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Abstract 

This paper presents a study of the complexity of Fourier Decision Diagrams on finite 
Non-Abelian Groups (FNADDs) for representation of discrete functions. FNADDs 
are introduced as a generalization of Spectral transform decision diagrams. They are 
offered as a solution for depth reduction problem in DDs representations of discrete 
functions. 

This study is intended to prove experimentally basic features of FNADDs. It 
is performed through some examples showing complexity of FNADDs for switching 
and multiple-output switching functions. Comparison with some other decision dia­
grams is provided. It is shown that FNADDs are very efficient in representation of 
algebraic functions. 

Key words: Discrete functions, Switching functions, Decision diagrams, Fourier 
decision diagrams, Non-Abelian groups. 

1 Discrete Functions 

In this paper, it is assumed under the term discrete function a mapping J: G-+ P, 
where G is a finite group of order 9 and P a field that may be the complex field or 
a finite field. If G is a decomposable group, 

n 

G = X~1Gi, 9 = IJ9;, 91 $ 92 $ · • · $ 9n· 
i=l 

(1) 

where 9; is order of the constituent subgroup G;, then J is an n variable function 
J(x1, ... , Xn), X; E G;. 
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A function f defined in g points, can he considered as a function of different 
number of variables, depending on the group G of order g assumed for the domain 
group for f. 

Example 1 A three-variable switching function f(x 1 , x2, X3) is usually considered 
as a function on G8 = C2 x C2 x C2, where C2 = ( {0, 1 }, EB ), and EB denotes the 
componentwise addition modulo 2, EXOR. If this decomposition for G is assumed, 
f is defined by the vector 

F = [!(000), f(00l ), f(0l0), f(0ll ), f(l00), f(lOl ), f(ll0), f(lll ))7. 

It can be alternatively considered as a two-variable function f(xi, X2), with X1 E C2, 
X2 E C4 , where C4 is a cyclic group of order 4. Thus, f is considered as a function 
on G8 = C2 x C4 and can be represented by the vector 

F = [f(00), f(0l), f(02), /(03), f(lO), f(ll), f(12), f(13)f . 

The same function can be considered as an one-variable function on Gs = Q2, where 
Q2 is the quaternion group defined in Addendum. In that case, it is represented by 
the vector 

F = [f(0), f(l), f(2), f(3), f( 4), f(5), f(6), f(7)f. 

2 Decision Diagrams 

Decision Diagrams (DD) are convenient data structure for representation of discrete 
functions. A DD is a rooted acyclic graph consisting of the root node, a set of 
non-terminal nodes, and a set of constant nodes connected with edges. For a given 
function f, a DD is designed by the reduction of the corresponding Decision Tree 
(DT) representing f. 

Complexity of a DD is usually characterized by its 

1. size - the total number of nodes (non-terminal and constant nodes), 

2. width - the maximal number of non-terminal nodes per a level, where a level 
in a DD consists of nodes to which the same variable in f is assigned. 

3. depth - the number of levels in the DD. 

Various classes of DDs are defined to represent different classes of discrete 
functions (Sasao, Fujita, 1996). They are derived as extensions and generalizations of 
Binary Decision Diagrams (BDDs) (Ackers, 1978), (Bryant, 1986). The introduction 
of different DDs was directed towards two basic goals: 

l. Extension of DDs representations to different classes of discrete functions, 
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2. Optimization of DDs representations. 

Note as examples for the first direction, the Multi-Terminal Binary DDs (MT­
BDDs) (Clarke et al., 1993), which are an extension of BDDs to represent integer­
valued or complex-valued functions on the dyadic groups. Then, extensions of MT­
BDDs to p-adic groups for representation of multiple-valued (MV) functions and 
complex-valued functions denoted, respectively, as the Multiple-place DDs (MDDs) 
(Srinivasan et al. , 1990), and the Multi-Terminal DDs (MTDDs) (Miller, 1994). 
Extensions to matrix-valued functions are given through the Fourier DDs on non­
Abelian Groups with Preprocessing (FNAPDDs) (Stankovic, 1997). 

Examples for the other direction of generalization of BDDs are Kronecker DDs 
(KDDs) and Pseudo-Kronecker DDs (PKDDs) (Sasao, 1996), (Sasao, 1998). Their 
integer generalizations, the Binary Moment DDs (BMDs) (Bryant, Chen, 1994), 
are closely related to the Arithmetic Transform DDs (ACDDs) (Stankovic, Sasao, 
Moraga, 1996). To the same class belong Fourier DDs on Abelian (FADDs) and non­
Abelian groups (FNADDs) for both MV and complex-valued functions (Stankovic, 
1996a). Further examples are the Edge-Valued Binary DDs (EVBDDs) (Lai et al., 
1994), *BMDs (Bryant, Chen, 1994) and other related DDs with attributed edges 
(Drechsler, Becker, 1996). 

