since 07 November 2024 :

View(s) :

5 (0 ULiège)

Download(s) :

0 (0 ULiège)

Non-locality Property of Neural Systems Based on Incursive Discrete Parabolic Equation

p. 233-244

Abstract

This paper shows that non-locality property occurs in simple diffusion neural equation: space local incursive discrete equation system transforms to a space non-local recursive equation system. The cable equation used for modelling the potential in neural membrane is similar to the Schrödinger quantum equation with a complex diffusion coefficient.

Text

Download Facsimile [PDF, 4.2M]

References

Bibliographical reference

Daniel M. Dubois, « Non-locality Property of Neural Systems Based on Incursive Discrete Parabolic Equation », CASYS, 7 | 2000, 233-244.

Electronic reference

Daniel M. Dubois, « Non-locality Property of Neural Systems Based on Incursive Discrete Parabolic Equation », CASYS [Online], 7 | 2000, Online since 08 October 2024, connection on 27 December 2024. URL : http://popups.uliege.be/3041-539x/index.php?id=3667

Author

Daniel M. Dubois

Centre for Hyperincursion and Anticipation in Ordered Systems, CHAOS asbl, Institute of Mathematics, B37, University of Liege, Grande Traverse 12, B-4000 LIEGE 1, Belgium

By this author

Copyright

CC BY-SA 4.0 Deed