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Abstract

The spread of an epidemic can be studied on a discrete space into small cells arranged into
a ds-dimensional regular lattice [Durett & Levin, 1994]. Each sites are occupied by
healthy individuals may be infected by neighbours, after which they recover completely,
they recover and are subsequently immune, or they die. Such a model is a generalisation
of the differential equation approach. It corresponds to a modification of the directed
percolation problem, useful to describe a large number of disordered systems in physics
and chemistry. A critical concentration separate a phase where the epidemic dies out after

a finite number of time steps, from a phase where the epidemic can continue forever.

In the simplest models, we assume that the vicinity, in which the infection process takes
place, is a small domain surrounding the healthy individual considered. This vicinity is
made up of the first layers of M = 3%-1 cells surrounding the central cell considered
(Moore neighbourhood). The purpose of this article is to generalise the dimension of the
substrate by introducing a fractal distribution of the sites. For each distribution of infected
individuals in this vicinity, there is a certain probability £ of infection. Due to the self-

similarity, the infection quantities are significantly modified on fractal substrate.

The fractal distribution of the sites can be related to the spatial distribution of the epidemic
vector [Meltzer, 1991]. Vector distribution is a matter of suitable habitat, which is a sum
of a wide range of environmental factors (humidity, soil moisture, ground temperature,
parasitic-host population density, etc..). The distribution of the sites can be also related to
the genetic distribution of the susceptibility of the host population. In a herd, the laws of
inheritance form a discrete and recursive system which mixes and distributes the genes of
susceptibility. We can propose an aggregation model of relatives around an individual,
which is based on the direct inheritance.
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1. Introduction

Various authors have already demonstrated that the potential spread of diseases, such as
cattle diseases, can be aﬁticipatedby studying environmental and/or genetic factors which
affect the diffusion of the vectors or the susceptibility of the host. The existing work
focuses on identifying and mapping potentially suitable sites often using averages taken
from time series (for example, climatic data). The issue of the fluctuations in the amount
and distribution of suitable habitat sites, or susceptible host genotypes, has not be fully
addressed. Such fluctuations could destabilise enzootically stable disease populations, or
introduce the vectors and diseases into previously naive herds. In either case, the
subsequent mortality rate among susceptible cattle could be significant. Even if there are
no fluctuations in the suitable habitat sites, or susceptible host genotypes, knowledge of
the area involved defines potential control sites. In order to study some epidemic
processes, such as diffusion of scrapie which is a diseases with genetic susceptibility, we

aim to analyse the organisation of a related population.

2. Distance of kinship between individuals

The studies of genetic relationships between relatives propose to connect distance and
genetic resemblance. The principle is based on the notion of identity which forecasts, with
reference to Mendel's laws of inheritance, the probability of gene similarity in two
individuals. It is a complex function of the number of generations between them. This
purpose is expressed in the methods of "Analysis of genetic variability using genealogical
data" [VuTien Khang 1989] .

The whole genealogicaldata which may be obtained for an individual (i.e. its ancestors,
its pedigree) gives, retrospectively, the morphogenesis of specificity of this individual
within the genetic variety of the relatedpopulation. Any part of pedigree hold in common
by two individuals involves that they are, more or less, similar (at least in probability).
Anyway, the definition of kinship may be expressed by the following sentence : " Two
individuals are related when they have part of their pedigree in common (...) The fact that
related individuals resemble one another was no doubt the starting point of all genetical
thought. The most casual observation shows thar children resemble their parents, or
sometime are strikingly like a more distant relative, and that sibs resemble one another "
[Jacquard 1982] ..
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Theoretically, the number of ancestors of an individual increases as 20, where n is the
number of generations. The measures of kinship are performed between individuals,

taken two by two.

In a limited size population, it is obvious o . .
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that two individuals must probably share - s .
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relatedness leads to illustrate this sharing by 3 A ‘ f
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Fig. 1 : Graph of relatedness between X and V

However complex such a graph may be, the genetic involvement of the connection
between X and Y can be expressed as the probability that they harbour in common a gene
which are copies of the same ancestor gene. The measures of kinship aim to quantify the
probability of identity. The coefficient of kinship ®xy, which is one of these measures.
is equal to the probability that. in any autosomal focus taken at random. one get the same

genein X and Y :
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where {Aj} is a set of ancestors that two chains of descendants connect to X and Y, A et

7" are the length of these chains.

