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Abstract 
We consider two examples of extended media under the influence of additive 

noise: a coupled stochastic oscillators and spatial nonlinear lattice which contains 
overdamped oscillators. In both systems role of the additive noise is crucial. In 
the first system additive noise increases signal to noise ratio, resulting in stochastic 
resonance. In the second system additive noise causes phase transition manifesting 
itself in the formation of ordered spatial patterns. Surprisingly, we find parallels 
between two phenomena considered. 

Keywords: Noise-induced phase transitions, stochastic resonance, pattern for­
mation. 

Introduction 

As usual noise is understood as a reason of disorder in physical systems. However 
investigations of the last two decades have shown that noise may cause ordering in 
nonlinear systems. As an examples let us note such effects as noise-induced tran­
sitions (Horsthemke and Lefever, 1984), noise induced directed transport (Hiinggi 
and Bartussek, 1996) or coherence resonance (Pikovski and Kurths, 1997 ). Also 
stochastic resonance (Gammaitoni et al, 1998) and noise induced nonequilibrium 
phase transitions (Van den Broeck et al, 1994a,1994b) are examples where noise 
sustains order in nonlinear systems rather that to destroy it. 

Most of inves.tigations on the effect of noise in nonlinear nonequilibrium systems 
concerns with theoretical models. There are only few papers on experimental veri­
fications reporting noise induced phenomena (Guderian et al, 1996; S. Kadar et al , 
1998;Locher et al, 1998). 

Nevertheless, the importance of noise on small length scales is without doubt. 
At scales comparable with cell lengths or smaller noise (heat) is one of the most im­

. portant sources of energy which is best manifested by presence of Brownian motion. 

International Journal of Computing Anticipato·ry Systems, Volume 3, 1999 
Edited by D. M. Dubois, CHAOS, Liege, Belgium, ISSN 1373-5411 lSBN 2-%00179-4--3 



At levels of Brownian systems there is a lack of directed work and the mesoscopic 
objects are obliged to use noise to sustain order inside the system. 

This circumstance motivates investigations of extended noisy media. Surpris­
ingly, very simple model systems with a wide range of applicability enables us to 
show the ordering role also of additive noise in extended media. The present paper 
reviews our study about the role of the additive noise in nonlinear extended sys­
tems with noise. We investigate systems where two control parameters are of the 
most importance: intensity of the additive noise and strength of the coupling. To 
our knowledge two examples meet these requirements: coupled stochastic oscillators 
under the action of an external force and nonlinear lattices which contain coupled 
overdamped oscillators under the influence of additive and multiplicative noise. 

We consider and compare two examples: in the Sec.1. we address the problem of 
stochastic resonance in the system of coupled stochastic resonators and in the Sec.2. 
w~ study formation of inhomogeneous spatial patterns induced by the additive noise 
in nonlinear lattice. As stated above, two control parameter are crucial for the 
systems under consideration: coupling and intensity of the additive noise. Variation 
of these two parameters results in the most ordered phase. For the phenomenon 
of the stochastic resonance it corresponds to the maximum in the spectral power 
amplification (SPA) and the signal-to-noise ratio (SNR), for the formation of the 
spatial patterns to the maximum in the structure function. 

Another interesting finding are similarities between two phenomena considered: 
in both system the ordering is of nonmonotonous character with respect to the 
intensity of the additive noise. To our surprise thorough analysis has shown that 
there are in-depth reasons for the parallels noted. We discuss these similarities and 
summarize results obtained in the last Sec. 

1 Stochastic Resonance in Ensemble of Stochastic 
Oscillators 

1.1 Stochastic Resonance in Single Systems 

Stochastic resonance is a wide spread phenomenon ranging from ice ages to neuronal 
systems (Benzi et al, 1982, Nicolis, 1982; Gammaitoni et al, 1998). The common 
secret of all this systems is a internal time scale which can be tuned by varying 
internal or external noise. In most cases it is the time to reach a certain threshold 
in the nonlinear system. This stochastically occurring event may be identified with 
the output of the system. 

