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ABSTRACT

A two-level pro<:essiug schcrne for real-tiure irnage understanclirrg is proposcd, whcrc au
example-Ïra^sed ( or <:a"se-lla"sccl ) rca"sorting itr ucural AI systcrns is irrtrodu<:e<1. Thc systcrn
ha"s two levels; Coruponertt Lcvel and Strur:ture Lcvel. At the cornpouerlt level, au elcrnen-
tary pattem ret:ogrrition is perforrned as iu the <xrrrverrtiorral pattcrrr re<:oguition, while
the syntax pattern re<'.ognitiou is cloue at the stru<:ture level. Both levels are csscutially
tirne-corrsuuring ( theoreti<:ally, NP-c<.rrnplete each). The pattern recognitiorr a^ssisted Ïry
syntax recoguition recluces the total <nrnplexity of processes, and the systern cau pcrf<rrrn
a real-tirne irnagc uuderstancling, whcrr thc VLSI chips arc irrtrodu<:cd. As a rcsult, wc
show a rea.sonable rcal-time image urrdcrstanclirrg s<:herne by irrtroduc:irrg a neural pattern
recognition at the <:ornponeut lcvel arxl a r:a"se-based AI teclurique at the strur:ture level.

Keywords: Neural Network, Artiûcial Intelligeucc, Genetic Prograrnrnirrg, Structurcrl
Data, Real-Tirnc Processing

INTRODUCTION

A two-level processing schernc fbr real-tirne irnage urrclcrstarrtlirrg is proposeri, where
alt exarnple-based ( or ca.se-based ) reasorrirrg in rreural AI systerns is introdur:ccl. The
systern has tw<r levels; Componcrrt Level aud Structure Level. At the cornponeut level, arr
elernentary pattern recogrrition is pcrf<rrmecl a"s in the conventional pattern recognitiou,
while the syntax pattern recogrrition is done at the structure level. Both levels arc esserr-
tially time-corrsurniug ( theoretically, NP-cornplete each ).
In this paper, a rtew architecture SBA, which is derived frorn hurnarr brain rnoclel, is
proposed for real-tirne data processing[1:l]. T]re sr:herne of data-flow irr SBA scerns tc.r
be sirnilar to that of a <:orrventional parallel urachiue, but the ar:hitecture is clifferent in
realizirrg directly two types of rnernory, i.e., STM ( Short Term Mernory ) arrd LTM (
Loug Terrn Mernory ). The STIVI and the LTM irr SBA work rnainly fbr adaptiverress
and stability respectively. Lcaruing is performed ou these two mernories, sirx:e the SBA
supports both types of learuirrg; one f<rr STM arrd the other for LTM ( with assistan<:e of
STM ), atrd therefore, the SBA is rraturally a kirrd of mernory-based architectures.
The computer includes both software and hardware, but thc brainware is derived frorn
hurnan Trrain rnodel[2]. In this serrsc, the SBA can be regarcled a^s arr extension frorn rnixed
systerns of rreural networks, AI systerns and cornputers. Moreover, the clevice teclrnology
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is also important for fabrication, and nanorneter IC technology will be expected. The
SBA is a general systern, but we fcrcus on real-tirne irnage proce*sing irr this paper. The
patterrr re<:ognition a^ssisted try syrrtax recogrritiou reduces the total complexity of pro-
cesses, and the systcm carr perforur a real-tirne irnage understaudiug, when the VLSI chips
are introduced. As a result, we show a reasonable real-time image understauding scherne
lry iutrclclucing a neural pattern recclgnition at the component level and a case-based AI
teclrnique at the structure level.

