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This paper deals with the stochastic adaptive linear quadratic optimal control problems 
which have been an active area of research for many years. It has been known that these 
problems could be treated by dynamic programming. However, it has been conceded that 
explicit solution of the dynamic programming equations for these problems is generally 
not possible and that numerical solution of these equations is a difficult computational 
procedure. This has led to many approximation techniques. In the paper, a variational 
approach is used to obtain optimality conditions for the stochastic linear quadratic 
adaptive control problems. These conditions lead to an algorithm for computing optimal 
control laws which differs from the dynamic programming algorithm. If the unknown 
parameters enter into the state equation additively, and the prior distribution of the 
unknown parameters is normal, the algorithm can be carried out in closed form. The 
examples are given to illustrate the proposed technique. 
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1 Introduction 

For a long time control theorists and control engineers have dreamt of a controller that 
does not need to be tuned. This type of controller has been given many different names, 
for instance adaptive, self-organizing, self-optimizing and learning controller. The 
ultimate solution has not yet been found and it is questionable whether it exists. Many 
different solutions to the adaptive control problem have been suggested. Some solutions 
are designed from a very practical point of view, while others are based on highly 
technical theory. 

In this paper, the above problem is considered in terms of the standard stochastic linear 
quadratic discrete-time adaptive control problem. Stochastic adaptive liner quadratic 
optimal control problems have been an active area of research for many years. Excellent 
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surveys of work on discrete-time adaptive control problems are given in Nechval (1984). 
It has been known that these problems could be treated by dynamic programming (see 
Aoki, 1967; Yakowitz, 1969; Astrom, 1970; Bertsekas, 1976; Nechval, 1984, 1988; 
Nechval et al ., 1997). However, it has been conceded that explicit solution of the 
dynamic programming equations for these problems is generally not possible and that 
numerical solution of these equations is a difficult computational procedure. This has led 
to many approximation techniques. 

The aim of the present paper is to use a variational approach in order to obtain optimality 
conditions for the stochastic adaptive control problems. These conditions lead to an 
algorithm for determining optimal controls which differs from the dynamic programming 
algorithm. The algorithm obtained requires integration of functions with respect to 
normal densities and solving some equations at each step . 

2 Problem Statement 

Consider the standard stochastic linear quadratic discrete-time adaptive control problem 
in which the state equation of the system is given by 

x i = A(8)xi-l + B(8)ui- l + C(8) + w i, i=l , ... ,N, 

where it is desired to find a control sequence u=(uo, ui, ... ,u~-1) which minimizes the 
performance criterion 

(1) 

(2) 

over all choices of admissible controls. In (1 ), Xi is the n-dimensional state vector of the 
system. The initial state Xo is assumed to be a given random vector. The quantity Ui is an 
m-dimensional control vector. The w/s are the disturbances, which for convenience are 
taken to be normal random vectors with mean zero and covariance the identity matrix. 
The quantities A(8), B(8) are respectively n x n- and n x m-dimensional matrices and 
C(8) is an n-dimensional vector. Each of these depends on a q-dimensional vector of 
unknown parameters 8 . The quantities Gi, v'i=0,1, ... ,N, are non-negative definite n x n­
matrices and Hi, v'i=O, 1, ... ,N-1 , are non-negative definite n x n-matrices. 

The class of admissible controls at time i is all Borel measurable functions Ui=ui(Xo, x1 , 
,xi) of past states (Xo, x1 , ,xi). It is assumed that the unknown parameters can be 
modeled as a random vector with prior probability measure P(d8) and that the form of 
this prior probability is known to the controller. We shall let P(dXo) denote the 
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probability measure of the initial state Xo and assume that 8, Xo, and W i, i=l , ... ,N, are 
mutually independent. 

The problem is adaptive in that the control u; is to be chosen as a function u;=t1;(Xo, x1, ... 
,x;) of the past states but without knowledge of the parameter 8 . 

3 Optimality Conditions 

The optimality conditions for the above problem are given by the following theorem. 