The second ingredient represents a small signal inputting into the systems and 
changing temporarily the system state or, for example, the distance to the threshold. 
It consists of some ordered time sequence, periodic or random with some finite 
correlation time. The signal may be also contaminated with the noise originating 
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the escapes in the threshold dynamics. 
The effect of the signal may be expressed in terms of a modulation of a potential 

barrier which should be escaped to reach the threshold. Thereby, generally the 
inputting signal value is sufficiently small. It never decreases the barrier so far that 
the system would reach the threshold without the action of the noise. 

s(t) 
~ dx/dt=f(x,s(t),D) 

x(t) 
-->-

Fig. 1: General scheme of a stochastic resonator: A nonlinear noisy system with 
time scale depending on the noise intensity D is forced by an ordered signal s(t). 
The output :z:(t) becomes similar (ordered) to the input for optimally selected noise 
values. 

For small noise in the system there is no ordered reaction of the system, i.e. the 
system rarely reaches the threshold at moments without reflecting the signal. Large 
noise also overwhelms the signal totally and the output of the system becomes 
random. too. Otherwise. for optimally selected noise the dyn'.amics reaches the 
threshold in times comparable with the signal times. In that case the induced 
variations of the escape time caused by the small signal are sufficient that the output 
will follow strictly the structured values of the signal (with some phase shift). Hence, 
the output becomes similar to the inputting signal but amplified by some magnitudes 
dependent of the value of the threshold. 

In Fig. 2 we compa1·e the output with the input by determining the Kullback­
entropy (Schimansky-Geier et al, 1998) 

J{[P0 , P] := ~Pi log p; , '7 pf 
(1) 

which measures the distance between the two distributions P0 and P. It is always 
nonnegative and it vanishes if and only if P 0 and P are identical. We identify 
P? := p~n(in) and Pi := p~u1(in) being the distributions of binary sub sequences of 
length n of the input and the output, respectively. The input is simply a periodical 
sequence with half period about 6. The distribution of the output were estimated 
by counting the occurrence of a certain sequence from time series of a periodically 
driven stochastic Schmitt-trigger with additive noise and noise intensity D. The 
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Kullback entropy takes smallest values for finite noise in the system. In this region 
of noise intensities the output is nearly converging to the input.For lower D the 
intermittent output is far from being periodic. For large intensities the periodic 
structure gets lost due to hoppings without reference to the signal. 
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Fig. 2: Left: Kullback entropy vs noise intensity for different word lengths n. The 
curves quantify the distance between input and output statistics; here, the input 
consists of the periodic signal; Right : Spectrum of a periodically modulated bistable 
system. Peaks are seen at odd multiples of the signal frequencies and dips at even 
multiples. 

Stochastic resonance (SR) is wdl investigated in bistable systems. In Fig. 3 
a periodically modulated bistable potential U ( .r) = -:r2 /2 + .r 4 / 4 is shown. The 
dynamics of a bistable overdamped systems with signal and additive noise reads 

. au ( X) A • ( n ' ) ~?D ( ) 
X = --£'1- + .--1Stn ~d + <p + VZLJ( t 

u x 
(2) 

Fig. 3: Potential of a periodically modulated bistable systems. In case the noise is 
optimally selected the system dynamics follows the applied signal. 

Best performance for small signal amplitudes .4 is achieved for noise intensities 
D apt where the mean time for firstly passing the unstable state :r = 0 equals the half 
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( 

Fig. 4: SPA (left) and SNR (right) of a single two-state-resonator with respect to 
noise intensity. The SPA curve with the higher maximum is for smaller frequency 
D whereas the SNR is independent on the frequency. 

period of the driving signal, i.e. T(Dopt) = T./2. It is the noisy time scale which is 
given approximately as for the considered potential T( D) = y21r exp 1 / ( 4D). 

Two relevant parameters for characterizing SR can be extracted from the spec­
trum of the output if averaged over the initial phase cp. A typical shape of the 
spectrum for a bistable system is presented in Fig. 2 as well. For small signal ampli­
tudes this spectrum decomposes in a. amplitude independent noise part and a signal 
part having a delta peak above the signal frequency and weighted by a factor p 

(3) 

This factor is named spectral power amplification (SPA) and can be defined by 
linear response theory through the Fourier transform of the response function p = 
lx(w., D)l2. The second parameter is the signal-to-noise-ratio R. It relates the full 
weight of the signal to the noise level at the signal frequency, i.e. R = 1r A2 p/ S~_AD). 

