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Abstract : Neural networks are structures consisting of highly inter-
connected elementary computational units. The network map input
patterns into output patterns. These devices are called neural not be-
cause they model the nervous systems but because they are inspired
by them. Due to their features (adaptive behaviour, learning process,
robustness, ...) , artificial neural networks have interested the antici-
patory systems field of research. In particular, we will examine their
interests in the field of time series prediction and system identification.

1 Introduction

Human beings are able to perform some tasks effortlessly ... nevertheless, after several
decades of research, computer scientists have only made small progress toward building
a device that can handled them. Among those tasks, we can cite : reading a text aloud,
recognizing a face, responding to spoken commands, translating English into French,
driving a car, classifying flowers, ...

However, by the fifties, shortly after the first number-calculating computers were first in-
troduced, visionaries such as John Von Neumann and Alan Turing were speculating about
the construction of machines that might exhibit intelligent behaviour. Turing proposed
two possible lines of investigations : one line starts from the study of biological systems
(the brain), searching the lowest cognitive structure and trying to mimic them. The other
line starts from a study of efficient problem-solving and searching for rules by which ez-
pert systems approach their tasks and, finally, building machines that would apply these
rules. Turing preferred this second path and many, in the field of artificial intelligence,
followed his lead. On the contrary, Von Neumann was fascinated by electronic circuits
whose structure was inspired by the nervous systems of animals. Unfortunately, he died
before he could have followed this path. The field of neural computation has been built
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by those who followed the Von Neumann path.

Neural networks are structures consisting of highly interconnected elementary computa-
tional units. The network map input patterns into output patterns. These devices are
called neural not because they model the nervous systems but because they are inspired
by them.

Neural networks perform a great variety of pattern mappings. A network can reconstruct
a stored pattern when the input is a partial match for that pattern : the network acts
as an associative memory (such as the Hopfield network). A network can retrieve a
second pattern associated with a given input pattern (for example, the classical task of
handwritten characters recognition). Following new developments, a neural network can
even proposed a desired temporal signal in response to temporal input signals. It can
generate a pattern representing the solution of a combinatorial problem. It may be asked
to group similar patterns into clusters and provide new representative of clusters.

The best-known neural network model is, by far, the multilayer perceptrons. The simplest
perceptrons, proposed by Frank Rosenblatt in the mid-50’s, have all their units arranged
in a single layer. Several authors have demonstrated that additional layers to this sim-
ple model can greatly increase its power. The interest for this model emerged in 1986
after the publication of the backward-error-propagation algorithm by David E. Rumelhart
and his colleagues. Since them, many successful cases in which learning based on error-
backpropagation has produced excellent results have been reported. The applications
include recognition, process control, robot kinematics, medical diagnosis, etc.

Since then, new neural types have emerged that give impressive results in the field of
auto-organizing networks (like the Kohonen network), nonlinear dynamical systems iden-
tification or control (using fully-connected recurrent neural networks) or associative mem-

ories.

We must emphasize that the power of neural networks does not arise solely from the high
degree of parallelism in the computation of output patterns. The power of neural models
derives from the high number of interconnections among elements and from the network’s
ability to alter its internal structure (or weights) via a learning algorithm.

To summarize, we can say that artificial neural network models can be superior than other
methods under these conditions :

e The data on which conclusions are to be based is fuzzy. If the input data is
human opinions, ill-defined or is subject to possible large error, the robust bevaviour
of artificial neural networks is impressive.

e The patterns important to the required decision are subtle or deeply
hidden. One of the principal advantages of an neural network is its ability to
discover patterns in data which are so obscure as to be imperceptible to human
researchers and standard statistical methods.

o The data exhibits significant unpredictable nonlinearity. Traditional time-
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series prediction models are based on strictly defined models. If the data does not
fit these models, results will be useless. Artificial neural networks are ideal for these
cases.

e The data is chaotic in the mathematical sense. Chaos can be found in tele-
phone line noise, stock market prices and other physical processes. Such behaviour
is devastating to most other techniques, but neural models generally work quite
well.

It is thus quite obvious that, due to their features (adaptive behaviour, learning process,
robustness, ...) and due to the previous considerations, artificial neural networks have
interested the anticipatory systems field of research.