Some classes of DDs are introduced purposely to solve some particular problems 
in logi c design (Hasan-Babu, Sasao, 1997), (lguchi, Sasao, Matsuura, 1997). 

3 Depth Reduction in DDs 

Primary optimization goal in DDs representations is reduction of the size of the 
DDs for a given function f. The reason for that is simple. In many applications 
related with calculations and realizations based on DDs representations of discrete 
functions , some calculation subprocedure or a circuit, respectively, is assigned to each 
non-terminal node. However, in many applications, reduction of the depth of DDs 
is another very important problem. For example, in DDs based design methods for 
logic networks, the propagation delay in the produced network is directly proportional 
to the depth of the D D. 

For the depth reduction, the use of nodes with increased number of outgoing 
edges is proposed (Sasao, Butler, 1994). In Quaternary DDs (QDDs) (Sasao, Butler, 
1994) , depth reduction is performed through recoding of pairs of variables in f. In 
this method an n-variable function f, n-even number, is mapped into a function fq 
of n/2 four-valued variables. It is represented by a QDD whose nodes have four 
outgoing edges. In that way, a BDD for f consisting of n levels is replaced by QDD 
for f with n/2 levels. 

In a group-theoretic approach, the method can be interpreted as optimization 
of DDs representation by changing the decomposition of the domain group G for f 
(Stankovic, 1996a). In QDDs, the domain group G for f that is the product of n 
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cyclic subgroups C2 of order 2 is decomposed into the product of n /2 cyclic subgroups 
C4 of order 4. 

A generalization of the method by coding arbitrary subsets of variables in f is 
straightforward. It assumes decomposition of the domain group G for f into the 
product of subgroups of arbitrary orders. 

However, the number of outgoing edges of nodes determines the width of the 
DD. Therefore, in many cases, this method for depth reduction increases the width 
of the DD for f. 

For that reason, the use of non-Abelian subgroups in the decomposition of G 
on which DT for f is defined was proposed in (Stankovic, 1996a), and Fourier DDs 
on finite non-Abelian groups (FNADDs) were introduced. By extending spectral 
interpretation of DDs (Stankovic, 1995), (Stankovic, Sasao, Moraga, 1996), we may 
say that the FNADDs are defined with respect to a particular basis, the Fourier basis 
on finite non-Abelian groups. With FNADDs reduction of both depth and width is 
achieved thanks to the properties of the Fourier transforms on non-Abelian groups. 

In this paper, we compare through some experimental results the complexity of 
FNADDs to the complexity of some other DDs. 

In Section 4, we briefly repeat some basic definitions of Fourier transform on 
finite non-Abelian groups. In Sections 5,6,7, and 8 we present definitions of FNADDs 
in terms of this transform and discuss their basic features. In Section 9, experimental 
results estimating complexity of FN ADDs are presented. In Section 10, some closing 
remarks on the efficiency of FNADDs are given. 

4 Fourier Tran~form on Finite Non-Abelian Groups 

Denote by P the complex field or a finite field. Henceforth it will be assumed that: 

1. charP= 0, or charP does not divide g, 

2. P is a so-called splitting field for G, 

where charP is the characteristic of P. These assumptions ensure existence of the 
Fourier transform on G over P. 

Denote by K the number of equivalence classes of irreducible representations of 
Gover P. Each equivalence class contains just one unitary representation. 

Denote the K unitary irreducible representations of G in some fixed order by 
Ro,R1, ... ,RK-1· WedenotebyRw(x)thevaluesofRwatxEG. NotethatRw(x) 
stands for a non-singular (rw x rw) matrix with elements R~•il(x), i,j = 11, ... ,rw 
in P. 

If G is representable in the form (1), then its unitary irreducible representations 
can be obtained as the Kronecker product of the unitary irreducible representations 
of subgroups G;, i = 1, ... , n. Therefore, the number K of unitary irreducible 
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representations of G can be expressed as 
n 

K = ITK;, 
i=l 

where K; is the number of unitary irreducible representations of the i-th subgroup 
G; . 

The functions Rt•il(x), w = 0, 1, . . . , K - 1, x E G, i,j = 1, ... , rw form an 
orthogonal system in P( G). 