For the purpose to study lateron coupled stochastic resonators it will be sufficient 
to reduce the dynamics to a theory of two states neglecting the dynamics within 
the wells. Such an approach was proposed by McNamara and Wiesenfeld (1989) 
who considered a periodically modulated telegraph process. The probabilities p( a) 
to find the process in state a satisfy p( a) + p( -a) = 1 and their time-evolution is 
governed by 

p(a) = -p(-a) = W(-a)p(-a) - W(a)p(a), (4) 

where W(a) denotes the rate of the transition a--+ -a given by (McNamara and 
Wiesenfeld, 1989) · 

a, 
W(a) = 2(1 - ad cos(wt + </>)]. (5) 
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For the bistable system with small amplitudes the rate a is inverse to escape time 
T(D) 

a( D) = ao exp ( -
4
~) (6) 

and J = A./ D in linear response. We lateron set a 0 = 1. With this input one is able 
to calculate the SPA and the SNR as well. They read 

1 ir A2 
f4J = --a(D) 4 D2 • 

(7) 

The dependency on noise of this two expressions is depicted in Fig. ( 4). We 
mention that the peak of the SNR does not reflect the dynamics of the system 
under consideration. Also the SPA achieves maximal values for noise intensities 
only near the earlier introduced D apt by the matching condition. This condition can 
be mathematically extracted by the consideration of two limits , the low frequency 
SPA for f! « o:(D) which is simply /JLF = 1/ D2 and alternatively the high frequency 
limit PHF = a 2 /(D2 0-2

). Both limits envelopes the real SPA and converges near its 
maximal value. From PLF = /JHF one immediately gets a = w. 

1.2 Coupled Two State Resonators 

When stochastic resonators a.re coupled in parallel way the SPA and the SNR can 
be enhanced (Jung et al , 1992, Bulsara et al, 1993; Neiman and Schirnansky-Geier, 
1995; Morillo et al , 1995 : Marchesoni et al, 1996; Dikshtein et al, 1998). Lindner 
et al. (1995. 1996) introduced the notion of 'array enhanced stochastic resonance' 
for the coupling-induced increase of the SNR. However, if the coupling becomes too 
strong the SPA and the SNR fall off again . Therefore, apart from the noise strength 
in a single stochastic resonator. the coupling strength has optimal values as well. 

As an ea.sy way to illustrate this topic we recently have investigated a sys­
tem of coupled two state resonators (Schimansky-Geier and Siewert, 1997; Siewert 
and Schimansky-Geier. 1998) with temperature T employing Glauber's model of 
a stochastic Ising model (Glauber 1963). Indeed a coupled magnetic spin system 
represents a good candidate for SR as was shown by Brey and Prados (1995) and by 
Neda ( 1995 ). Coupling originates barriers for the spin flippings. Therefore, if a peri­
odic force is applied for a given coupling strength the temperature has to be chosen 
optimally to achieve a best periodic response of the system. But an increase of the 
coupling strength weakens monotonously the value of the peak in the spectrum in 
this ca.se and weak coupling shows the best performance. 

Alternatively. a. connected cha.in of two state resonators models features of cou­
pled bistable elements where a barrier still exist for the single uncoupled element. 
vVe used the periodically modulated Arrhenius-like expressions for the local dynam­
ics ( Eq.5) of each element of the chain and coupling as introduced by Glauber which 
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favours with , > 0 a parallel ( 1 < 0: antiparallel) alignment of the states . 
rates for a transition a; ---t -a; of the ith spin in a chain reads 

o(T) [ A ] [ 1 ] W;(a;) = -
2

- 1 - a;T cos(wt + qi) 1 - 2(a;_ 1 + a;+i)a; . 