This property, which defines ultrametrics, is characteristic of the hierarchical structures.
In a hierarchical tree structure, the respective distances of leaves can be measure by the
height of their first common root. If we consider a triplet of individuals, X, Y. Z, their
respective distance of dissimilarity d¢ . a kind of Hamming distance, form either
equilateral triangles, or isocele triangles whose two equal sides are always longer than the

third side. The distribution of the attractors. however. is not arbitrary.

3. Distribution of population attractors
We propose an aggregation model of relatives around an individual X. The process of
iterative constitution of the X family group may be performed using a syntactic formalism
[Dekking 1987] . We propose the following coding system in which R, B and F are
individuals and k is a mean (or stochastic) number of descendants per individual :

- B is an individual which neighbouring is totally defined,

- R is an individual which roots remain to be defined,
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- F is an individual which descendants remain to be defined.

Atevery iteration, the foliowing substitution (a & morphism) applies :
0(R) = RRB(k-1)F ; 6(B) = B : 6(F) = BKF

At the first step, we start with an individual and its neighbouring :

k tmes
{R, R.l_?,T,...F}: {X father, X mother, X, 1° descendant,....k® descendant}. Then

others aggregate by the transformation process. That gives a sequence of "words"
{MO).M(1), ...} (Fig. 2).

It may be observed that, as the size of the group increases. a property of autosimilarity
seems to appear. Considering the asymmetricai tree. on which is based the family group
constitution, a property of strict autosimilarity is not possibie. Though, it can be defined
autosimilarities by classes F(1),...F(N)_ if a fractal F() can be a partition {l*}”"} such as
any part is similar to one of the F(1),...F("), The morphism which leads to the family
group constitution. gives the properties of autosimilarity by classes. This syntactic
formalism shows thata set which components organise themselves locally, may harbour
global properties of autosimilarity. These properties, when they apply to an intensive
value (such as an incidence rate), allows us to make a change of space for the approach of
diffusion processes.

FRRIERRIERRF
RR RR R &
A
B
FBF BBB Bg \gs
FF FF FF FFFF FF
M(0) M(1) M(2) Etc ...

Fig. 2 : Graphic representation of the syntactic model application

In this model, a scale law associated to the autosimilar structure is revealed by a special
behaviour of the kinship relation. If r is the number of relatives distant of n generations
from X, and @ their coefficient of kinship with it, the bi-logarithmic representation of r
versus @ shows a quasi-linearity. This linearity and the family group properties (revealed
by the syntactic model) suggest that a fractal model of kinship may exist within a

population.

The Zipf law, used in the complex systems analysis, connects an intensive value @
(frequency) and a value of counting 7 (rank) :
do.r’ =K (Eq. 2)
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An extended power law, called this equation Zipf-Mandelbrot law, generalise the rank-
frequency relation [Le Méhauté, 1974]

®.(r+B)’ =K (Eq.3)

where Bg gives the degree of organisation of the system. When 7, »B, (fmax =
maximum rank in the set) there is a high dependency to the model. On the opposite the
system is totally free [Le Méhauté, 1977] .

This transformation produces a family of curves (Fig. 4). For Byp = 0, the Zipf-
Mandelbrot law returns to the pure Zipf law. For the last ranks the Zipf-Mandelbrot
distribution tends to the Zipf law values.

The equation (Eq. 3) may be replaced with a logarithmic one :
In(®)=yLn(r+Bg)-Ln(K) (Eq.4)

o —e k|
%

-8

Fig. 3 : Bi-logarithmic representation of the relation @ : r.
(a) Zipf law. (b) Zipf-Mandelbrot law.