Definition 1 The direct and inverse Fourier transforms of a Junction f E P( G) 
are defined respectively by, 

g-1 

S1(w) = rwg- 1 L f(u)Rw(u- 1
), (2) 

u=O 

K-1 

f(x) = L Tr(S1(w)Rw(x)) , (3) 
w=O 

where for a matrix Q, Tr(Q) denotes the trace of Q, i.e., the sum of elements on 
the main diagonal of Q. 

Here and in the sequel we shall assume, without explicitly saying so, that all 
arithmetical operations in (2) and (3) are carried out in the field P. 

5 Fourier Decision Trees 

Decision trees are defined by using some function expansions (Sasao, 1996). For 
example, the Shannon tree is defined by using the Shannon expansion rule f = xdo@ 
x;f1 , where x; is a switching variable, x; is its logic complement, and Jo= f(x; = 0) 
and Ji= f(x; = 1). This expansion rule is applied recursively to all the variables in 
f. Nodes corresponding to the same variable x; form the i-th level in the Shannon 
DT. Thus, the depth of the Shannon tree is equal ton - the number of variables in 
f . 

The function expansion determined by the Fourier transform on finite groups 
was used to define the Fourier transform decision trees (Stankovic, 1996a). For the 
differences in the properties of the Fourier transform on Abelian and non-Abelian 
groups (Stankovic, 1990), the distinction between these two cases has been made. 

From FFT theory, Fourier transform on a finite group G decomposable in the 
form (1) may be considered as then-dimensional Fourier transform on the constituent 
subgroups G; (Stankovic, Stojic, Stankovic, 1996). The Fourier transform on G; is 
used to define an expansion for f with respect to the i-th variable. This mapping is 
performed at the nodes at the i-th level in the Fourier decision tree to associate f to 
this DT in the same way as the Shannon decomposition is used to associate f to a 
BDD (Stankovic, 1996a). 
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Definition 2 Fourier decision tree on G is defined as the decision tree whose nodes 
a the i-th level represent functions 

f(xi) = E Tr(S1(w.)Ru,,(x;)), x; E G,, (4) 
w,Ef; 

where f; is the dual object of G;, and Ru,, are the unitary irreducible representations 
ofG;. 

Expansion rule for f defined by ( 4) is denoted as the Fourier expansion for f 
with respect to x;. With this definition, the Fourier decision trees are the decision 
trees on G in which each path from the root node up to the constant nodes corres­
ponds to an unitary irreducible representation of G. A node at the i-th level has K; 
outgoing edges denoted by Ru,, ( u), u E r;. 

In Fourier DT for a given f, the values of constant nodes are the Fourier coef­
ficients of f. The function f is determined from its Fourier DT by using the inverse 
Fourier transform on G; defined as in (3), and by following the labels at the edges in 
the Fourier DT in the same way as in any other DT. This statement is a direct gener­
alization of the considerations in (Stankovic, 1995) and (Stankovic, Sasao, Moraga, 
1996) to DTs on arbitrary, not necessarily Abelian, groups. 

The Fourier coefficients corresponding to the group representations with orders 
rw > 1, w = 1, .. . K - 1, are (rw x rw) matrices. Therefore, Fourier DTs on finite 
non-Abelian groups are matrix-valued DTs, since some of their constant nodes are 
(rw x rw) matrices. The matrix-valued coefficients may be also represented by the 
DTs by using the method of representation of matrices by the decision diagrams 
(Clarke et al., 1993). In that way, we derive the number-valued Fourier DTs on 
finite non-Abelian groups that may be the integer-valued or complex-valued DTs 
depending on the field P over which the group representations for G are taken. The 
number of constant nodes in number-valued Fourier DT on a non-Abelian group 
is equal to the order g of G. Thus, it is the same as in the Fourier DT, or any 
other DT on the Abelian group of the same order. Comparing to the matrix-valued 
Fourier DTs, the number of levels in an integer-valued or complex-valued Fourier 
DT may be increased. The representation of matrix-valued constant nodes by DTs 
may introduce some levels, depending of the order of the matrix in the matrix-valued 
node. However, some non-terminal nodes still may be saved, since not all the Fourier 
coefficients are the matrix-valued (Stankovic, 1996b ). 