The 

(8) 

This rates defines the dynamics by the chain and should be inserted in a master 
equation for the probability function p(i:r , t) to find the chain in a particular con­
figuration i:r = ( ..... , ak,-1, ak , ak,+I • ..... ) at time t. We further introduce the spin 
coupling parameter J by "I = tanh 2J /T. 

Numerically generated realizations are presented in Fig. 5 (Ruszczynski, 1997). 
A best periodic response of the chain is obtained near T ex: 0.5 and J ex: 0.6. 

T 
1.0 

0.8 

0.6 

0.4 

0.2 
10 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 J 
Fig. 5: Numerical simulations of the spin chain according to transition probabilities 
(eq. 8). In each panel a chain of hundred elements with running time bottom-up is 
presented. Dark and white regions correspond to spin up and down, respectively. 

From the master equation for small · amplitudes A the SPA can be determined. 
The correlation function in the unperturbed case was given by Glauber (1963). 
Hence, all measures for a discussion of SR in the coupled chain are known. 
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The SPA is presented in Fig. 6 and can be brought into the shape 

(9) 

with 

1 (4J) Ps = y 2 exp T , (10) 

being the static response of the chain on a constant force. vVith increasing coupling 
J t his static response grows whereas the second fac tor in (9 ) displays the dynamic 
inability to follow the signal. The larger the frequency the smaller the weight of the 
delta peak in the spectrum. Both dependencies result in bell shaped curve for the 
SPA, since the static prefactor increases linearly in 1 ,,.,·hereas the dynamic response 
decrease with ~;' - 2 . 

Fig. 6: Counterplot of the SPA in dependence on T and .J. Incrf'asing darkness 
corresponds to larger values of tlw SPA .. 

A discussion of the SNR should distinguish between two principal arrangements 
of the ou tput (see Fig. 7). For the summed output 

N 

M( t ) = L o-;( t ). ( 11 ) 

of all elements the noise part of the spectrum can be calculated explicitly ( Glauber. 
1963) in the limi t of a infini tely long chain. IV -+ oo. The SNR monotonously 
decreases with increasing coupling 

7T" ~ 2 
RM = 4 0'. V 1 - ')2J , (12) 

258 



□ □ l t 
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l ! 
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□ □ 
Fig. 7: Different schemes of coupled resonators. Whereas in the left scheme for 
the global output the SNR decreases monotonously with increasing coupling the 
response of a single element in the coupled chain exhibits optimal coupling for the 
best SNR 

0.5 
SNR 

1.0 

0.5 

1.0 2.0 3.0 4.0 T 5.0 

Fig. 8: SNR of a single element embedded in a infinitely long chain for different 
couplings J in dependence on T. 

Differently, in Fig. 8 the SNR of a single element with the coupled chain is 
presented for different couplings. Array-enhanced response is seen. With moderate 
coupling a single element inside the chajn exhibits a larger SNR compared to the un­
coupled resonator J = 0 which is the result of the McNamara-Wiesenfeld-theory(7). 

Estimates of the SNR of a single element can be given for the low- and high-
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frequency limits. 

R. = Ro(l + 1)2 
= Ro (tanh (2j) + 1) 

2

, (13) 

RHF =Ro~= Rocosh-1 (2j), (14) 

where Ro is the SNR with vanishing coupling. Since the SNR for finite frequencies 
can never exceed the low-frequency expression we are able to find the upper limit 
of array induced SR. The coupling induced improvement of the SNR is bounded by 
the factor 4 compared to the uncoupled element. 

2 Spatial Inhomogenious Patterns Induced by the 
Additive Noise 

A numerous models have been reported to demonstrate nonequilibrium noise-induced 
phase transitions manifesting itself in the excitation of the oscillations or appearing 
of "mean field" (Landa and Zaikin, 1996,1997a,1997b;Landa, 1996;Van den Broeck 
et al, 1994a,1994b;Van den Broeck et al 1997). In these studies multiplicative noise 
has been a reason of the phase transition and much less attention has been paid 
to the role of the additive noise. Recently we have started to study an influence of 
additive noise on noise-induced phase transitions and have found that this influence 
can be important and even crucial since additive noise may shift the boudaries of 
the noise-induced phase transit.ion (Landa et al, 1998) or even cause such a transi­
tion (Landa et al, 1998a,1998b) . As a manifestation of the phase transition additive 
noise may induce spatially ordered patterns (Zaikin and Schimansky-Geier, 1998). 