This conjecture have been tested with real genealogical data, obtained from 51 breeds of
sheep, which pedigree were well known [Guigal, 1995] . The coefficient of kinship,
which may be viewed as an intensive property, is connected to the rank of any
relationship in the ordered set of the whole kinship identified. The range of size of these
sets was 300 to 16000. The figure 4 shows an example of adjustment of the kinship
relations between the young’s of the year and all adults within a breed. In a large majority
of the cases (39/51), the coefficient of correlation between the data and the Zipf-
Mandelbrot law was over 0.95. For the remaining cases, we must put forward a new
hypothesis which allows us to use another rank-size law (called the "Broken-Stick rank-

size law").
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Fig. 4 : Adjustment of the "rank-coefficient of kinship" relation

by the Zipf-Mandelbrot law :

By =2100; ¥y =26,73 ; Corr. = 0,91. (Herd N° 3370. 1990).
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Fig. 5: Localisation of the herds in a control plane (B, ¥).
(Bo : [600, 14000], v :[3, 43], Corr. : [0,70, 0,93])
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In a control plane (Bg, y), the experimental data, reveal (Fig. 5):

- an adjustment of the herds by an exponential A ;

- the discrimination of the herds according to the values of the parameters BO, y :
* By increase with the size of the herds, and with the replacement rate ;

* y increase with the dispersal of the sires (males and females lines).

4. Potential use of fractals in epidemiology

The majority of epidemic models are formulated in terms of either differential equations or
stochastic processes (Bailey, 1975). In an SIR model. based on disease status, the
individuals are divided into three disjoint groups :

(S) the susceptible group, i.e. those individuals who are not infected but who are capable
of contracting the disease and become infective;

() the infective group, i.e. those individuals who are capable of transmitting the disease
to susceptibles: and

(R) the removed group. i.e. those individuals who have had the disease and are dead, or

isolated, or have recovered and are permanently immune.

The possible evolution of an individual may. therefore. be represented by the following
transfer diagram :g_ 2 .y r. ,p where p, and p, denotes. respectively. the
probability of being infected and the probability to be removed. The spread of the disease
is governed by the first following rule (i) : susceptibies become infective by contact, i.e.
suceptibles may become infective if and only if. itis in a neighbourhood of an infective.

This hypothesis neglect latent periods. i.e. an infected susceptible become directly
infective. But there is another rule (ii) : an individual selected at random may move to a
vertex also chosen at random. If the chosen vertex is empty, the individual will move,
otherwise the individual will not move. The set in which the vertex is randomly chosen

depends on the range of the move.

More precisely, during one time step, the probability of a susceptible having z infected
neighbours become infected is (/-(/- p,.I/NY). x=p,.l/N is the probability thatata timet a
susceptible is infected by an infective located at a specific neighbouring site. Then, if 2 is
the number of neighbouring vertices of a given vertex, (/- p.x)" is the probability that
such an events does not occur, and finally fix)=(1-(/- p,.x)") is the probability that such
an event occurs at any neighbouring site. Note that, within the framework of this

approximation, the interaction terms are not bilinear as in most models (Bailey. 1975).
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Non-bilinear interactions have recently been shown to exhibit very different dynamic

behaviour (Busemberg and Van den Driessche, 1991).

The shaky basis of the SIR model is found on these two rules by reference with the
« chemical law of mass action ». All individuals are assumed to « move » randomly
and to « contact » other individuals of various types in proportion to their density: upon
contact the infective agent is transmitted with a certain probability, i.e. given a
« collision » the « reaction » takes place with a certain probability. The classical SIR
model of an epidemic given by the following equations (Kermack and McKendrick,
1927) :

(Al = B(LS -y.I = ECD-S(D)

ld%r =-B).LS =-5(S) =-E(])

I(t)+8(1) + R(t) =N
where E(I), S(I), et $(§) denote the input and the output of infected /, and susceptible S

(Eq. 5)

individuals. And R denote the number of infected individuals who have been removed
from a community of total size N. In brief, B is the infection rate, IS is the number of
possible contact-pairs between susceptibles and infectives, and ¥ is the death or removal)

rate of infectives. And. for convenience, we define p = % as the relative removali rate.