The non-terminal nodes in Fourier decision trees are denoted by FA; for Abelian 
and FN A; for non-Abelian groups. The index i denotes the number of outgoing edges, 
and it is equal to the cardinality K; of the dual object r; of G;. The nodes in which 
the Shannon decomposition or its integer counterpart on cyclic groups is performed 
are denoted by S;. In the figures of DTs we use the short notation w{ for Ru,,(j). 
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6 Fourier Decision Diagrams 

Fourier decision diagrams are derived by the reduction of the Fourier decision trees. 
Therefore, the Fourier decision diagrams on Abelian (FADDs) and non-Abelian 
groups (FNADDs) are distinguished (Stankovic, 1996a), (Stankovic, 1996b). 

In a decision tree, the reduction is possible if there are some isomorphic subtrees. 
Such subtrees correspond to the equal subvectors in the vector representing values 
of constant nodes in the DT. In FNADT, the values of constant nodes are Fourier 
coefficients for f. Thus, in FNADTs, the reduction is possible if there are some equal 
subvectors in the vector representing the Fourier spectrum S,1 for f. 

If for a given assignment of values of a variable x; = p;, p; E {O, ... ,g;}, there 
are equal subvectors of orders 9k, k < i in the vector [S l] of the Fourier coefficients 
of f, then in the Fourier DT for f the corresponding nodes at the k-th level may 
be joined. Thus, the redundant nodes may be deleted. If the equal subvectors of 
orders 9k, k < i in [S /] correspond to different assignments of values for x;, the 
corresponding nodes may be shared. 

Therefore, the generalized BDD reduction rules introduced for the reduction of 
the Walsh transform DDs (WDDs) (Stankovic, Sasao, Moraga, 1996) will be used 
for the reduction of Fourier decision trees on both Abelian and non-Abelian groups. 
Recall that the Walsh transform used in definition of WDDs is the Fourier transform 
on finite dyadic groups (Stankovic, Sasao, Moraga, 1996). Therefore, WDDs are a 
particular example of Fourier DDs on Abeliau groups. 

Definition 3 Fourier decision diagrams are DDs derived from the Fourier decision 
trees by using the generalized BDD reduction rules. A Fourier decision diagram is 
reduced if further reduction with the same rules is impossible. 

7 Optimization of DDs Representations 

The optimization of DDs representations by using FNADDs is explained and illus­
trated by the following example. 

Example 2 Fig. 1 shows BDT for f( x1 , x2, x3 ) in Example 1. In this DTs rep­
resentation, f is considered as a function on G8 = C2 x C2 x C2 • Fig. 2 shows 
the MTDT for f if it is considered as a function on G8 = C2 x C4 • Fig. 3 shows 
FNADT for f on G8 = Q2 • In this FNADD, the values of constant nodes are the 
Fourier coefficients for f on Q2 • The Fourier transform on this group is defined 
in terms of group representations for Q2 over the complex filed C given in Table 2. 
From this table, the dual object r for Q2 consists of five elements. Thus, the Four­
ier spectrum on Q2 consists of five spectral coefficients S1(0), S1(1), S1(2), S1(3) and 
S1(4), where S1(4) is a (2x2) matrix. In Fig. 3, the matrix-valued coefficient S1(4) 
is represented by the MTDT on the cyclic group C4 of order 4. 
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0 

Figure 1: Shannon tree: three-level representation off on G8 = C2 x C2 x C2 • 

MTDT in Fig. 2 permits reduction of the depth compared to BDD. FNADT in 
Fig. 3 permits saving of one non-terminal node within the same depth as in MTDT 
for f . 

In general, in any BDT or shared BDT (SBDT) (Minato, 1996), a subtree of 
the form shown in Fig. 1 can be replaced by the subtree of the form shown in Fig. 2 
or Fig. 3. It is clear that the replacement can be done at any level in the DT. As is 
noted in (Stankovic, 1996a), (Stankovic, 19966), the most compact representations 
are achieved if the non-Abelian groups are used at the nodes just above the constant 
nodes. That means, in decomposition of Gin the form (1) , the Abelian groups are 
used for 91, . .. ,9r-l and then non-Abelian groups for 9r .. . , 9n-1· The value of r, 
and the orders of the constituent subgroups are chosen such that requirements in ( 1) 
are satisfied. 

8 Basic Features of FNADDs 

The use of non-Abelian groups in the way explained in Example 2, provides depth 
reduction in DDs representations. Depth reduction is achieved at the price of the 
increase of the number of outgoing edges of nodes. Their number determines the 
order of subvectors in the vector of values of constant nodes that should be compared 
for eventual reduction of the DT. In that way, the number of outgoing edges of nodes 
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Figure 2: MTDT for f: two-level representation . 