2 Two-Level Processing Scheme

The global data^flow of the special-purpose brainware architecture ( in short, SBA ) is
sltowu a"s in Fig.l, where LTM and STM are the feed-forwa^rd network arrd the feedback
rtetwork, respectively. The dataflow shows ouly a schemati<: representation of data trans-
rnission, but the LTM is irnportaut irr the SBA, because the systern without feedback
coirtcides with a ueural network without feedback ( e.g., MLP: Multilayer Perceptron net

). By contra.st, the feedback systern without LTM is the sa"tne as the recurreut network.
Tire fbedback systern with both LTM aud STM is esseutially irnportant in the SBA. The
cotrfiguration in Fig.l may seern to lrc the sarne a,s the dataflow in a conventional paral-
iel tna<:ltirte, Ïrut arr esserrtial differeuce is that the SBA works try not programming but
learrfrrg. The learning-based systenr is obtained Try a mernory-based architecture. Fig.1
shows a rnern<lry-based architecture, where the rnemory in the feetl-forward part and the
lncrnory in the feedback part are the STM (short-term mernory) and the LTM (long-term
rncrnory), respectively. In general, the LTM and the STM each are given as fcrllows;

LTM: Active Eusernble Mernory * Passive Ensemble Mernory.

STM: Active Errserntrle Mernory * Pa^ssive Ensernble Mernory.

If a<:tive is urore p<lwerfhl tltan passive, it is called active, a^rrd vice versa. "Ensemble"
tnearls a kirrd of addressable-in-parallel rnemory. Learning iu STM is made w.ithin the feed-
forward part, but learning iu LTM is rnade within the loop including both feed-forward
aud feedback parts. Both learning are intluctive, and learning in STM is the same as
tlte cortventional learrring in tlte rreural rretwork. We do not rqstrict the type of neural
rretworks irr the feed-foward part, but focus rnainly <ln MLP and Kohonen net, because
titese two are popular aud features each are also well known. As learning, the BP ( error-
back-propagation ) aigoritlrrn and the LVQ ( leaning vector quantization ) algorithm are
supposed to be used for MLP and Koltorren uet, respectively. The feedback part is not
so easily determined, because irrductive leaning in the loclp structure provides a difficult
probicrn. A candidatc is the recurrent network with ( an exteuded ) BP algorithrn, but
the applicatiou is restricted because it is the case without LTM. Then, we need to develop
a rtew architecture. Irr thc rnernory-ba^sed architecture irr Fig.1, the rnernory in the feed-
forwarrl (i.e., STM) represents the sub-state, while the rnernory in the feedback part (i.e.,
LTM) dcles the rnain state. In the ca.se of irnage understarrding, the feed-foward part and
the feedback part work for tlre cornponerrt level a^rrd the structure level, respectively, and
tlterefore, the STM a^ud the LTM play roles of the component (i.e., pattern recognition)
and the structlrre (i.e., syntax understanding), respectively.
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The learnirrg algorithnr in the SBA is shou'n as iri Fig.2. where the irrductive learning
ftrr LT\,{ shoulcl }rc a r:otrstrur:tive inductive iearning, ancl t}re structllre rnr.rst }re olrtairred
Ïry iearrrirrg prot:cdurc. Irr othcr worcls. the strr.rcturc of autornati(: truth rnaintenance or
thc structr.rre of rnirrirual svsternati<: rcpreserrtatiorr rnust be <:onstrur:tecl lly learning. The
rule-based riotation or thc krgit:al ( predit:ate or propositional ) rrotation is usecl for the
strLl(:turc collstru(:tiorr of ar.rtoruati<' truth ruaintenarrt:c. The rnar:hirrc ( or autor[aton )
rtotatiort is also ttscrl lbr thc strti('turc <:<-rnstru<:tiori of rniuirnal svsternatir: rcpresentatiori.
It shoulcl bc lotctl tirat this lcarrring prot:crlLrrc rnust bc applied not oriLv for svrrrlxrls hut
also for nurncri<:al ralucs. Tirc rrotation depcuds on thc appii<'atiorr. ïrnt car:h rrotatiorr
rnttst lic cxtctrded to nurrreli<'al <:asc lrorri svrubolir: r:asc.
Il tlic SBA adaptivcncss ( r'orrcspondirrg to Ccrcbellnm irr lrrair ) is undcrstood to bc a
pararlctcr tr.triiug. i.c.. a srrrali tlcrivatiou irr lcarning for a siuglc data. Orr thc othcr hanrl.
stabilitv ( rrrrrcspouding to Basal Garrglia iu lrrairr ) is rirrtlcrstoori to llc a ('olrvcrllcrr(:c.
i.c.. rrot dir.crsc irr lcaluirrg for a sct of data ( a largc nrtrnbcr of data ). At a tnrrirrg firr a
siuglc tiata. thc kxrp for lc;rruitrg is casih'tunalrlc. arxi thcrcftrrc. this pror:css is rcalizcd
trainl.u* liv ST\L For a largc rntrrrlrcr of rlata. lro'n'cvcr. wc rrccd a rlclicatc loop-<:orrtrol for
({)rr\t l 'gcrx'c. antl lcalizc it lrv LT\I arrd also ST\{ (as assistarx'c ). Thc algorithm irr
Fig.2 is givcrr lx, satisfï'itrg thcsc fa<'tors.