In the present paper we review our study about the influence of the additive 
noise on noise-induced phase transitions which manifest itself in the formation of 
the "mean field". As a consequence of the special form of coupling these phase 
transitions result in the formation of the spatially ordered patterns. 

2.1 The Model 

We consider a scalar filed X r defined on a spatial lattice with points r and described 
by a set of Langevin equations (Parrondo et al, 1996): 

Xr = f(xr) + g(xr )(r + C:-cr + (r 

with f and g defined as 

.f(x) = - :i:(1 + :r 2
)

2 g( ;r) = a2 + :r• 

(15) 

(16) 
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and ~r- (r are independent zero-mean-value Gaussian white. noise sources: 

((r(t)(r1 (t')) = o}Jr.r'J(t - t') 

((r(t)(r1 (t')) = a~Jr.r1J(t - t' ) 

(17) 

(18) 

The spatial coupling in the model is described by the coupling operator ,C , which 
is a discretized version of the Swift-Hohenberg coupling term -D(q5 + V 2 )2: 

(19) 

Here e; represents the unit vectors of the cubic lattice. The lattice is of the dimension 
d, and 6. is the lattice space. 

Such form of the function g(;r) implies that the parameter a is responsible for 
an additive noise strongly correlated with the multiplicative one. To investigate 
the influence of additive noise on the noise-induced phase transition we study two 
different problems. First the constant contribution a 2 of the multiplicative noise (r is 
changed, setting az = 0. The origin one could see. for instance. in a decomposition of 
the multiplicative noise into two parts g( .1: )(r = a2

(; + x2(;. Changing the parameter 
a would imply an increase or a decrease of additive noise a2

(; strongly correlated 
to the multiplicative one. This constant contribution of noise is essential for the 
nonequilibrium phase transition under consideration. Only in the presence of the 
additive component with an optimally selected value the system exhibits spatial 
disordered states. 

A different situation is the variation of the noise intensity al- It models additive 
noise independent of the multiplicative one. In that case we set a = 0. Again we 
will find a strong influence of the additive noise( . 

Using generalized \Neiss· m ean field theory (Parrondo et al, 1996) the conditions 
of phase transition can be found. According to this theory we replace the value of 
the scalar variable J :r, at the sites coupled to .7:r by its averaged value. assuming the 
following specific non-uniform average :field: 

(xr,) = (x)cos [k · (r - r')). 

Substituting eq.(20) in eq. (19) we get for .rr: 

:i: = f(x) + g(:r)( + Dw(k)x - Deff (.r - (x)) + ( 

where 

D,ff ~ [ (!~- q)r + !~ +w(k)l D 

and 

w(k) = -D [q6 - ~
2 

(2 - coskxb. - coskyb.ir 
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The expression w(k) is the dispersion relation which is defined for the case of a 
two-dimensional lattice as: 

(24) 

where ,C acts on a plane wave eikr. 

For JkJ << 2rr / D. the dispersion relation w(k) reduces to the relation for the 
continuous Swift-Hohenberg model: -D(qJ- JkJ 2

)
2

. For the most unstable mode in 
the discrete case w(k) = 0 (see. (Parrondo et aL 1996)) . 

Note that the value (x) plays the role of the amplitude of the spatial patterns 
with an effective diffusion coefficient D etr• 

The Fokker-Planck eq. corresponding to the eq.( 21) in the case w(k) = 0 is: 

ow O (( ) az ( 0 ( )) (]'~ ow) - = - - .f( x) - Detr( :r - (:z: )) w- - g( :r) - g(x)w - --ot ox 2 Eh: 2 ox 
According to this this equation t he exact steady state probability parametrically 

depends on (x): 

( ) _ C((x)) . , ( 21,· f(y)- Detr(Y- (.r)) d) 
W 8 t X - exp 2 2 2 Y , JO't92 (x) + (]'l o (]'~9 (y l + a( 

(25) 

where C((x)) is the normalization constant determined by the following expression: 

c-1((:i:))=/
00 

1 exp (2Jx .f(:1J)~~etr(Y-?'))dy)d:1:. (26) 
. -oc, Jazg2( :i:) + (7~ 0 Cle9 (y) + CJ( 

For the value (.r) we obtain: 

(x) = f xw.1(:i:, (:r) )eh. (27) 

This equation is a nonlinear equation for the unknown value (.r) and doses the 
system of equations. 

