Auteurs : Sandrine Thuillier https://popups.uliege.be/esaform21/index.php?id=445 Publications of Auteurs Sandrine Thuillier fr 0 Influence of temperature on the formability of an aluminum alloy https://popups.uliege.be/esaform21/index.php?id=1511 Warm forming is widely used as increasing the temperature is a solution to improve the formability of aluminum alloys. The stress (or strain) state is one of the most important factors affecting the formability of metals. In warm forming, the temperature and strain rate also play an important role on the deformation and fracture behavior. Figuring out the relationship between formability, temperature, strain rate and stress state is of great importance for providing more understanding of ductile fracture in warm forming conditions. Therefore, the objective of this work is to investigate the influence of temperature on the ductile fracture of a 6000 series aluminum alloy sheet metal under different stress states. Dogbone specimens, notched tensile specimens with different radius, tensile specimens with a central hole and shear specimens are used to cover a wide range of stress states. The hybrid experimental-numerical approach is used to identify the fracture strain and the corresponding stress state parameters (i.e. stress triaxiality and Lode parameter). To this end, fracture tests are carried out at 200°C using a tensile machine to determine the instant of fracture. Numerical simulations of the tensile tests are performed in 3D with the finite element code Abaqus to predict the strain field and calculate the evolution of the stress state. To accurately model the material behavior the positive strain rate sensitivity in the flow stress response at elevated temperature is considered. The results show a strong dependency of the ductile fracture on the temperature, strain rate and stress state. Mon, 22 Mar 2021 20:05:42 +0100 Mon, 05 Apr 2021 18:04:59 +0200 https://popups.uliege.be/esaform21/index.php?id=1511 On the optimisation efficiency for the inverse identification of constitutive model parameters https://popups.uliege.be/esaform21/index.php?id=1486 The development of full-field measurement techniques paved the way for the design of new mechanical tests. However, because these mechanical tests provide heterogeneous strain fields, no closed-form solution exists between the measured deformation fields and the constitutive parameters. Therefore, inverse identification techniques should be used to calibrate constitutive models, such as the widely known finite element model updating (FEMU) and the virtual fields method (VFM). Although these inverse identification techniques follow distinct approaches to explore full-field measurements, they all require using an optimisation technique to find the optimum set of material parameters. Nonetheless, the choice of a suitable optimisation technique lacks attention and proper research. Most studies tend to use a least-squares gradient-based optimisation technique, such as the Levenberg-Marquardt algorithm. This work analyses optimisation algorithms, gradient-based and -free algorithms, for the inverse identification of constitutive model parameters. To avoid needless implementation and take advantage of highly developed programming languages, the optimisation algorithms available in optimisation libraries are used. A FEMU based approach is considered in the calibration of a thermoelastoviscoplastic model. The material parameters governing strain hardening, temperature and strain rate are identified. Results are discussed in terms of efficiency and the robustness of the optimisation processes. Mon, 22 Mar 2021 20:01:49 +0100 Mon, 05 Apr 2021 18:00:57 +0200 https://popups.uliege.be/esaform21/index.php?id=1486 On the Elastoplastic Behavior of Friction Stir Welded Tailored Blanks for Single Point Incremental Forming https://popups.uliege.be/esaform21/index.php?id=437 The current market requirements are increasingly pushing the industry towards the manufacturing of highly customized products. Tailored blanks are a class of sheet metals characterized by the local variation of properties, attributable to the presence of different materials, different thickness distribution, and thermal treatments. In the manufacturing of tailored welded blanks, welding and forming processes cover a central role. In this framework, friction stir welding demonstrated to be a suitable candidate technology for the production by joining of tailored blanks. Indeed, sheet metals welded by this solid-state welding process typically exhibit high formability when compared to the conventional welding methods. Due to the improved formability, a good deal of attention has been recently given toward the single point incremental forming (SPIF) process and its integration with FSW. Remarkable efforts have been dedicated to the numerical modeling of the SPIF of metallic alloy sheets jointed by FSW. The main criticisms in these models are related to the definition of the mechanical properties of the materials, which are affected by the structural alteration induced by the FSW. The present work aims to model the local alterations in the mechanical properties and to analyze how these local characteristics affect the formability of the blanks. With this purpose, a 20 mm wide sample collected from a FS welded blank of aluminum alloy AA6082 has been modeled using the mechanical properties variation achieved in a previous work. The influence of this local variation in properties has been assessed using a Finite Element Model Updating strategy. Fri, 19 Mar 2021 19:38:16 +0100 Mon, 12 Apr 2021 09:13:32 +0200 https://popups.uliege.be/esaform21/index.php?id=437