducing kernel 1 ® 1 for the tracial read—out sweep of quantum
holograms in the laboratory frame of reference.

e The Karhunen-Loéve expansion associated to the central spectral transform pro-
vides the information distribution within the quantum hologram.

e The reconstructive amplification process is performed by coherent quantum stochas-
tic resonance as a form of multichannel parallelism.

e The multichannel reconstruction of the phase histories in local frequency encoding
subbands from the symbol o(K’) is performed by the symplectic Fourier transform
*(1, ®1,).
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The spin echo method and the Lauterbur spectral localization method are closely related
refocusing techniques. Why Lie group theory in the field of spin isochromat computing?
Because the the Heisenberg group G allows to describe the synergy between radiofrequency
pulse trains and linear gradient stratification. This synergy actually is the core of the
tracial encoding procedure performed by MRI protocols. The Heisenberg group approach
leads to the ezplicit tracial reconstruction formula

i I 1
f(z,y) = 56’”"”0([&’}') *(1,® 1,,)(51:, §y)

The two-dimensional Fourier transform method, contributed by the physical chemist
Ernst, forms the completion of the Lauterbur spectral localization method. It is remark-
able, that the elliptic non-Euclidean geometry of the projective space P(R x Lie(G)*)
provides the unifying fundament for both of the achievements.

The Heisenberg group approach leads to the non-local entangling phenomenon of quan-
tum physics (Schempp [41], [45]), and to major application areas of pulse train recovery
methods, the corner turn algorithm in the digital processing of high resolution SAR data
(Wehner [51]), the spin-warp procedure in clinical MRI via an application of the FFT
algorithm, the gradient echo imaging methods, and finally to the variants of the ultra—
high-speed echo-planar imaging technique of functional MRI (Schempp [45]). Combined
with multi-slice imaging via interleaving of data acquisition, the spin-warp version of
Fourier transform MRI is used almost exclusively in current routine clinical examinations
(Crooks [12], Reiser [37], Stark [46]). For updated surveys of practieal magnetic resonance
tomography, see the monographs by Beltran [4], Brown [5], Cardoza [7], and Heuser [27].

The speed with which clinical MRI spread throughout the world as a diagnostic imaging
tool was phenomenal. In the early 1980s, it burst onto the scene with even more intensity
than XCT imaging in the 1970s. The superiority in spectroscopic sensivity of MRI over
XCT imaging was first approved by the non-invasive detection of demyelinating plaques
in multiple sclerosis (MS) patients. For the MRI based diagnosis of demyelinating dis-
orders such as MS, several chelates of gadolinium are available for use as intravenous
paramagnetic contrast agents (Knaap [29], Paty [36]).

Similarly, MRI is more sensitive than XCT for detecting the epileptogenic zones and is
superior to XCT for predicting seizure outcome after surgery.

Whereas at the end of 1981 there were only three working MRI scanner systems available
in the United States, presently there are more than 4.000 imagers performing in a non-
invasive manner more than 8.5 million examinations per year. Due to its spectroscopic
sensitivity and specificity, MRI provides the techniques of choice to assess MS plaques of
demyelination in the periventricular white matter, cerebral cortex, cerebellum, brainstem,
and spinal cord, and to monitor the short-term as well as the long-term evolution of MS
(Beltran [4], Knaap [29]). The contrast developed by lesions depends on the orientation
of myelinated white matter tracts relative to the linear magnetic field gradients. With
gradients perpendicular to the predominant fiber direction, the lesions are poorly seen.
With gradients parallel to the fibers, they are readily seen. XCT imaging is not reliable
for the diagnosis of MS.
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The speed of growth is a testimony of the clinical significance of this sophisticated tech-
nique. Today the modality is firmly established as a core diagnostic tool in the fields of
neuroradiology (Ball [1], Barkovich [2], [3], Damasio [14], Jackson (28], Kretschmann [30],
Patel [35], Truwit [49]) and musculoskeletal imaging (Chan (8], Deutsch [18], Edelman|21],
Stoller [48], Vahlensieck [50]), routinely used in all medical centers in Western Europe and
the United States. The ability to display the morphological anatomy of living individ-
uals in remarkable detail has been a tremendous boon to clinical practice. It etablishes
that non-trivial mathematics can be applied to the benefit of humankind. Due to the
inclusions

R < C < H,

the claim that four-dimensional spaces are quite ezceptional, is no idle talk, at least {from
the point of view of clinical MRI which offers a fascinating intellectual study in its own
right.

Summarizing the significant breakthrough which MRI represents in conjunction with the
recent hardware and software developments, the future of clinical MRI as a non-invasive
diagnostic imaging modality seems to be bright. With its many advantages, including
unrestricted multiplarar imaging capability, high spatial resolution imaging, exquisite
contrast imaging of soft tissues, in addition to great versatility offering the ability to im-
age blood flow, motion during the cardiac cycle, temperature effects, and chemical shifts,
morphological MRI studies are a well-recognized tool in the evaluation of anatomic, patho-
logic, and functional processes. Specifically, clinical MRI allows for greater depiction of
tumor extension and staging (Edelman [21], Reiser [37], Stark [46]).

Radiologists are skilled at interpreting original cross-sectional scans. Nevertheless, more
advanced techniques such as magnetic resonance angiography need computer—based med-
ical three-dimensional imaging. Despite formidable challenges, technical advances have
already made it possible to develop multiple surface and volume algorithms to generate
clinically useful three-dimensional renderings from MRI data sets.

Although MRI has not reached the end of its development, this diagnostic imaging modal-
ity has already undoubtedly saved many lives, and patients the world over enjoy a higher
quality of life, thanks to MRI. The previously impenetrable black holes of lung air spaces
are finally yielding their secrets to MRI. Utilizing inhaled *He or 129X e gases that are
hyperpolarized by laser light, MRI scans can be acquired in a breath-hold that promise
to reveal new insights into pulmonary anatomy and function. Because the exhaled gases
can be recycled, MRI will play a role also in the earlier detection of chest diseases and
bronchiectasis, and surgical planning of lung transplantation.

The dramatic advances made in clinical MRI within the last few years, the resulting en-
hancement of the ability to evaluate morphological and pathologic changes (Crooks [12],
Stark [46]), and the non-invasive window on human brain activation offered by neurofunc-
tional MRI studies to the preoperative assessment (Cohen [10], Kretschmann [30], Sanders
[39]), demonstrate the unity of mathematics, science, and engineering in an impressive
manner. This unity of sciences proves that the frontiers between different disciplines are
only conventional. The frontiers change according to the state of human knowledge. the
understanding of nature, and the computer performance in silicio available. They can
be penetrated by mathematical methrdology which allows to support the semantic filter
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needed as an essential component of all observations and interpretations in biology and
medicine.
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