In particular, artificial neural networks are very interesting to simulate externalistic antic-
ipatory systems. In many areas of scientific research, the problem of predicting the future
of dvnamical systems arises. Closely related problems have also interested the scientists :
process control and system identification. Unfortunately. when the observed dynamics are
nonlinear with a complex dependence on time, the formulation of reliable predictions (or
control or identification) becomes extremely difficult. These problems have been studied
as a problem of multidimensional function approximation. This approach has produced
new methodologies for the analvsis of nonlinear systems or time series (including local
procedures). Neural network architectures have drawn considerable attention in recent
vears because of their interesting learning abilities. Moreover. they are capable of dealing
with the problem of structural instability. Many studies have reported exceptional results
using neural networks.

2 Foundation of the artificial neural network theory

An artificial network consists of a pool of simple processing units which communicate by
sending signals to each other over a large number of weighted connections. Rulmelhart
[8] enumerates the major aspects of a parallel distributed processing model as

set of processing units (“neurons”. “cells”);
a state of activation y; for every unit, which also determines the output of the unit;

connection between the units. Each connection is defined by a weight w;; which
determines the effect of the signal of unit ¢ on unit j.

a propagation rule (a governing equation), which determines the effective input u;
of a unit from its external inputs;

an activation function F which determines the new level of activation based on the

effective input u;(t) and the current state y;(t);
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e an external input or offset 6; for each unit;
e a method for information gathering;

e an environment within which the system must operate, providing input signals and
-if necessary— error signals.

In this simple model, the simplest node sums a collection of weighted inputs and passes
the result through a nonlinearity. The processing unit is therefore characterized by an
internal threshold or offset 6 and by the kind of nonlinearity (e.g.. hard limiters, threshold
logic, sigmoidal nonlinearities. ...).

Figure 1: Simplified functional model of an artificial basic neuron cell and its
symbol

Figure 1 shows a verv simple processing unit using a sigmoid nonlinearity. The nonlinear-
ity here simply seeks to classify the weighted sum of the n inputs as being greater than
or less than zero and accordingly assigns the input vector (iy, s, ..., i) a continuous value
between —1 or +1. The relative magnitudes of the weights wy;, wy;, ... wy; decide the
relative importance of the inputs iy, i, ... i, in determining the final output. The weights
have the effect of determining a hyperplane in the n-dimensional hyperspace such that all
points on one side of the hvperplane are distinguished, by the function output, from all
those on the other side. The offset 6 has the effect to translate the hyperplane.

The neuron will compute its output by two functions. It will first compute the weighted
sum of its preceding inputs. This weighted sum is called the effective input and is given
by :

zi(t) = > wji wi(t) + 6 (1)
i=l

The current output of the neuron must be determined using the effective input and an
activation function :

u(t) = F(z(t)) (2)

where F(-) is the activation function.

Let us point out here that we can rewrite the governing equation (1) in order to simplify
the mathematical notation. We will add a virtual input neuron (labeled 0) whose value
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remains constant and equals to one. The individual offsets 6; are replaced by adaptive
weights wp; associated to the virtual interconnections between the virtual neuron 0 and
all the network neurons (see Figure 1).

2.1 Importance of the activation function

In neuron-like units, the conceptual models exhibit a linear term (a weighted sum of the
inputs) followed by a nonlinear function. This activation function F(-) determines the
new level of activation based on the effective input u;(¢) and the current state y;(¢). The
essential characteristics of these activation functions are the fact that they introduce some
nonlinearity in the conceptual model of the neuron-like unit.

Without this nonlinearity, the neural models would reduce to pure linear systems. The
linear systems theory is a powerful branch of systems theory and a number of applications
do indeed exploit the methods of linear algebra and linear systems. However, with fixed
input, a linear device has only a single equilibrium point state whereas a nonlinear system
may, depending on its structure, exhibit multiple equilibrium states, limit cycles or even
chaotic behaviour. These particular behaviours are interesting : indeed, artificial neural
networks are useful alternatives when traditional techniques (and among them linear
models) fail to success. It is thus these behaviours (multiple equilibrium states, limit cycles
or even chaotic behaviour) whose are exploited by many neural networks applications.

Most common activation functions are the sigmoid (S-shaped) function. Such a sigmoid
function can mathematically be described (approximated) for example as :

1 —exp 2%

v = tanh (yu5) = 7o @)
for a symmetrical (bipolar) representation or :
1
Y= T exp e @

for a non-symmetric unipolar representation.