Figure 3: Complex-valued FNADT on Q2 with MTDT for S1(4) . 
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determines the width of the resulting D D. Therefore, the price for the depth reduction 
by using the nodes with increased number of outgoing edges is often the increase of 
the width of the DD. 

FNADDs take further advantages from the properties of the Fourier transform 
on non-Abelian groups. In DDs on Abelian groups, the number of outgoing edges of 
nodes at the i-th level is equal to the number of values x; can take. Thus, it is equal 
to the order g; of G;. In FNADDs, the number of outgoing edges of nodes is equal 
to the cardinality of the dual object r; of G;, since w; take their values on r;. 

Since on non-Abelian groups at least one of the representations It,,, is of order 
rw > 1, and 

then always r; :S g;. Therefore, in FNADDs the number of outgoing edges of nodes 
is always smaller than in any DD on Abelian groups with decomposition of G into 
subgroups of the same orders as in the Abelian case. Therefore, for that reason, the 
width of FNADDs is often smaller that the width of DDs on Abelian groups. 

Thanks to that FNADDs express the following basic features. 

1. The same as QDDs or MTDDs, FNADDs permit reduction of the depth by 
using nodes with increased number of outgoing edges. 

2. Compared to DDs on Abelian groups, for the same depth reduction FNADDs 
require nodes with fewer number of outgoing edges. 

3. Depth reduction does not increase the width of the FNADDs. Moreover, in 
many cases, the width and size of the FNADD is also reduced. 

4. In FNADDs, the number of non-terminal nodes is reduced at the price of the 
increase of the number of constant nodes. In that property, FNADDs are 
useful in applications where a calculation procedure should he performed at 
each non-terminal node, or a circuit is assigned to each non-terminal node. 

5. If the Fourier transform on finite non-Abelian groups used in definition of 
a FNADD is considered over finite fields, the number of constant nodes is 
restricted by the cardinality of the considered field. Thus, in FNADD over 
finite fields, the number of constant nodes is not necessarily increased compared 
to that in MDD. 

6. The ratio between the percent of used nodes in a DD compared to the total of 
nodes in the corresponding DT is better for FNADDs in many cases. 

7. The comparison of the depth, width and number of outgoing edges of nodes 
gives considerable advantages to FNADDs. 
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Table 1: Group operation for the quaternion group Q2 . 

0 0 1 2 3 4 5 6 7 
0 0 1 2 3 4 5 6 7 
1 1 2 3 0 5 6 7 4 
2 2 3 0 1 6 7 4 5 
3 3 0 1 2 7 4 5 6 
4 4 5 6 7 2 3 0 1 
5 5 6 7 4 3 0 1 2 
6 6 7 4 5 0 1 2 3 
7 7 4 5 6 1 2 3 0 

8. FNADDs offer possibility to use negative edges in many cases where that can 
not be done with MTBDDs and MTDDs. 

9 Experimental Results 

The experimental results presented in this section confirm and approve basic features 
of FN ADDs. WE used the quaternion group Q2 of order 8 as the basic non-Abelian 
group. Thus, we will briefly repeat the basic definition of the Fourier transform on 
Q2-

9.1 Quaternion group Q2 

The quaternion group Q2 of order 8 has two generators a and b, and the group 
identity is denoted by e. If the group operation is written as abstract multiplication, 
the following relations hold for the group generators: b2 = a2

, bab- 1 = a- 1 , a4 = e. If 
the following bijection V is chosen 

(x) 0 1 2 3 4 5 6 7 

then, the group operation Q 2 is defined in Table 1. All the irreducible unitary 
representations are given in Table??. 

The following example illustrates calculation of the Fourier transform on Q2 • 

Example 3 The dual object r of Q2 is of the cardinality 5, since there are five 
irreducible unitary representations of this group. Four of representations are 1-
dimensional and one is 2-dimensional. The Fourier transform on Q2 is defined by 
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Table 2: Irreducible unitary representations of Q2 over C. 
X Ro R1 R2 R3 R4 

0 1 1 1 1 I 
1 1 1 -1 -1 iA 
2 1 1 1 1 -I 
3 1 1 -1 -1 iB 
4 1 -1 1 -1 C 
5 1 -1 -1 1 - iD 
6 1 ~1 1 -1 E 
7 1 -1 -1 1 iD 

r 0 = 1 r 1 = 1 r 2 = 1 r3 = 1 r4 = 2 

I- [ 1 - 0 ~ ] A- [ 1 - 0 -~] [ -1 B -
- 0 ~ ] 