Solving eq.(27) we can calculate boundaries of phases with (x) f. 0 (order) and 
(x) = 0 (disorder) for specific k which modes are excited first . Non-zero solution of 
eq.27 means excitation of the corresponding mode and hence existence of the phase 
transition. The special form of the spatial coupling is responsible for the fac t that 
the transition manifests itself in a formation of ordered spatial patterns with the 
wave number defined by the paramt·ter q0 • 

Computing Eq. (27) one can find that the condition for the existence of nonzero 
solutions is 

- > 1. 
l

dFI 
dm. m ==O -

(28) 

We note that for rather large D four non-zero roots ( two stable and two unstable) 
of the eq.27 may be observed. From this we expect that additionally noise-induced 
first-order phase transition may be also found in this model (to this point see also 
(Muller et al, 1997;Kim et al, 1997) ). 
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Fig . 9: (a): The boundaries of the phase transition on the plane (a}; D) are shown 
for the case of correlated additive 1t0ise. The values of parameter a are shown in 
the picture. (b): the corresponding dependence of the order parameter i(x)/ vs the 
control parameter a for D = 0.06, a} = 3.0. 

2.2 Influence of Additive N oise on Noise-induced 'fransi-
tion 

First let us consider the case if an additive noise is strongly correlated with multi­
plicative one (it means al= 0). For different values of a the boundary of the phase 
transition on the plane ( aJ, D) is shown in Fig. 9. As it is seen from this plotting 
the reentrant phase transition occurs for the specific value of a with the increase of 
aJ (Parrondo et al, 1996). Solving the eq . 27 for others values of a we find that 
as a decreases the boundary of the phase transition significantly dropped and right 
shifted (see Fig. 9) . Hence there is a set of par ameters (aJ, D ) for which the reen­
trant phase transition occurs with the increase of a ( dashed region in the Fig. 9). It 
means that for fixed values of aJ and D an increase of addi tive noise intensity will 
firs t induce the spatial patterns and then destroy them. We note that this phase 
transition is possible only in the presence of multiplicative noise. Corresponding 
dependence of the order parameter /(x)/ on control parameter a is shown in Fig. 9. 

Now we consider the case where the additive noise is uncorrelated (independent) 
with the multiplicative one ( a = 0, az -:/- 0) . In Fig. 10 it can be clearly seen that in 
this case the behaviour of the system is qualitatively the same: for fixed parameters 
(D, a-2) an increase of the multiplicative noise intensity aJ causes the noise-induced 
phase transition. Hence for large enough coupling D one expects the formation 
of the spatially ordered patterns if af exceeds it critical value. As to influence of 
the additive noise on the transition, an amplification of the additive noise intensity 
shifts the transition boundaries and therefore causes the reentrant disorder-order­
disorder nonequilibrium phase tramition. To illustrate it let us take a point with 
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Fig. 10: The case of uncorrelated additive noise: the boundaries of the phase 
t ransit ion on t he plane (a-~ ; D ). The parameter a-~ is equal to 1.1 (label 1) , 0.5 
(label 2), and 0.3 (label 3 ). 

fixed parameters (D , a-l) from the dashed region in t he Fig. 10: with an increase 
of a-~ this point firs t belongs to the disordered phase, t hen to t he ordered one, and 
then again to t he disordered phase. 