Feedbac'k

Structure
Level

LTM
Main State

...S,ub.:Ç.lajç..

STM
i : : : :  : : I : : r \ , . :
,,,;,r,,,.,r1

---------+i
Input :'

@:Learning

Cornponent
Level

Feed-.foward

STM:Short-Term Memory
LTM:Long-Term Memory

Fiuurc 1: Bchavior of SB-4.
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Twolevel læarning

begin

LF : Logical Formula is given. {on LTN

I.ocal Induction Step :
{Ncura l  Net  l . caming on  STM}

Global Induction Step :

Consistcncy Chcck ol' LF'

Simplitication o1' l-F' {Most Probable

if Rcsult OK then terminat,

else Modilv LL'
{ Condtructivc Induction Step }

Eft(,  thc bcginning

end.

Figurc 2: Trvr>Lcvcl Lcarrtirrg -A.lgrritlrnr

3 Real-Time Image lJnderstanding usimg Two-Level Process-
ing Scheme

3.1 Fundamental Idea

\\t iutrodu<:c tltc rct'ogrrition of a haud-rvrittcn phrasc. siur:c it is onc of rcal-tiurc
patterrr rcr:ogrritiorr. Lct a sarnplc plrrase ba Bro.irt,tuale Archite.c.htre.
Pirst Stagc: Charar:tcr Rc<:ogrrition.
F<rr Braiuwarc. car:h <'hara<:tcr. that is. 'B'. 'r ' . 'o. '. ' i ' .  'rt,. ' tt i . 'o, '. ' 'r: or 'e' ruust bc
rct:ogrtizcci. arrd for Arclùte.cttr;re thc sirnilar pr()('css is applicd. For su<:h a pr(xrcss \\'c
(:arr Llsc anv rreural rrctvrrrk rvhi<:h is fit iu pattcrrr re<'<lgnitiorr. Cnnsidcrirrg hardrvarc
rcalizatiorr, ho'w'cver. thc Kolxlrcln rrct is orrc of the rrxrst appropriatc rrcural netrvorks.
and a r:hip rcalizatiou is alrcadv pcrftlrnrcd[9.10] aurt its svstcrn is alrcaclv cvaluatcd[4].
Thcse <:asc is restricted to cligit svmlxrls riuc to <:hip sizc. ancl thcrcftrrc. au cxterrsiou is
rrow being preparecl. It shoukl l>c rxrtexl that tlfs r:hara<:tcr rer:ognitiorr is pcrforrnecl orrlv
in thc fèecl-fbrwarcl part.
Ser:ond Stage: Wbrcl Re<ogrritiorr.
In this stage. learfng of grarnrnar or rnar:hirrc is rcquired. but a sirrrple grarnrrlar or a
dcterrninistir: fittito autouratorr is erxru.gh porvcrfïrl for rvord rcrognitiori (e.g.. Lex in Unix