C = 
0 - 1 

D = 
0 1 

E= 
0 1 

1 0 1 0 - 1 0 

the matrix 

1 1 1 1 1 1 1 1 

(Q2r 1 = ! 
1 -1 1 -1 1 -1 1 -1 
1 1 1 1 -1 -1 - 1 - 1 

8 1 -1 1 - 1 -1 1 - 1 1 
21 2iB - 21 2iA 2E 2iD 2C - 2iD 

where the notation is as in Table ?? . Th erefore, the Fourier spectrum of a function 
J on Q 2 consists of five coefficients, four 1-dimensional and one 2-dimensional and 
can be represented as a vector 

[S1) = [ S1(0) S1(l) S1(2) S1(s) S1(4) r. 
For example, the Fourier spectrum of the function f on Q2 given by the truth-vector 
F = [0o00t3A00jY is given by 

o + ,6 + A 
- o + ,6 - A 
o - ,6 -A 

- o - ,6 + A 

2 [ - io . t3 + ~A ] 
- ,6 + iA io 
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Table 3: Decompositions for the domain groups for FNADDs. 

on 4 5 

9.2 Domain groups 

We developed algorithms for generation of MTBDDs, MTDDs with different number 
of outgoing edges, and FNADDs for different decompositions of the domain groups 
for switching functions of different number of variables. In these experiments, the 
basic domain group for switching functions G2n of order 2n is decomposed into the 
product of subgroups taken as a suitable combination of C2, C4 , and Q2 depending 
on the value for n. For MTDDs we use different products of groups C2 , C4 , and C8 , 

and C2 , C4 and Q2 for FNADDs. Table 3 shows different decompositions used for 
FNADDs. 

The optimization of FNADDs is performed by freely choosing between the in­
teger extension of the Shannon expansion and Fourier expansion for Abelian sub­
groups in G. For example, C2Q2 denotes that we are using the Shannon expansion 
for the subgroup of order 2 and the Fourier expansion for the subgroup of order 8. 
Similar, W2Q2 denotes that we are using the Fourier expansion for both subgroups, 
since the Fourier transform on C2 is the Walsh transform. 

Multiple-output functions with q outputs Jo* f1 * · · · * fq 1 are represented by SB­
DDs, MTBDDs, and MTDDs with nodes having different number of outgoing-edges. 
For representation by MTBDDs, MTDDs, and FNADDs, they are first represented 
by the integer-valued functions f(z) through the mapping 

q-1 

f(z) = '£,2;f;. 
i=O 

9.3 Complexity of FNADDs 

Table 4 compares sizes and widths of SBDDs and FNADDs for various benchmark 
functions. For FNADDs the values of non-terminal nodes (ntn) and constant nodes 
(en) are shown separately. Thus, the size of FNADDs is the sum of these two values. 

Table 5 shows the sizes of FNADDs for Achille's heal function 

for two different orderings X1, x2, ... , X2r, Y1, Y2, ... , Y2r and x1, Y1, X2, Y2, ... , XnYn for 
different values of n. This example shows that the sizes of FNADDs greatly depends 
on the initial variables ordering. The depth reduction in FNADDs is achieved at the 
price of the increase the size of the FNADDs. 
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Table 4: SBDDs and FNADDs for various benchmark functions. 

SBDD FNADD 

f m out cubes size width ntn CV size width decomposition 

5xpl 7 10 75 90 25 39 128 167 18 C2Q~ 
bw 5 28 87 116 37 9 25 34 4 C4Q2 
conl 7 2 9 20 5 13 12 25 6 C2Q~ 
rd53 5 3 32 25 6 7 14 21 3 C4Q2 
rd73 7 3 141 45 10 23 30 53 6 W2Q~ 
xor5 5 1 16 11 2 5 6 11 2 C4Q2 

Table 5: Sizes of BDDs and FNADDs for Achilles' heal functions. 

n = 2r BDD FNADD 
worst best worst best decomposition 

4 8 6 13 12 C2Q2 
6 12 8 37 25 Q~ 
8 14 10 71 40 C4Q~ 

Table 6 compares sizes of SBDDs and FNADDs for adders, and Table 7 for 
multipliers. In this example, FNADDs provide the reduction of all three parameters, 
depth, size, and width and the reduction is considerable compared to SBDDs. The 
reduction possibilities are compared through the percent of used nodes from the total 
of nodes in the corresponding DTs. It may be seen that these values are comparable, 
thus, the possibility to do reduction in SBDDs and FNADDs is comparable. 