2.3 Numerical Simulations 

Now we compare predictions of the theory considered above with results of numerical 
simulations of the initial eqs. ( 15 ). We use an Euler scheme for stochastic differential 
equations interpreted in t he Stratonovich sense (Raminez-Piscina et al, 1993;Sancho 
et al, 1982 ). The t ime step ha.s been set l:l.t = 5 · 10-4

• For simulations we integrate 
the scalar field ;I:r (t ) on a two-dimeusional square lattice 128 x 128 with condit ions 
:r r = 0 and n · v'xr = 0 at t lw boundaries. Here n is the vector normal to the 
boundary. 

First we set a- f = 0 and a i 0. The remaining parameters are D = 1, q0 = 0.7, 
6. = 0.5 and aJ = 1.8. For these values t he mean field theory predicts the existence of 
spatial patterns of the m ost unstable mode lkl = 1.0478 for a = 1. For additive noise 
intensit ies significantly larger than this value, for example a = 10.0, or significant ly 
smaller , a = 0.1, according to the mean field theory no spatial patterns will be 
exhibitted . 

In Fig. 11 the picture of the field af ter 100 t ime units has been plotted for three 
different noise intensities. Clearly one can see the appearance of the spatial patterns 
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max 

Fig. 11: Reentrant noise-induced phase transition: snapshots of the field for D = 
1.0. (J'i = 1.8. and (J'z = 0. The parameter a is equal to 0.1 , 1.0, and 10.0 (from left 
to the right). The increase of the additive noise induces spatial patterns. The color 
code is shown in the same figure. 

(a) 
(b) 
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lkl 

( C) soo --------~ 
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400 . • • l 
300 -

Cl)~ 200 - • 
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o •~ ~ 
0 2 4 6 8 10 

a 

Fig. 12: ( a): Rotational symmetry of ordered patterns can be observed in 2D­
fourier transform of the pattern shown in Fig. 11 ( case a = 1.0) . (Max;Min) values 
are ( 1337;0.l ). (b ): Fourier tra.nsform averaged over angles for D = 1.0, (J'i = 1.8. 
Values of parameter a are shown in the figure. (c): The dependence of Smax on a. 
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max 

Fig. 13: Results of numerical simulations in the case of the uncorrelated additive 
noise: snapshots of the field for the parameter a} equal to 0.001, 0.7, and 10.0 
(from left to the right). Remaining parameters are D = 3.5, a} = 13, a= 0. and 
6.t = 10-1

• (Max;Min) values a.re (0.0072:-0.0075) . (7.14:-6.33) , and (1.07:-0.61). 

with the increase of the additive noise and its further destroying. These calculations 
confirm the predictions of the mean-field theory for the case of correlated additive 
noise. 

The ordered patterns in Fig. 11 (case a= 1.0) have rotational symmetry, which 
can be clearly observed in the two.,dimensiona.l Fourier transform of the field ( see 
Fig. 12). 

To make the transition more evident we have plotted the Fourier transform of the 
field averaged over the angles of the wave vector. It is shown in Fig. 12. for different 
values of a. With an increase of a a maximum in this structure function is found. 
It corresponds to the dominating value lklmax indicating the appearance of spatial 
pattern with wave length 211-/ lk:lma:i·· After an optimal value of a the maximum of 
the structure function disappears a.gain signalling the destruction of the order. 

Next we consider the case of uncorrelated additive noise. It means that a = 0 
and crl =/ 0. Numerical simulations show that the behaviour of the model is quite 
similar to the case of the correlated additive noise. Increase of the additive noise 
causes formation of the rotationally-symmetric spatial patterns. Further increase of 
the additive noise destroys this pattern (see Fig. 13). These results are also in a 
good agreement with predictions of the mean field theory. 

Now let us discuss the mechanism responsible for the appearance of the ordered 
spatially patterns with the increase of the additive noise and further its destroying. 
As it is stated above the ordered phase is a. result of the noise-induced phase tran­
sition, so our aim is to understand why increase of the additive noise leads to this 
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Fig. 14: Short time evolution of the average value. Potential U(x) for the param­
eters: ( a) a} = 2; solid line: a2 = 0.1 , dashed line: a2 = LO; (b) a=O , solid line: 
a}=2, dashed line: al=5. 

transition. 
The drift part in the Fokker-Planck operator (Stratonovich case) determines the 

time evolution of the first moment for a single element of the lattice 

a2 
(:i:) = (f(x)) + 

2
e (g(x)g'(x)). (29) 