)
Third Stage: Serrtenc:e Rer:ognitiorr.
The gerreral <:ase becornos c:oinpli<:ated as in the rccngnition of a natural lauguage. In our
c:ase, ltou€ver. the third stage is int:ludetl in the ser:orrd stage because we fbcus on a sirnple
c:ase sur:h as a phrase ( e.g., Brainu'are Arr:hitccture ). The hand-written plrase such as a
signature does not have the <:ornplicated structure. Instead, the character is not so eâsy
to Ïre recogrrized since the sequence of harrd-writterr characters is not easily separable into
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characters. This is a reason why we use the neural network for its recognition. Moreover.
the real-time processing is indispensable for recognition of a large number of signatures.
We summarize that the first stage corresponds to the component level and that the second

and the third stages correspond to the structure level for the two-level processing scheme.

3.2 Two.Level Processing Architecture

We have shown the behavioral scheme of two-level processing as in Fig.l. Here we
show its architecture as in Fig.3. This is a system architecture which is naturally derived
from Fig.1. As a two-level architecture the ART network is already known a^s in Fig.4.

Our architecture is regarded as an extension from the ART network and is more general,

since it can be used to various applications.

FBN :Feedback Network

:Feed-forward NetworkFFN

Figure 3: Global Architecturc for Special-purpose Brainware

4 Component-Level Processing

We have introduced the Kohonen network for the component-level processing [4]. More
precisely, we use the Kohonen's LVQ network, where the behavior of LVQ algorithm is

shown as in Fig.5. The fundamental procedure of LVQ algorithm is shown as in Fig.6.

where the parallel processing is easily introduced. As a result, we have obtained a scheme
for hardware chip as in Fig.7, where a chip includes 12 neurons ( ON:Objective Neuron
in Fig.7 ) and the input size of each neuron is 8x4 bit pattern. The demonstration

system consists of four chips, rrarncly, 48 neurorrs. It should be noted tlnt a neuron irt

LVQ network corresponds to a category ( or a class ), and therefore, that 48 neurons
are enough powerful for pattern recognition. This neuron c<,rrresponds to the neurorr of

hidden layer in the N{LP network. A sample usirrg this hardware chip is shown as in Fig.8,

Level
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GAIN

ATTENTIONAL
SUBSYSTEM

ORIENTING
SUBSYSTTM

PATTERN

Figure 4: ART Network ( referred from [14] )

and the performance is evaluated as in Fig.9. The component-level processing is regarded
fundamentally as behavior at the STM, since it is a tuning of parameters.

5 Structure-Level Processing

The feature of two-level processing scheme is in structure-level processing, where the
svntactic behavior is analyzed and the image urrderstanding is done bv syntactic way. (
A operational setnantics provides understanding of i,mages. ) In the case of image object
the constrttction of picture using primitive components and/or the motion of consective
pictures correspond to this level processing.
In this paper we focus on the motion of consective pictures, i.e., the moving pictures as in
Fig.10, where a picture consists of prirnitive patterns. After component-level processing
the primitive patterns are represented bv 0. l, 2, ,,, , pl , where p is the number
of prirnitive patterns. For sirnplicitv we explain the case of p:!, where the prirnitive
patterns are given by 0, 1. An exarnple of pictures after component-level processing is
shown as in Fig.ll, which is represented by a bit pattern. Assume that the behavior from
a picture at time t to a picture at time t*l is represented as in Fig.12. This provides a
logical foumula or a bit matrix as in Fig.13, where the size of matrix is n2 for n:number of
Iogical variables. The problem of obtaining the minimum representation of logical formuae
for two consective pictures is easily proved to be NP-complete. Therefore we introduce an
approximative way using a neural network. i.e., Hopfield network[b]. The Hopfield network
is known to provide an approxirnate algorithm for a cla^ss of cornbinatorial problems. The
main procedure of structure'level processing irrclu<les a combinatorial problem described
as the above. The problem includes an essential problem a^s follows; For instance. let
{q - r i , n j - 4 } (whe re r ;and i r : ga re log i ca l va r i ab les )bea loca l cond i t i on .  I n th i s
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Figure 6: Procedure of LVQ Algorithm
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Figure 7: Hardware Realization of LVQ Algorithm
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Figure 8: R,cal-Tirnc Learning using Prototype Chip; An Exarnple
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i::