Table 6: SBDDs and FNADDs for adders. 

SBDD FNADD 
n Ill out cubes ntn en size width % ntn CV size width % 
2 4 3 11 190 2 8 21 22.00 4 7 11 2 52.38 
3 6 4 .31 55 2 57 20 42.86 6 7 13 4 31.70 
4 8 5 75 101 2 103 30 19.84 14 14 28 7 33.73 
5 10 6 167 224 2 226 62 10.98 18 16 34 7 8.31 
6 12 7 355 475 2 477 126 5.81 21 12 33 7 4.00 

The effect of the use of non-Abelian groups as is described in Example 1, is 
studied in Table 8 and Table 9. They compare sizes of MTDDs for different decom-
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Table 7: SBDDs and FNADDs for multipliers. 

SBDD FNADD 
n m out cubes ntn en size width % ntn CV size width % 
2 4 4 7 17 2 19 5 14.28 4 10 14 2 9.52 
3 6 6 32 61 2 63 15 11.27 9 20 29 4 9.75 
4 8 8 128 157 2 159 39 7.51 24 42 66 11 13.25 
5 10 10 488 471 2 473 114 5.54 37 50 87 17 4.51 
6 12 12 939 786 2 788 192 2.34 45 49 94 22 2.68 

positions of the domain groups and FNADDs for adders and multipliers. We can 
observe that for the same depth reduction with MTDDs we have to pay the price of 
the increased number of outgoing edges. Even in that case, FNADDs have smaller 
widths and sizes. For adders and multipliers, none of possible decompositions for the 
domain groups can produce MTDDs that are more compact than the corresponding 
FNADDs. 

Table 10 compares the FNADDs to some other DDs based on spectral trans­
forms. The Arithmetic transform DDs (ACDDs) (Stankovic, Sasao, Moraga, 1996), 
Walsh transform DDs (WDDs) in (1, -1) coding (Stankovic, Sasao, Moraga, 1996), 
and Complex-Hadamard Transform DDs (Falkowski, Rahardja, 1996) are compared 
with FNADDs for some benchmark functions. ACDDs, WDDs, and CHTDDs are 
DDs on Abelian groups. Therefore, the depth is equal ton. For rd53 and xor5, the 
sizes of FNADDs are equal to those of other DDs. However, the number of non­
terminal nodes and the width are reduced. In other cases in this example, FNADDs 
are more efficient with respect to depth, width and size. However, as for other DDs, 
some examples where FNADDs are not efficient certainly can be found. 

9.3.1 Dependency on the number of product terms 

To check dependency of parameters of BDDs, MTDDs, and FNADDs on the number 
of true minterm we generated pseudo-random switching functions of n = 6 variables 
for different number of true minterms s , (0 < s < 26 ) and counted the number 
of nodes for different DDs. Table 11 shows sizes of BDDs, MTDDs for different 
decompositions and FNADDs. 

In this example, MTDDs with C8 appear the most efficient. FNADDs are better 
than BDDs with respect to the number of non-terminal nodes. However, in BDDs 
and MTDDs the number of constant nodes is always 2, thus, it is natural that their 
sizes are smaller than the sizes of FNADDs. FNADDs have the better ratio between 
the number of non-terminal nodes and the size. 

In BDDs and MTDDs, the non-terminal nodes take on the average, respectively, 
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Table 8: Sizes of DDs for adders for different decompositions. 

add3 ntn en size width add4 ntn en size width 
SBDD 55 2 57 20 SBDD 101 2 103 30 
C6 2 41 15 56 14 cs 

2 113 31 144 30 
Cl 17 15 32 12 C4 

4 49 31 80 28 
CJ 9 15 24 8 C4Cg 29 31 60 24 
Q~ 6 7 13 4 C4Q~ 14 15 29 7 

W4Q~ 14 14 28 7 
add5 ntn en size width add6 ntn en size width 
SBDD 224 2 226 62 SBDD 475 2 477 126 
CJO 289 63 352 62 c12 2 705 127 832 126 
c5 4 129 63 192 60 C6 

4 321 127 448 124 
C2CJ 75 63 138 56 C4 

8 193 127 320 120 
C2Q~ 18 16 34 7 Q~ 21 12 33 7 
W2Q~ 18 16 34 7 

Table 9: Sizes of ODs for multipliers for different decompositions. 

mul3 ntn en size width mul4 ntn en size width 
SBDD 61 2 63 15 SBDD 157 2 159 39 
C6 

