since 07 November 2024 :

View(s) :

4 (0 ULiège)

Download(s) :

0 (0 ULiège)

Generating Self-Symmetrical Fractals by Hyperincursive Automata and Multiple Reduction Copy Machine

p. 95-115

Abstract

This paper shows that different algorithmic methods can generate self-symmetrical Sierpinski fractals. A first category deals with a hyperincursive generator based on a composition rule applied to a defined path in the frame. A second category of algorithms is based on a recursive generator obeying certain symmetries. This paper will consider generalised Sierpinski fractals generated by modulo 2 and modulo 3. Even and odd modulo give rise to very different properties of symmetry.

Text

Download Facsimile [PDF, 9.0M]

References

Bibliographical reference

Daniel M. Dubois and Mathieu Belly, « Generating Self-Symmetrical Fractals by Hyperincursive Automata and Multiple Reduction Copy Machine », CASYS, 6 | 2000, 95-115.

Electronic reference

Daniel M. Dubois and Mathieu Belly, « Generating Self-Symmetrical Fractals by Hyperincursive Automata and Multiple Reduction Copy Machine », CASYS [Online], 6 | 2000, Online since 18 June 2024, connection on 27 December 2024. URL : http://popups.uliege.be/3041-539x/index.php?id=156

Authors

Daniel M. Dubois

Centre for Hyperincursion and Anticipation in Ordered Systems, CHAOS asbl, Institute of Mathematics, B37, University of Liège, Grande Traverse 12, B-4000 Liège, BELGIUM

By this author

Mathieu Belly

Liège, BELGIUM

Copyright

CC BY-SA 4.0 Deed