Another important aspect of the activation function is the fact that this one should ideally
be continuous. We have thus to avoid using the simple step function (the Heaviside
function). There are two main reasons for this :

e the first one is the noise resistance : a step function can amplify noise which a sig-
moid function may smooth out. Nevertheless, this may be at the price of postponing
a binary decision until after further statistical analysis has been made.

e the second one is related to the training methods which exploits methods of the
differential calculus to adjust the free parameters of the model in order to solve the
task to handle. However, most widely used training algorithms (such as the well-
known backpropagation algorithm) make use of the fact that that the activation
functions are continuous and thus differentiable.
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2.2 Neural networks architectures

Obviously, a neural network is a network of neurons. This high-level definition applies
to both biological neural networks and artificial neural networks (ANNs). This section is
mainly concerned with the various ways in which neurons can be interconnected to form
the networks or network topologies used in ANNs, even though some underlying principles
are also applicable to their biological counterparts. The term neural network is therefore
used to stand for artificial neural network in the remainder of this work, unless explicitly
stated otherwise. The nodes of an artificial neural network must be called artificial neuron
or neuron-like unit but given the length of this term and the need to frequently use it, it
is not surprising that its abbreviated form, neuron, is often used as a substitute instead.

The architecture or topology of a neural network is related to the way in which the neurons
are organized to form the network. The network architecture is thus the relationship of
the neurons by means of their connections. The network topology is characterized by
the number of neurons that provide the information (also called the input neurons), the
number of neurons that produce the results of the network computation (the output neu-
rons), the number of neurons whose inputs and outputs remain within the network (these
neurons that have no interaction with the “outside world” are called hidden neurons) and
the way these neurons are connected to each other (the number of connection weights).
The topology of a neural network thus consists of its framework of neurons, together with
its interconnection structure or connectivity.

We can divide neural frameworks into two categories :

e feedforward networks where the information flows from the input neurons to the
output neurons without any feedback connections. These neurons of these models
are usually organized in layers.

e recurrent or feedbacks networks are characterized by cycles (associated to adap-
tive connection weights) in its graph. We can find in these networks feedforward,
feedback or self-connections.

2.3 Neural network learning algorithms

The essential difference between neural network models and classical algorithms is the fact
that they do not learn by being programmed: they learn by being trained. The learning
phase of a neural network consists in a fine tuning of its internal parameters (classical
its interconnection weights) in response to external stimuli. This parameters adjustment
is coherent with biological neural networks where both memory and the formation of
thoughts involve neuronal synaptic changes; and we have seen that the artificial neural
networks models the synaptic strength using scalar weights. When the learning process
is successful, all the network weights values stabilized.

The learning phase can be supervised or unsupervised :
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e when the process is supervised, the external stimuli (which form the network input
data) and the corresponding desired target data are provided. The learning process
adjusts in some fashion the internal parameters so that for a given input, the network
will produce the desired associated target. The supervised learning algorithm will
compare the network output for a given input with the corresponding target data
and compute the error difference between both data. This error difference provides
the external feedback (determined using the target data) that is necessary to adjust
the network variables.

e in unsupervised learning, the network adjusts itself its parameters by using the inputs
only. No target data are available and it is impossible to determine errors upon
which to base external feedback for learning. The unsupervised learning method
groups similar sets of inputs into clusters predicated upon a predetermined set of
criteria relating the components of the data. The unsupervised learning algorithm
and their related networks are out of the scope of this work but readers can find
more information in the works of Teuvo Kohonen, or ....

The training phase of a neural network refers to the presentation of the inputs (and
possibly the targets if the learning process is supervised) to the network. The goal of
the training and hence learning is to enable the network to exhibit good generalization
capabilities. Generalization is the ability of the network to produce reasonable outputs
associated with new inputs (that were present in the training sets of input data).

3 Neural networks and anticipatory systems

In the context of externalistic anticipation, i.e. time series prediction, a lot of scientific
research have already proved the great interest of using artificial neural networks. Another
field of numerous applications is svstem identification and process control.