The « incidence » referring to the number of new cases per unit of time per unit of area

(when the spatial domain is two-dimensional) is :
I .
Lh=»P-(1-p —)
) E,' Al=(1=p, )"

where r is the number of infected neighbour, and x is the number of neighbouring
vertices of a given vertex. For =2, when p, is small and when we arc interested at a time
scale at which 6, the number of low-tides per unit of time, is very large, we take for the
incidence (which is a rate) the expression

ET) = ﬁ.%‘l.s where 3 =2p6

For the epidemiology of the scrapie. the following expression of the « incidence » have

been proposed :
1
EI) = s.;z Bp~ =S<F Z(acb, +B)

We can propose an agregation model of relatives around an individual, which is based on
the direct inheritance. The study of the system has been performed with simulations. The
rate of prevalence for initial conditions is 6%, wich correspond to introduce six sheeps in
the herd. The rate of prevalence obtained to the endemic equilibrium is accordance with

the epidemiological data of the publications between 0% and 12%. When this equilibrium
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happen, all the individuals seem to be germ carrier, but only someone become contagious.
This equilibrium depend on the kinship. The closing of the reproductive line control the
emergence of the scrapie. The simulation SIMS, show a prevalence rate of 0% for an
closed situation, and 12% for an open line (SIM1). If we consider a ten year simulation,
we cf. that the results evolve from an open situation, to a closed situation. We can see
that the initial infection disappear imediatly, and next come back next to an endemic

equilibrium. a closed situation to (Fig. 6)

12 —ﬁ”N SIMS
£
/

6 —

SIM1/SIMS

SIM1 Years
f i : >
0 12.5 25 37.5

Fig. 6. Cinetics of the prevalance of the scrapie disease
in two simulated herds (SIM1 & SIM5).

(0=2.85, $=0.05, u=0.25, Z=30) (Guigal, 1995)

n
(-]

The equations of Kermack and McKendrick do generate useful qualitative predictions
about possibles modes of behaviour. At the start of an epidemic, let [(0) =1y ; S(0) =S¢
R(0) = Rg, and we can see from (Eq. 5) that at time ¢ = 0 : d%ﬁ =ﬁ10(50 —p). So an
epidemic can only build up (i.e. dl/dt >0)if §g > p. Thus S, = p defines a deterministic

threshold density of susceptibles below which an epidemic can not develop, since
infectives are removed at faster rate than new infectives can be product. But these results
are on the influence of the degree of mixing of the individuals from their diffusive motion.
The spatial correlation created by the application of the first rule (i) can be partially
undestroyed according to the degree of mixing of the population from the application of
the first rule (ii).
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5. Discussion

Vector distribution can be a matter of suitable habitat, which is a sum of a wide range of
environmental factors (humidity, soil moisture, ground temperature, parasitic-host
population density, etc..) [Meltzer, 1991]. The distribution of the sites can be also related
to the genetic distribution of the susceptibility of the host population. In a herd, the laws
of inheritance form a discrete and recursive system which mixes and distributes the genes
of susceptibility [Guigal, 1995].

What we have performed is a reduction of the complexity. The Zipf-Mandelbrot law,
which has been used to adjust observed data, allows us to substitute a Pareto's
distribution for a complex set of binary relations [Mandelbrot, 1990]. The parameters of
this distribution are y, B and K, that simple methods permit to quantify. The number of

these parameters may reduced because of their correlation.

This adjustment by the Zipf-Mandelbrot law and the syntactic model are different aspects
of a same class of organisation . The structure given by continuity (direct inheritance) is
analogous to an hyperbolic tree. The entropy principle (concerning the probability of
identity) superpose on this tree. Such a phenomenon has been described, under different
formulations, by some authors when studying complexity and organisation of natural and
artificial systems [Schroeder, 1991]. They called it : "the notion of cost" (Mandelbrot),
"the principle of least effort” (Zipf), "the principle of partition" (Hill), "the equilibrium
law" (Orlov) or "the invariance of the lexicographic tree" [Schapiro, 1994]

The autosimilar organisation constrains hardly the material of the system and gives it a
hierarchical structure. This minimises the general entropy of the system. Its
characterisation allows, using a change in space of parameters, to reduce complexity from
a high number of discrete components to a few global values. In the study of infectious
diffusion process within a limited size population and concerning diseases with genetic
susceptibility, It might be very useful to perform this change of space. In heterogeneous
systems it is often important to substitute for averages (like the mean rate of
consanguinity). The notions of organisation give a new approach where global values

may be a way of simplification of the diffusion processes [Sugihara & May, 1990].
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