Theorem 1. A necessary condition for u • = (u ~, u; , ... , u ~ -I ) to be an optimal control 
is that for each je {O, .. . ,N-1} 

Proof. Our assumptions imply that the joint probability distribution of (8, Xo, w1, ... 
,w!'-.') is given by 

P(d8)P(dx0 ) [1(27t)-n'2 exp(- ½llw;jj
2 
)dw; . (4) 

Consider the mapping which takes (8, Xo, w1, .. . ,wN) into (8, Xo, x1, ... ,xN) in which, 
for i21 , x; and w; are related through the state equation (1). Since the determinant of the 
Jacobian of this mapping equals one, change of variables rules for probability densities 
and (4) imply that the joint probability distribution of(8, Xo, x1, ... ,xN) is given by 

(5) 

It follows from (5) that the conditional density of x1, .. . ,XN given 8 and Xo is given by 

Pu(x 1, .. . ,xr,.; ;8,x0 ) = (27t)-nNllexp(- ½fllx;-A(8)x;_1-B(8)u;-1-C(8)ll
2

) . (6) 
1=! 

Then from (2), (5) and (6) 
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We shall now proceed to deduce our optimality conditions by taking variations of J(u) as 
is done in ordinary calculus of variations. Let j be some integer between 0 and N-1, and 
let v={v;(Xo, .. . ,x;)} be an admissible control which satisfies vi(Xo, .. . ,x;)=O if i:;tj . 
Consider the control u*+t:v where t is a scalar and u* is an optimal control. Since u* is 
an optimal control, J(u*+t:v) considered as a function oft must have a minimum at t=O. 
Thus its derivative with respect to t must vanish there. Differentiating (7) with u 
replaced by u*+t:v under the integral sign, taking into account (6), gives 

(8) 

Equation (8) can be written using (1) as 

(9) 

Since Wj-1 and 0, x1, ... ,Xj are independent, it follows that 

(10) 

Thus from (9) and (10) 

( 11) 

Since (11) must hold for every vj(Xo, ... Xj}, a standard argument using the definition of 
conditional expectation implies (3) follows from (11). 0 

320 



4 Determining Optimal Controls 

Consider trying to use (3) to determine u* in an explicit form . To begin this, define 

(12) 

Notice that gj(8, Xo, ... ,xi) is the conditional remaining cost from stage j onward, given 
both the unobserved parametric vector 8 and the past states Xo, .. . ,xi . We easily see from 
the law of iterated conditional expectations that 

, 
g/8, x0 , ... ,xj ) = x'iGixi +u: Hju: + E{gi+1(8, x0 , ... ,xj_,. 1 );8, x0 , .. . ,xj}. (13) 

and that the terminal condition 

(14) 

is satisfied 

The law of iterated conditional expectations and (I) imply the left side of (3) is given by 

(15) 

The quantity under the conditional expectation sign in (15) is a function of Xo, ... ,xi, 8, 
u/ , and Wj-I• The control u/ is to be chosen as a function of Xo, . . . ,Xj. Thus this 
conditional expectation can be evaluated by integration with respect to the conditional 
probability distribution of 8 and Wj- 1 given Xo, .. . ,xi Since wi·I is independent of 8 and 
Xo, ... ,xi, the joint conditional probability distribution of 8 and Wj• 1 is the product of the 
probability distribution of wi. 1 and the conditional probability distribution of 8 given Xo, 

The following theorem holds for the conditional probability distribution of8 given Xo, ... 

,xi when A(8), B(8) and C(8) are affine. We shall need to define some notation for affine 
functions used in the statement of the theorem. Ann x m -matrix valued function 0(8) 
of a q-dimensional vector variable 8 will be called affine if there are n x m -dimensional 
matrices D1 and D2;, such that 
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q 

D(0) = D1 + LD2i8i . (16) 
H 

This can be written in matrix notation by 

(I 7) 

where 

(18) 

is the n x mq -matrix, 

(19) 

is the mq x m -matrix, and I is the m x m -identity matrix. 

Theorem 2. If A(0), B(0), C(8) are affine and the prior distribution P(d8) of 8 is 
normal with mean vector µ and covariance matrix n, then the conditional probability 
distribution of 8 given Xo, ... ,x;, P(d8; xo, ... ,x;), is normal with mean vector e J and 

covariance matrix Qi which satisfy the ditference equations, 

with initial conditions 00 =µ and Q0 =0 , where x and X, u and U are related through 
(19) 

Proof. This follows in the same manner as that of the Kalman filter and so it is omitted 
here. J 

Now (13), (14), (15) and Theorem 2 allow one to compute u;(Xo, .. ,xj) and gj(0, Xo, ... 
,xj) in order to find a control which satisfies (3). 
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5 Examples 

Three simple examples will be given which illustrate the approach described above. 