2 56 26 82 28 cs 
2 240 90 330 120 

C3 
4 19 26 45 14 C4 

4 80 90 170 60 
CJ 8 26 34 7 C4Cg 35 90 125 30 
Q~ 9 20 29 4 C4Q~ 24 46 70 11 

W4Q~ 24 42 66 11 

mul5 ntn en size width mul6 ntn en size width 
SBDD 471 2 473 114 SBDD 786 2 788 192 
c10 2 992 340 1332 496 c12 2 4032 1238 5270 2016 
cs 4 331 340 671 248 C6 4 1344 1238 2582 1008 
C2CJ 143 340 483 124 C4 

8 576 1238 1814 504 
C2Q~ 46 58 104 23 Q~ 45 49 94 22 
W2Q~ 37 50 87 17 
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Table 10: Sizes of ACDDs, WDDs, CHTDDs and FNADDs. 

ACDD CHTDDs 

f ntn CV size width ntn CV size width 
5xpl 38 11 49 10 127 128 255 64 
bw 31 32 63 16 31 32 63 16 
conl 40 5 45 10 115 42 157 56 
rd53 15 6 21 5 15 6 21 5 
rd73 27 6 33 6 27 8 36 7 
xor5 15 6 21 5 9 2 11 2 

WDD(l,-1) FNADD 

f ntn CV size width ntn CV size width 
5xpl 37 13 50 9 39 128 167 18 
bw 31 32 63 16 9 25 34 4 
conl 48 11 59 13 13 12 25 6 
rd53 15 5 20 5 7 14 21 3 
rd73 28 5 33 7 23 30 53 6 
xor5 5 2 7 1 5 6 11 2 

90.09%, 81.81%, and 78.41% of the size. In FNADDs, 35.86% of the size are the 
non-terminal nodes. This experiment proves the corresponding feature of FNADDs 
which states that in FNADDs the number of non-terminal nodes is reduced at the 
price of the increase of the number of constant nodes. 

10 Conclusion 

In word-level DDs, the width can be defined as the maximal number of non-terminal 
nodes per a level, as that is done in bit-level DDs. In many cases, the number 
of constant nodes exceeds the number of non-terminal nodes. Therefore, in these 
cases, the width of word-level DDs is determined by the number of constant nodes. 
However, in many practical application of DDs, a calculation subprocedure should be 
performed at each non-terminal node. In many DDs based design methods, a circuit 
should be assigned to each non-terminal node. The constant nodes are considered 
as inputs in such subprocedures or circuits. Therefore, DDs with reduced n•1mber of 
non-terminal nodes at the price of constant nodes may be useful in such applications 
of DDs. In that respect, FNADDs may be very useful and efficient, especially if the 
FNADDs over finite fields are used in which case the number of constant nodes is 
restricted to the cardinality of the used finite field. In FNADDs, for the same depth 
reduction, the number of outgoing edges of nodes is smaller than in other DDs. 

In many cases, the ratio between depth, width, size, and number of outgoing 
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Table 11: Sizes of BDDs, MTDDs, and FNADDs. 

s cb 
2 

c;j 
4 

c2 
8 Q~ 

ntn s w ntn s w ntn s w ntn en s w 
4 9 11 3 5 7 3 3 5 2 14 18 32 8 
8 18 20 5 10 12 5 6 8 5 15 22 37 9 
12 20 22 6 11 13 6 7 9 6 15 29 44 9 
16 20 22 6 10 12 5 8 10 7 15 25 40 9 
20 24 26 8 13 15 8 9 11 8 15 32 47 9 
'..:!4 24 26 8 13 15 8 9 11 8 15 33 48 9 
28 24 26 8 14 16 9 9 11 8 15 31 46 9 
32 21 23 7 12 14 7 8 10 7 15 26 41 9 
36 25 27 9 15 17 10 8 10 7 15 33 48 9 
40 21 23 7 11 13 6 9 11 8 15 33 48 9 
44 22 24 7 11 13 6 8 10 7 15 25 40 9 
48 22 24 7 13 15 8 8 10 7 15 31 46 9 
52 19 21 6 10 12 5 7 9 6 15 23 38 9 
56 18 20 5 9 11 4 6 8 5 13 22 35 7 
60 13 15 3 7 9 3 4 6 3 15 14 29 9 

edges of nodes, is improved in FNADDs compared to DDs on Abelian groups. In 
each case, some of these parameters may be reduced, and others will not be consid­
erably increased compared to the corresponding parameters in representation with 
DDs on Abelian groups. 
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