As it was argued in (Van den Broeck et al, 1997) the evolution over short times 
of an initial Delta function is well approximated by a Gaussian which extremum 
obeys 

a2 
x = J(±) + 

2
e g(x)g'(x). (30) 

Here x = (x ) is the maximum of the probability which is the average value in 
this approximation. For this dynamics one is able to introduce a potential U ( x) = 
Uo(x) + Unoise = - J J (x) dx - a}g2 (x)/4 where Uo(x) is the unperturbed potential 
and Unoise < 0 describes the action of the noise. In the case under consideration 
U0 (x) = x2 (1 + x2 + x 4/3)/2 which is monostable with a minimum at x0 = 0. 

Now we consider how additive noise modifies the potential U( x). We start with 
the case if al = 0 and additive noise is included in the equations through g(x) = 
a2 + x 2 by the constant a. For small a the potential U( x ) remains monostable and 
there is no possibility of the phase transition in the system. If we increase a i.e. 
the intensity of the correlated additive noise the potential U(x) becomes bistable 

if a > ac,it = 1/ ;;[ (see Fig. 14 a). For sufficiently strong coupling this occurred 
bistability will be the reason of the local ordered regions at short time scales , which 
coarsen and grow with the time. Hence the additive part of the noise in the function 
g is essential for occurrence of the nonequilibrium phase transition. 
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The situation with uncorrelated additive noise (a = 0 and al =I 0) is more 
complicated. In this case the state :r = 0 always remains stable since the noisy part 
Unoise(x) ex: x4 (see Fig. 14 b). Nevertheless, as it is seen from this figure for large 
enough intensity az in addition to .the stable state x = 0 the potential U(x) has two 
minima more, precisely if az > 4. Therefore iu this case the phase transition is a 
result of hard excitation and requires independent additive noise. Sufficiently large 
additive noise causes escapes from the central minimum and the system does not 
return if the new minimal states are lower than the central one. The argumentation 
given can be considered as an intuitive explaination of the observed phase transition 
induced by additive noise. 

3 Discussion and Conclusions 

In the discussion we want to trace parallels between the behaviour of the SNR in 
SR-phenomena and the structure function in the reentrant phase transitions in de­
pendence on the additive noise. Both phenomena prove the ordering role of additive 
noise in nonlinear systems far from equilibrium. The influence of additive noise 
results in an ordered response of the system which is manifested by the increasing 
SNR and structure function if increasing the intensity of the noise. Moreover, both 
characteristics depend nonmonotonically on this intensity and hence, an optimally 
selected value exhibits the most ordered behaviour. 

Let us consider possible reasons of this similarity. For that purpose we refor­
mulate the noise induced phase transition as a situation typically occurring in SR. 
The influence of the neighbours supplied by the coupling serves as a driving force 
for the single system in the lattice with a bistable potential. Under this influence 
every single system is trying to obey the rules of the whole system, for example to 
choose the proper minimum of a potential. It replaces in a self-consistent way the 
action of the periodic input in SR where the system is forced to follow the periodic 
stimulus. 

Accordance to stochastic resonance becomes evident since this information is best 
transmitted to the single system if the intensity of an additive noise is optimally 
selected. For smaller and larger values of noise intensity the ordering process is 
not effective like in stochastic resonance. As a result and quite analogously to the 
shape of the SNR the maximum of structure function behaves nonmonotonously in 
dependence on the parameter a. The similarities are obviously bounded since in 
SR the input is independent from the reaction of the system. In our case it differs 
due to the mutual interact ion between the elements of the lattice. It determines the 
structure of the output which plays the role of the input for another element. 

In conclusion, we have shown on behalf of two nonlinear coupled noisy systems 
that an increase of the a.dditive noise may surprisingly induce order. A further 
increase of the additive noise destroys the ordered structures again. In both cases 
coupling plays an important role. In SR-phenomena it improves significantly the 
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response of a single element embedded in a chain. For the noise induced phase 
transition the coupling i:, crucial in synchronizing the elements of the lattice. 
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