Moreover, when using properly these applications. we can even get features that bring
new insights in the field of real artificial intelligence : anticipation. For example, neural
models were successfullv used in preventing babies’ central apneas (which is an important
cause of death). In this particular application. the svstem anticipates dramatic accidents
by a thorough analysis of current and past data.

We consider in the following the particular cases of time series prediction and system

identification.
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3.1 Time series prediction
3.1.1 Classical prediction methods

Classical prediction methods are usually linear: indeed. these ones have two particularly
desirable features : they can be understood in great detail and they are straightforward to
implement. The obvious penalty for this convenience is the fact that they may be entirely
inappropriate for even moderately complicated systems.

The most known models are usuallv based on linear combination of previous observed
data, on previous prediction errors or on both types of data. These models are respectively
called autoregressive process (AR). moving average process (MA) or mized autoregressive-
moving average process. They have been introduced by Box and Jenkins in 1976 [2].

The ARMA class of stochastic models generalizes and includes the AR and MA models.
It depends upon two values the AR order p and the MA orderg. the process can be of p
or q degree. Thus

m=i o+ ot By 6 = € =Wy €y — =Wy € (D)

where x;_j.x_9. ... .. ry_, are the observed time series. €. €y, .... €_, are zero-mean
forecasting errors. The model is denoted ARMA(p.q) [2].

Unfortunately. the disadvantages of the Box-Jenkins method are multiple : identifving
the order of the model to be used can be difficult. especially for multivariate time series:
the model identification and validation process of the Box-Jenkins process need expert
knowledge; it is not casy to understand the statistical mechanism used in the model
identification procedure and the method is primarily applicable for short term forecasting.
so it is inaccurate for long term predictions (see [1]).

New models are thus necessary : neural networks can help i many circumstances [6. 9. 10].

3.1.2 Neural prediction methods

In the Sante Fe Time Series Prediction Competition (see [11]), the majority of contri-
butions and also the best predictions for each proposed set of data used connectionist
methods.

Nevertheless, one can wonder what differs a neural network from a polynomial regres-
sion for example. Given that feedforward networks with hidden units (see Section 2.2)
implement a nonlinear regression of the output onto the inputs, what features do they
have that might give them an advantage over more traditional methods (i.e. a polynomial
regression). For the polynomial regressicn, the components of the input vector (z;, z,
... Zq) (where d is the dimension of the input vector) can be combined in pairs (z;zs,
123, ...), in triple (2913, 117924, ...), etc, as well as combinations of higher powers.
This vast number of possible terms can approximate any desired output surface. The dif-
ference between the neural regression and the polynomial one is the kinds of constraints
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they impose. For the polynomial case, the number of possible terms grows rapidly with
the input dimension, making it sometimes impossible to use even all of the second-order
terms. Thus, the necessary selection of which terms to include implies a decision to permit
only specific pairwise or perhaps three-way interactions between components of the input
vector. A feedforward network, rather than limiting the order of the interactions, limit
only the total number of interactions and learns to select an appropriate combination of

inputs [11].

Recently, recurrent neural networks have even exhibited more powerful results (see [4, 5]).

3.2 Identification of systems

System identification is a fundamental problem in systems theory; it is connected to the
problem of system characterization. The problem of characterization is concerned with
the mathematical representation of a system as an operator P which maps input signals
into output signals. The problem of identification is to approximate P in some sense using
an identification model. By identifying a particular system, obviously, we will be able to
anticipate its behaviour [7].

Specifically, the application of neural networks to the task of identification of systems is
supported by their learning capacity, their ability to internally represent related states,
and their good behaviour to approximate continuous functions. Particularly, in the last
years, several works concerned with approximation of continuous functions defined on a
compact set (in a space of finite dimensions) have been presented in the neural community.

Furthermore, in practice, there are situations where we need to compute functionals such
as the output of a dynamical system (at any particular time, it can be viewed as a
functional). At this level, Chen demonstrated that continuous functionals can be approx-
imated by neural networks and showed their application for dynamical systems model-

ing [3].

4 Conclusion

Artificial neural networks are often considered as mysterious or black bor systems without
being more interesting than other existing techniques. We have seen in this paper that
they can bring new insights in the field of anticipatory systems, especially for time series
prediction, system identification or process control.

An important challenge would be to extent the theory of neural networks in order that
these neural models become autonomous : that would be the real artificial intelligence.
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