Modification

1 . lmicrosec/repeat

Figure 9: Perforrnance Comparision

case we have no solution such that both c1 aîd xi become "true". This means that the
consistency on the set of logical variables decides also the local condition. For the general
case we have more relaxed conditions, but we need to develop how to obtain the solution.
The problem is NP-complete if we need the best solution[8], and therefore, approximated
solving ways must be introduced. We proposed a way of using Hopfield network for this
problem, and show a good result[8]. A behavior using Hopfield network is shown as in
Fig.14. This is a problern to seek a compact knowledge form under hoklirrg consisteucv of
a knowleclge database. The LTM plays a mairr role of structure-level processing. althorrgh
the STM is also rrsed subsidially. The two-level processirrg scherrre is realized by arr
architecture as in Fig.3.

6 Anticipation

Then-d imens iona lda taX :  ( r t ,  12 , , , , , r , )  i s rep resen tedas inX :  (X t .Xz . , , , ,X t )

, in two-level processing, where X1(l : I,2, ,, , , k) is a subset of dimensions. If X1 n XSis
empty for i. I j, i.e., disjoint to each other, X is decomposed into a set of blocks. where
the total of all blocks is equal to n.
The data is a spatially-structured data, since the data is composed of blocks. However.
the structured data on time-axis is represented as in Fig.15, where a trajectory ofdata is
shown from Xi to Xr.
For the data on time-axis, the quantization on time axis is first introduced as in Fig.16,
and the fundamental functions are obtained on the spatial structured data. Fig.17 shows
a spatial structure, where the concept of window' is irrtroducr:d for restricting the dornain
of spatial functions. The spatial function plavs a role of classifi<:ation of spaces ( in lact,
the window-spaces ).

ffi
W
P : Processor
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Figure 12: Behavior frorn Picture at time t to Picture at time t*1
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Figure 14: Simulation Result using Hopfield Network

Therefore. we can focus on the llehavior of window-spaces as in Fig.18, arrd realize a
real-time processing systetn with a reasonable size of hardware. We can introcluce the GP
(Genetic Programmirrg) technique for real-tirne anticipation on tirne-axis.

Conclusions

The rerasorr why we arc developing thc lrrairrwarc architcctrrre is to realize a tnrrnau-likc
brain which stxrnu to bc orro of the best rc:llizatiorr of a lrrain of rolrot,

The brain of robot rrnst satisfy thc following;

l) Real-tirne data Ttrocessi,ng is perf<rrrnerd.

2) Snr,ull-size arul lou-'pouter are realizccl.

We also expect real-tirne leam.ing as well as real-time inptrt-output response (i.e..
recallin the rreural network). To realize such an artificial brain. we have introduced the
following;

a) IVlemory-Based Architecture consisting of STM and LTM.

b) Chip realization with (possiblc) nrlvanced technologv.

Several types of memorv-bas,,ii architectures are alreadv proposed, i rvt -bcus on
the memory-based AI architecture[11,12]. In this paper, we specify rlr.,,(: c,.a"rly the
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Figure 15: A Tlajectory from *ato ai

Figure 16: Quantizatiorr of tajectory
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Figure 17: Table Look-up for Window F\rnction

Figure 18: I{oving of Window
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rnerïory-l)ased AI architecture with STM arrd LTM. As hardware realization we have
several candidates on this art:hitecture. and it depends orr the appli<:atiou.

About <:hip teclrrroiogy $r are rrow using the <:on'u'errtiorral orre (e.g., 0.5plrn design-rttle
in [10]). In future. hor'"'ever. an artifir:ial brain fbr robot will be realizable using rnc]re
aclvarrr:ecl rlalrolncter clevi<:e ter:hrrokrgies.
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