Example 1. Consider the scalar linear stochastic system with state equation 

(22) 

where 0 is an unknown constant and {wj} is a sequence of independent equally 
distributed gaussian random variables with zero mean values and standard deviation <rl . 
We want to select UN-I in order to minimize the loss function 

(23) 

The unknown parameter 0 in (22) can be estimated using the least squares method (see 
Astrom and Eykhoff, 1971), 

N-1 /N-1 

8:-;_1 = E{0;xo, ... ,x)l;.1, uo , ... ,uN.2} = L(xj-Xj-J)uj-J / Lu~-1' 
j=J / j=I 

IN-I 
Qi-;_1 = Var{0;x0 , ... ,xN.t, u0 , ... ,uN.2} = o2/i Luj_1 

j=I 

If 0 were known then the optimal loss is given as 

min J(u N_1) = min E{(xN_1+0uN_1+wN)2} = min {(xi-,;.1+0uN_1)2+o2} = o 2 
= I. 

UN-I UN-I UN-I 

(24) 

(25) 

(26) 

To obtain this we have used that WN is independent of 0, Xo, ... ,XN-1, Uo, ... ,uN-2• The 
optimal control law is 

(27) 

If the estimated value, 8N_1, is used in (27) instead of the true value we get 

(28) 
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i.e. we have assumed that the certainty equivalence principle can be used. The loss when 
using (28) will be 

To get the last equality the standard formula 

(30) 

has been used The loss has increased with the term 

(31) 

compared with the optimal loss when 0 was known. The control law (28) does not 
minimize (23) because 

(32) 

and the minimum is assumed for the control law 

(33) 

The loss in eqn. (32) is less than in (29) since QN_,~O . The first term in (32) is the loss 
due to the uncertainty of the parameter and the second term is due to the process noise 
W:-,;.J . 
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The optimal controller (33) is cautious since it considers the inaccuracy of the estimate 
of0. If Q:-;. 1➔0 then (28) and (33) will be the same and the loss approaches the optimal 
loss for known 0, (26). 

Another way to obtain the optimal control law (33) is to use the variational approach 
presented here. Then the estimation equation (20) and (21) are 

(34) 

(35) 

If 00=µ=0 and Q0=O➔:ic , it follows from (22), (34) and (35) that 

(36) 

(37) 

Now (33) follows immediately from (3). It can be shown by using (33), (36) and (37) 
that 

. 
U '.'\" . J = - X '.'\". J (38) 

Example 2. Consider the scalar linear stochastic system whose state equation is 

(39) 

in which 0 is an unknown parameter. It is desired to minimize the performance criterion 

(40) 
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Assume that the prior density of 0 is normal with mean µ and variance n, the 
disturbances w;, i=l, ... ,N, normal with mean zero and variance 1 and 0, w;, i=l, ... ,N 
are mutually independent 

In this example the estimation equations (20) and (21) are 

If00 =µ=O and Q0=!l➔x, it follows from (39), (41) and (42) that 

:-;. 1 

LXj-1(Xj-Uj-1) 
j=I 

8:-;.1 = ---,,:-;,-_c-1 ---

LXJ-1 
j=l 

It can be shown in this case by using (3), (43) and (44) that 

:'\-1 

x:-:-1 Lxj-1(xi-ui-1) 
J=l 

:-:-1 

2Ixr-1 
j=I 

Example 3. Consider the scalar linear stochastic system whose state equation is 

X-=x -1 +u 1 +0+w J J· J- J " 
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(42) 

(43) 

(44) 

(45) 

(46) 



in which 0 is an unknown parameter. Suppose it is desired to minimize the performance 
criterion 

{ 

N -1 } 
J(u) = E xi + ~(xr + ur) . 

1= 0 

(47) 

Assume that the prior density of0 is normal with mean µ and variance n, the 
disturbances w;, i=l , .. . ,N, normal with mean zero and variance I and 0, w;, i=l, .. . ,N, 
are mutually independent. 

In this example the estimation equations (20) and (21) are 

(48) 

A A A -I 
Q j = Qj-1 (1 + Qj.J) . (49) 

If 80=µ=0 and Q0=Q➔XJ , it follows from (46), (48) and (49) that 

(50) 

(51) 

It can be shown in this case that 

(52) 

where Fj is the jth Fibonnaci number. 

6 Conclusion 

The authors hope that this work will stimulate further investigation using the approach 
on specific applications to see whether obtained results with it are feasible for realistic 
applications. 
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